导航:首页 > 网络数据 > 优化大数据

优化大数据

发布时间:2023-03-20 06:04:26

大数据开发工程师Hive(Hive如何进行优化)

1数据存储及压缩优化

针对hive中表的存储格式通常有textfile和orc,压缩格式一般使用snappy。相比于 textfile格式存储,orc占有更少的存储。因为hive底层使用MR计算架构,数据流是hdfs到磁盘再到hdfs,而且会有很多次IO读写操作,所以使用orc数据格式和snappy压缩策略可以降低IO读写,还能降低网络传输量,这样在一定程度上可以节省存储空间,还能提升hql的执行效率;

2 Hive Job优化

①调节Jvm参数,重用Jvm;

②合理设置Map个数;

③合理设置Rece个数;

3 Sql语法优化

建表优化

1) Hive创建表的时候,可以建分区表,分桶表;

2) Hive创建表的时候,可以指定数据存储格式:TextFile、SequenceFile、RCfile 、ORCfile;

查询时优化

1) 列裁剪,在查询时只读取需要的列,避免全列扫描,不要使用select * from table;

2) 分区裁剪:在查询时只读取需要分区的数据,避免全表扫描;

3) 开启谓词下推:set hive.optimize.ppd = true,默认是true:

a. 将Sql语句中的where谓词逻辑都尽可能提前执行,减少下游处理的数据量;

4) 大哪陵表join小表:

a. 开启MapJoin:set hive.auto.convert.join=true:

b. MapJoin是将Join双方比较小的那个表直接分发到各个Map进程的内存亩弊中,在 Map进程中进行Join操作, 这样就不用进行Rece步骤 ,从而提高了速度( 大表left join小表才有效 ,小表left join大表会失效);

5) 大表join大表:

a. SMB Join :Sort Merge Bucket Join(数据不仅分桶了,而且每个桶数据是排好序了);

b. 开启SMB Join之后,底层是根据两个表join字段进行分桶存储,这样迅缓族的话,两张表就变为了基于桶之间join关联查询,而不是基于整张表的join,减少了笛卡尔积;

6) 少用in,用left semi join替代in:

a. 原始写法:select a.id, a.name from a where a.id in (select b.id from b);

b. 用join改写:select a.id, a.name from a join b on a.id = b.id;

c. left semi join改写:select a.id, a.name from a left semi join b on a.id = b.id;

7) 用union all代替union,因为union all不需要去重,也不需要排序,效率高于union;

(每天1小题,进步1点点)

② 大数据在网络优化中大有可为

大数据在网络优化中大有可为

网络优化是确保网络质量,提升网络资源利用率的有效手段。近年来,随着网络容量的不断提升、网络用户数的不断增加、网络设备的多样化,用新技术和新方法替代传统网络优化手段成为一种趋势,尤其是在大数据分析技术的兴起下,其在网络优化中的作用日渐突出。

网络优化的传统手段

网络优化是通过对现已投入运营的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段,确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。一般而言,传统的网络优化有以下几种方法:

一、话务统计分析法:通过话务统计报告中的各项指标,可以了解和分析基站的话务分布及变化情况,分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。

二、DT&CQT测试法:从用户的角度,借助测试仪表对网络进行驱车和定点测试。可分析空中接口的信令、覆盖服务、基站分布、呼叫失败、干扰、掉话等现象,定位异常事件的原因,为制定网络优化方案和实施网络优化提供依据。

三、用户投诉:通过用户投诉了解网络质量。即通过无处不在的用户通话发现的问题,进一步了解网络服务状况。

四、信令分析法:主要针对A接口、Abis等接口的数据进行跟踪分析。发现和定位切换局数据不全、信令负荷、硬件故障及话务量不均以及上、下行链路路径损耗过大的问题,还可以发现小区覆盖、一些无线干扰及隐性硬件故障等问题。

五、数据库核查与参数分析:对网络规划数据和现网配置参数、网络结构数据进行核查,找出网络数据中明显的数据错误,对参数设置策略进行合理性分析和总结。

六、网络设备告警的排查处理:硬件故障告警一般具有突发性,为了减小对用户的影响,需要快速的响应和处理。通过告警检查处理设备问题,保障设备的可用性,避免因设备告警导致网络性能问题。

在实际工作中,这几种方法都是相辅相成、互为印证的关系。网络优化就是利用上述几种方法,围绕接通率、掉话率、拥塞率和切换成功率等指标,通过性能统计测试数据分析制定实施优化方案系统调整重新制定优化目标性能统计测试的螺旋式循环上升,达到网络质量明显改善的目的。

网络优化亟待创新

当前,随着用户数的不断增长,随着网络容量的不断增加,随着网络复杂度的不断提升,以及网络设备的多样化,网络优化工作的难度正在不断提升,网络优化的方法和手段亟待创新。

首先,网络优化是一项技术难度大、涉及范围广、人员素质要求较高的工作,涉及的技术领域有交换技术、无线技术、频率配置、切换和和信令、话务统计分析等。传统网络优化工作多依赖于技术人员的经验,依赖人工进行统计分析。网络优化的自动化程度较低,优化过程需耗费大量的时间、人力、物力,造成了大量的资源浪费,影响网络问题解决的时效性。另外,优化工程师借助于个人经验对网络数据进行分析和对比,而非根据网络相关的数据综合得出优化方案,存在一定的局限性。

其次,随着我国移动通信事业迅速发展,我国移动互联网发展已正式进入全民时代,截至2014年1月,我国手机网民规模已达5亿。网络结构日益复杂,数据业务已经成为移动通信网络主要承载的业务,用户通过智能终端的即时互联通信行为,使移动网络成为大数据储存和流动的载体。高速变化的数据业务速率和巨大的网络吞吐量以及覆盖范围的动态实时变化,在很大程度上改变了现有网络规划和优化的模型,在网络优化工作中引入大数据是非常迫切和必要的。

最后,全球数据信息成为企业战略资产,市场竞争和政策管制要求越来越多的数据被长期保存。对于运营商的网络优化来说,也需要保存各类数据,以便进行用户行为分析和市场研究,通过大数据实践应用提升网络优化质量并助力市场决策,实现精细化营销策略,提升企业的核心竞争力。

面对上述挑战,运营商正尝试进行网络优化工作的创新,尝试在网络优化中引入新技术和新方法。而正在全球兴起的大数据分析技术,开始在网络优化中大显身手。

网络优化拥抱大数据

大数据(Big Data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、整理成为帮助企业经营决策目的的资讯。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。大数据具有数据量巨大、数据种类繁多、价值密度低及处理速度快的特点,同时具备规模性、高速性、多样性、价值性四大特征。

一般而言,利用大数据技术进行网络优化的过程可分为三个阶段:数据来源和获取、数据存储、数据分析。

数据来源和获取—对于运营商而言,通过现有网络可以收集大量的网络优化相关信令资源(含电路域、分组域)、DT测试&CQT测试数据,这些数据大都以用户的角度记录了终端与网络的信令交互,内含大量有价值的信息。如终端类型、小区位置、LAC、imsi、tmsi、用户业务使用行为、用户位置信息、通话相关信息、业务或信令、信令中包含的各种参数值。

设备层包含基站、BSC、核心网、传输网等配置参数和网络性能统计指标(呼叫成功率、掉话率、切换成功率、拥塞率、交换系统接通率等)、客户投诉数据等。

采集到的数据一般而言,经过IP骨干网传输到数据中心,进行存储。随着云计算技术的发展,未来数据中心将具备小型化、高性能、可靠性、可扩展性及绿色节能等特点。

数据存储—网络优化中涉及巨大的数据存储,包括信令层面的数据信息和设备存在的数据信息,这些数据只有妥善存储和长期运营,才能进一步挖掘其价值。传统数据仓库难以满足非结构化数据的处理需求。Google提出了GFS、BigTable、MapRece三项关键技术,推动了云计算的发展和运用。

源于云计算的虚拟资源池和并发计算能力,受到重视。2011年以来,中国移动、中国电信、中国联通相继推出“大云计划”、“天翼云”和“互联云”,大大缓解了数据中心IT资源的存储压力。

数据分析—数据的核心是发现价值,而驾驭数据的核心是分析,分析是大数据实践研究的最关键环节,尤其对于传统难以应对的非结构化数据。运营商利用自身在运营网络平台的优势,发展大数据在网络优化中的应用,可提高运营商在企业和个人用户中的影响力。

电信级的大数据分析可实现如下功能:第一,了解网络现状,包括网络的资源配置和使用情况,用户行为分析,用户分布等;第二,优化网络资源配置和使用,有针对性地进行网络维护优化和调整,提升网络运行质量,改善用户感知;第三,实施网络建设规划、网络优化性能预测,确保网络覆盖和资源利用最大化。对用户行为进行预测,提升用户体验,实现精细化网络运营。

网络优化相关的工具种类很多,针对不同的优化领域,常用的工具包括:路测数据分析软件、频率规划与优化软件、信令分析软件、话统数据分析平台、话单分析处理软件等。这些软件给网络优化工作带来了很大的便利,但往往只是针对网络优化过程中特定的领域,而网络优化是一个涉及全局的综合过程,因此需要引入大数据分析平台对这些优化工具所反映出来的问题进行集合并综合分析和判断,输出相关优化建议。

目前,大数据技术已经在网络优化工作中得到应用。中国电信就已经建设了引入大数据技术的网优平台,该平台可实现数据采集和获取、数据存储、数据分析,帮助中国电信利用分析结果优化网络质量并助力市场决策,实现精细化营销策略。利用信令数据支撑终端、网络、业务平台关联性分析,优化网络,实现网络价值的最大化。

总工点评

综合全球来看,对大数据认识、研究和应用还都处于初期阶段。中国三大电信运营商都在结合自身业务情况,积极推进大数据应用工作,目前还处于探索阶段,在数据采集、处理、应用方面仍处于初级阶段。电信运营商在国内拥有庞大的用户群和市场,利用自身海量的数据资源优势,探索以大数据为基础的网络优化解决方案,是推动产业升级、实现效率提升、提升企业核心竞争力、应对激烈市场竞争的重要手段。利用大数据将无线网、数据网、核心网、业务网优化进行整合,可以完整地优化整个业务生命期的所有网元,改善用户感知,是未来网络优化的趋势。

以上是小编为大家分享的关于大数据在网络优化中大有可为的相关内容,更多信息可以关注环球青藤分享更多干货

③ 如何优化操作大数据量数据库

如何优化操作大数据量数据库

下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。
1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(pound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的 *** ,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
AND cust.postcode>“98000”
ORDER BY cust.name
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
ORDER BY cust.name
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。

7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
实例分析
下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:
1.part表
零件号?????零件描述????????其他列
(part_num)?(part_desc)??????(other column)
102,032???Seageat 30G disk?????……
500,049???Novel 10M neork card??……
……
2.vendor表
厂商号??????厂商名??????其他列
(vendor _num)?(vendor_name) (other column)
910,257?????Seageat Corp???……
523,045?????IBM Corp?????……
……
3.parven表
零件号?????厂商号?????零件数量
(part_num)?(vendor_num)?(part_amount)
102,032????910,257????3,450,000
234,423????321,001????4,000,000
……
下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE part.part_num=parven.part_num
AND parven.vendor_num = vendor.vendor_num
ORDER BY part.part_num
如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:
表?????行尺寸???行数量?????每页行数量???数据页数量
(table)?(row size)?(Row count)?(Rows/Pages)?(Data Pages)
part????150?????10,000????25???????400
Vendor???150?????1,000???? 25???????40
Parven???13????? 15,000????300?????? 50
索引?????键尺寸???每页键数量???页面数量
(Indexes)?(Key Size)?(Keys/Page)???(Leaf Pages)
part?????4??????500???????20
Vendor????4??????500???????2
Parven????8??????250???????60
看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取1.5万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为5.04万次。

hibernate如何优化大数据量操作?

建议你直接用Jdbc好了,用batch,这样是最快的。

如何实现大数据量数据库的历史数据归档

打开数据库
con.Open();
读取数据
OdbcDataReader reader = cmd.ExecuteReader();
把数据加载到临时表
dt.Load(reader);
在使用完毕之后,一定要关闭,要不然会出问题
reader.Close();

这个问题是这样的:
首先你要明确你的插入是正常业务需求么?如果是,那么只能接受这样的数据插入量。
其次你说数据库存不下了 那么你可以让你的数据库上限变大 这个你可以在数据库里面设置的 里面有个数据库文件属性 maxsize
最后有个方法可以使用,如果你的历史数据不会对目前业务造成很大影响 可以考虑归档处理 定时将不用的数据移入历史表 或者另外一个数据库。
注意平时对数据库的维护 定期整理索引碎片

时间维度分区表,然后定情按照规则将属于历史的分区数据迁移到,历史库上,写个存储自动维护分区表。

如何用java jdbc 向数据库表插入大数据量

一次性插入大量数据,只能使用循环,
如:游标,while 循环语句
下面介绍While 循环插入数据,
SQL 代码如下:
IF OBJECT_ID('dbo.Nums') IS NOT NULL
DROP TABLE dbo.Nums;
GO
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);
DECLARE @max AS INT, @rc AS INT;
SET @max = 5000000;
SET @rc = 1;
INSERT INTO Nums VALUES(1);
WHILE @rc * 2 <= @max
BEGIN
INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums;
SET @rc = @rc * 2;
END
INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;
--以上函数取自Inside SQL Server 2005: T-SQL Query一书。
INSERT dbo.Sample SELECT n, RAND(CAST(NEWID() AS BINARY(16))) FROM Nums

php 怎么解决 大数据量 插入数据库

ini_set('max_execution_time',Ɔ');
$pdo = new PDO("mysql:host=localhost;dbname=test","root","123456");
$sql = "insert into test(name,age,state,created_time) values";
for($i=0; $i<100000; $i++){
$sql .="('zhangsan',21,1,񟭏-09-17')";
}
$sql = substr($sql,0,strlen($sql)-1);
var_mp($sql);
if($pdo -> exec($sql)){
echo "插入成功!";
echo $pdo -> lastinsertid();
}
试试吧。10万条1分钟多,我觉得还行

请教如何通过WCF传输大数据量数据

就是直接把DataSet 类型作为参数直接传递给服务端
WCF默认支持这么做,直接传Datatable不行。
你看一下 “服务引用设置”中你选的 *** 类型是什么,我选的是System.Array
字典 *** 类型是默认第一项 System.Collections.Generic.Dictionary

又是一个把自己架在火上烤的需求啊,
如果不考虑传输因素,可以调整wcf配置,提升传递的容量,如果是对象传递可能还要调整对象层次的深度

④ MySQL大数据量分页查询方法及其优化

使用子查询优化大数据量分页查询

这种方式的做法是先定位偏移位置的id,然后再往后查询,适用于id递增的情况。

使用id限定优化大数据量分页查询
使用这种方式需要先假设数据表的id是连续递增的,我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

当然了,也可以使用in的方式来进行查询,这种方式经常用在多表关联的情况下,使用其他表查询的id集合来进行查询:

但是使用这种in查询方式的时候要注意的是,某些MySQL版本并不支持在in子句中使用limit子句。

参考 sql优化之大数据量分页查询(mysql) - yanggb - 博客园 (cnblogs.com)

⑤ 数据库的多表大数据查询应如何优化

1.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:x0dx0aselect id from t where num is nullx0dx0a可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:x0dx0aselect id from t where num=0x0dx0a2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。x0dx0a3.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:x0dx0aselect id from t where num=10 or num=20x0dx0a可以这样查询:x0dx0aselect id from t where num=10x0dx0aunion allx0dx0aselect id from t where num=20x0dx0a4.in 和 not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:x0dx0aselect id from t where num in(1,2,3)x0dx0a对于连续的数值,能用 between 就不要用 in 了:x0dx0aselect id from t where num between 1 and 3x0dx0a5.尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。 x0dx0a见如下例子: x0dx0aSELECT * FROM T1 WHERE NAME LIKE ‘%L%’ x0dx0aSELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’ x0dx0aSELECT * FROM T1 WHERE NAME LIKE ‘L%’ x0dx0a即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。x0dx0a6.必要时强制查询优化器使用某个索引,如在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:x0dx0aselect id from t where num=@numx0dx0a可以改为强制查询使用索引:x0dx0aselect id from t with(index(索引名)) where num=@numx0dx0a7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:x0dx0aSELECT * FROM T1 WHERE F1/2=100 x0dx0a应改为: x0dx0aSELECT * FROM T1 WHERE F1=100*2x0dx0aSELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’ x0dx0a应改为: x0dx0aSELECT * FROM RECORD WHERE CARD_NO LIKE ‘5378%’x0dx0aSELECT member_number, first_name, last_name FROM members x0dx0aWHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21 x0dx0a应改为: x0dx0aSELECT member_number, first_name, last_name FROM members x0dx0aWHERE dateofbirth < DATEADD(yy,-21,GETDATE()) x0dx0a即:任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。x0dx0a8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:x0dx0aselect id from t where substring(name,1,3)='abc'--name以abc开头的idx0dx0aselect id from t where datediff(day,createdate,񟭅-11-30')=0--‘2005-11-30’生成的idx0dx0a应改为:x0dx0aselect id from t where name like 'abc%'x0dx0aselect id from t where createdate>=񟭅-11-30' and createdate<񟭅-12-1'x0dx0a9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。x0dx0a10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。x0dx0a11.很多时候用 exists是一个好的选择:x0dx0aelect num from a where num in(select num from b)x0dx0a用下面的语句替换:x0dx0aselect num from a where exists(select 1 from b where num=a.num)x0dx0aSELECT SUM(T1.C1)FROM T1 WHERE( x0dx0a(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0) x0dx0aSELECT SUM(T1.C1) FROM T1WHERE EXISTS( x0dx0aSELECT * FROM T2 WHERE T2.C2=T1.C2) x0dx0a两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。

⑥ 大数据可以优化吗

连小数据都可以优化,何况大数据。
回答完毕,望采纳,谢谢!

⑦ 大数据数仓建设性能优化方案

大数据数仓的性能优化主要围绕以下四个方面:

在数据仓库建设的过程中,我们不可避免的要执行数据任务,那么这些任务如何进行配置才会是最优的?如果任务调度配置存在问题,将会导致出现瓶颈任务,或者无法及时提供业务所需的数据,这时我们就需要首先从调度则中段方面来考虑,是不是有些任务的调度时间设置不合理?或者是不是有的任务的优先级设置不合理?

对于数仓的建模而言,其实可以分为3NF建模和维度建模,推荐使用维度建模方式,可以按照星型模型或者雪花模型架构的方式去建模。3NF建模方式或者实体建模方式的应用性会差一点,在很多时候其性能也会差一点,但3NF会避免数据的冗余,其扩展性会好一些。而维度建模会有一定的数据冗余,并且冗余程度会很高,但是对于上层使用者而言,其易用性要好很多,并且其查询的性能也会好很多,虽然牺牲了一定的可扩展性,但是仍然在可接受的范围之内。之所以在大数据的框架下推荐使用维度建模,是因为建模产生的数据冗余对于大数据离线数仓来说,存储的成本并不高,因为其都属于SATA盘的存储,这样的存储成本是很低的。
总之,在大数据框架下推荐大家使用维度建模,使用星型模型或者雪花模型建模的方式,这样无论对于后续的运维还是后续的数据使用而言,都是比较便利的,并且性能会好一些。星型模型其实就是中间一个事实表,周边围绕着一堆维度表,其结构会简单一些,使用比较方便,性能也比较好;对于雪花模型而言,维度表可能还会继续关联其他的维度表,这种方式就是雪花模型,它会略微比星型模型复杂一些。其实星型模型也可以理解为较为简单的雪花模型。这里推荐大家使用星型模型,当然如果业务非常复杂,必须要使用雪花型也可以使用。这是因为星型模型虽然有数据冗余,但是其结构比较简单,容易理解,而且使用起来只需要A传给B就可以了,不需要再关联一个C。
除了上述两个较大的关键点之外,还有一些需要注意的小点,比如中间表的使用。我们一般将数仓分为三层,第一层做缓冲,第二层做整合,第三层做应用。但是并不是严格的只能分为三层,中间可能会有一些中间表,用于存储中间计算的结果,如果能够利用好中间表则会增强数仓的易用性和整体的性能。中间表的使用主要在数仓的第二层里面,因为需要整合数据,但整合后的数据仍是明细数据,对于这些表而言,数据量往往会比较大,而且会有见多的下游任务依赖这个表,因此可以做一些轻度的汇总,也就是做一些公共的汇总的中间表,这样应用层可以节省很多的计算量和成本。此外,虽然建议使用中间表,但也要注意中间表的数量,因为中间表数量过多,就会有太多的依赖层级。
在某些业务场景下,我们还需要对宽表进行拆表,拆表的情况一般发生在该表的字段较多,而其中几个字段的产出时间较晚,导致整个表的交付时间也会延迟,在这种情况下我们可以将这几个字段单独拆出来处理,这样就不会因为几个字段影响其余业务的使用。
与拆表相对的情况是合表,随着业务的增多,可能会有多个表中存放类似的数据指标,此时,我们可以将多个表整合到一个表中,减少数据任务的冗余。

表分区的功能一定要合理利用,这对于性能会产生很大的影响,一级分区一般都是按照天划分的,建议大家一天一个增量或者一天一个全量来做。二级分区的选择反而会多一些,首先大家要烤炉是否建立二级分区,其次大家再选择二级分区的建立方式。培数二级分区比较适合于在where语句中经常使用到的字段,而且这个字段应该是可枚举的,比如部门名称这样的。这里还有一个前提,就是如果这个字段的值的分布是非常不均匀的,那么就不太建议做二级分区。

离线数仓的计算任务基本都是通过SQL实现,这里也只讲在SQL部分如何进行优化。我们平时在进行数据处理,数据清洗,数据转换,数据加工的过程中都会使用到SQL。对于大数据体系下孙誉的SQL的优化而言,主要集中在两个大的方面进行:减少数据输入和避免数据倾斜。减少数据输入是最核心的一点,如果数据输入量太大,就会占用很多的计算资源。而数据倾斜是在离线数仓中经常会遇到的,数据倾斜分为几种,需要针对性的进行优化。

对有分区的表,合理使用分区可以过滤数据,避免全表扫描,有效的降低计算的数据输入。

SQL支持只读取一次源数据,然后将其写入到多个目标表,这样就保证了只做一次查询。语法如下

当我们在使用join,Rece或者UDF时,先对数据进行过滤也能有效的提高任务的效率

当发生数据再Map阶段倾斜的情况,第一种处理方式反馈至业务层面,看能否通过业务层面的修改让kv值均衡分布,如果业务层面无法处理,那么可以调整Map的个数,也就是加大Map的计算节点,默认情况是每256M的数据为一个计算节点,我们可以将其调小,也就是加大Map处理的节点的个数,使得数据分割的更加均匀一些。

Join阶段的倾斜也是比较常见的,其解决方案需要分钟如下几种情况处理:

Rece倾斜可能的情况有以下几种:

总结一下,性能调优归根结底还是资源不够了或者资源使用的不合理,或者是因为任务分配的不好,使得某些资源分配和利用不合理。

⑧ 如何优化大数据高并发量的系统的SQL语句提高效率

1. SQL优化的原则是:将一次操作需要读取的BLOCK数减到最低,即在最短的时间达到最大的数据吞吐量。 调整不良SQL通常可以从以下几点切入: ? 检查不良的SQL,考虑其写法是否还有可优化内容 ? 检查子查询 考虑SQL子查询是否可以用简单连接的方式进行重新书写 ? 检查优化索引的使用 ? 考虑数据库的优化器 2. 避免出现SELECT * FROM table 语句,要明确查出的字段。 3. 在一个SQL语句中,如果一个where条件过滤的数据库记录越多,定位越准确,则该where条件越应该前移。 4. 查询时尽可能使用索引覆盖。即对SELECT的字段建立复合索引,这样查询时只进行索引扫描,不读取数据块。 5. 在判断有无符合条件的记录时建议不要用SELECT COUNT (*)和select top 1 语句。 6. 使用内层限定原则,在拼写SQL语句时,将查询条件分解、分类,并尽量在SQL语句的最里层进行限定,以减少数据的处理量。 7. 应绝对避免在order by子句中使用表达式。 8. 如果需要从关联表读数据,关联的表一般不要超过7个。 9. 小心使用 IN 和 OR,需要注意In集合中的数据量。建议集合中的数据不超过200个。 10. <> 用 < 、 > 代替,>用>=代替,<用<=代替,这样可以有效的利用索引。 11. 在查询时尽量减少对多余数据的读取包括多余的列与多余的行。 12. 对于复合索引要注意,例如在建立复合索引时列的顺序是F1,F2,F3,则在where或order by子句中这些字段出现的顺序要与建立索引时的字段顺序一致,且必须包含第一列。只能是F1或F1,F2或F1,F2,F3。否则不会用到该索引。 13. 多表关联查询时,写法必须遵循以下原则,这样做有利于建立索引,提高查询效率。格式如下select sum(table1.je) from table1 table1, table2 table2, table3 table3 where (table1的等值条件(=)) and (table1的非等值条件) and (table2与table1的关联条件) and (table2的等值条件) and (table2的非等值条件) and (table3与table2的关联条件) and (table3的等值条件) and (table3的非等值条件)。 注:关于多表查询时from 后面表的出现顺序对效率的影响还有待研究。 14. 子查询问题。对于能用连接方式或者视图方式实现的功能,不要用子查询。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。应该用如下语句代替:select name from customer inner join order on customer.customer_id=order.customer_id where order.money>100。 15. 在WHERE 子句中,避免对列的四则运算,特别是where 条件的左边,严禁使用运算与函数对列进行处理。比如有些地方 substring 可以用like代替。 16. 如果在语句中有not in(in)操作,应考虑用not exists(exists)来重写,最好的办法是使用外连接实现。 17. 对一个业务过程的处理,应该使事物的开始与结束之间的时间间隔越短越好,原则上做到数据库的读操作在前面完成,数据库写操作在后面完成,避免交叉。 18. 请小心不要对过多的列使用列函数和order by,group by等,谨慎使用disti软件开发t。 19. 用union all 代替 union,数据库执行union操作,首先先分别执行union两端的查询,将其放在临时表中,然后在对其进行排序,过滤重复的记录。 当已知的业务逻辑决定query A和query B中不会有重复记录时,应该用union all代替union,以提高查询效率。 数据更新的效率 1. 在一个事物中,对同一个表的多个insert语句应该集中在一起执行。 2. 在一个业务过程中,尽量的使insert,update,delete语句在业务结束前执行,以减少死锁的可能性。 数据库物理规划的效率 为了避免I/O的冲突,我们在设计数据库物理规划时应该遵循几条基本的原则(以ORACLE举例):  table和index分离:table和index应该分别放在不同的tablespace中。  Rollback Segment的分离:Rollback Segment应该放在独立的Tablespace中。  System Tablespace的分离:System Tablespace中不允许放置任何用户的object。(mssql中primary filegroup中不允许放置任何用户的object)  Temp Tablesace的分离:建立单独的Temp Tablespace,并为每个user指定default Temp Tablespace 避免碎片:但segment中出现大量的碎片时,会导致读数据时需要访问的block数量的增加。对经常发生DML操作的segemeng来说,碎片是不能完全避免的。所以,我们应该将经常做DML操作的表和很少发生变化的表分离在不同的Tablespace中。 当我们遵循了以上原则后,仍然发现有I/O冲突存在,我们可以用数据分离的方法来解决。  连接Table的分离:在实际应用中经常做连接查询的Table,可以将其分离在不同的Taclespace中,以减少I/O冲突。  使用分区:对数据量很大的Table和Index使用分区,放在不同的Tablespace中。 在实际的物理存储中,建议使用RAID。日志文件应放在单独的磁盘中。

阅读全文

与优化大数据相关的资料

热点内容
更改文件夹名称提示找不到指定文件 浏览:425
哪个app看电影最全免费 浏览:868
数控机床手动编程怎么用 浏览:276
如何关闭文件共享端口 浏览:921
卫生健康文件有哪些 浏览:568
单个应用怎么关闭数据 浏览:653
韩版6sa1688网络支持 浏览:716
java中如何新建数组 浏览:302
电脑打开文件的软件 浏览:369
买鞋应该去哪个网站 浏览:972
看门狗2游戏文件名 浏览:105
js中判断是否包含字符串中 浏览:363
查看网络并设置连接 浏览:624
win10玩奇迹掉线 浏览:305
爱思助手电脑版在哪个网站下 浏览:814
文件夹排序怎么按顺序 浏览:54
飞猪app有什么功能 浏览:593
求生之路2开服破解文件 浏览:42
javaforeach输出数组 浏览:851
编程bug怎么修改 浏览:630

友情链接