㈠ 大数据是如何赚钱和亏钱的
大数据是如何赚钱和亏钱的_数据分析师考试
大数据无疑是时下炙手可热的流行词汇,然而,我们鲜少看到大数据如何带来收益,以及如何实现的例子,这是怎么回事呢?
多年来,在经历了几个通信和投行的大数据相关早期实施项目后,我认为这个新兴技术的收益主要在于:实现对复杂系统更为精准的剖析,例如股票市场或供应链。(投行成为最早一批应用大数据分析的行业之一,可谓毫不意外。对利用技术提升效率,创造效益更为敏锐的商业模式,往往也是更赚钱的。)
在投行的日常工作中,为了精准地选择投资机会、选购股票,有大量对文档处理的需求,例如新闻简报,财务报表。如果人工进行,工作量过于庞大。因此助理分析师们往往简化他们的预测分析过程,并使用电子表格来完成绝大部分工作。通过大数据技术,投行可以整合各种信息,减少可能的(简化分析带来的)风险,从整体上带来更优越的分析和预测能力。
公司如何通过大数据赚钱?通过大数据平台,股票经纪和投资经理们可以聚合各种来源的非格式化数据,辅助判断哪些公司值得投资。所谓‘非格式化数据’包括如公司新闻,产品评论,供应商数据,价格变化,将这些信息以所谓“大数据”形式整合,通过建模,帮助股票经纪决策买入或售出股票。
有些采用如上方式进行投资预测的公司,很注重节约实施成本,例如使用云平台(如AWS),先从很小数量的服务器开始,随着获益增长,逐步提高投入。一位我认识的分析师,从一家大投行离职创业后,在不到六个月的时间内,仅仅使用非常有限的投入,创立了一个盈利良好的大数据交易系统。
即便在传统制造领域,大数据仍然可以提升预测能力。我曾经担任过顾问的某欧洲一线汽车制造厂商,通过建立一个钢材交易成本的分析系统,选择更好的时机,以更优价格买入原材料。这个系统由开源Java框架Hadoop创建,整合了多个供应商的共计15Tb的数据,在两年内为该公司节省了1600万美元。
这个项目的成功主要有两个原因:首先,公司有足够的信息为所有的供应商建模;其次,该项目节省的原材料成本超过了实施这个项目的费用。
公司为何因为大数据亏钱?然而,并非每个大数据项目都会这样成功。公司在大数据项目上以亏损告终的概率,有时和成功的概率相差无几。大数据项目失败的早期症状有很多种,最常见的问题如:
步子迈太大大数据并不需要一笔巨大的预算,如果怀着巨大的投入将带来巨大回报的预期开始一个大数据项目,往往会产生问题。在正式开始前,明智的做法是,尝试用有限的投入,在小范围内测试这个技术是否确实能带来预期的收益。按这样的节奏,一个项目可以按部就班地随着收益逐步提高,而逐步扩大投入规模,确保收益始终大于投入。
低估人力投入在开始实施一个大数据系统前,问自己一个简单的问题:这个项目是否可以不需要持续的人工支持来运作?如果答案是,需要人工支持,那么建议停止项目。建立这样一个项目往往意味着百万级的损失,无法在有利润情况下保持维护和运行。
迷信自然语言处理大数据有个经常听到的功能是,通过自然语言处理,将各种领域的各种数据处理成直接可读可理解的形式。这听起来确实很赞,但是在实际应用中,往往不尽如人意。自然语言处理仍然存在许多妨碍应用的限制,主要由于人工智能的发展还不够——而且在可见的10年内,这个情况可能不会有很大改观。
现代大数据项目具备巨大的节约成本的潜力,其效果对于过去的数据处理方式而言有如童话。但需要谨记的是,在投入时间和资源到大数据项目之前,首先要确认你的项目是收益大于成本的。只有傻瓜才会匆匆对一个点子一见钟情并倾其所有。
以上是小编为大家分享的关于大数据是如何赚钱和亏钱的的相关内容,更多信息可以关注环球青藤分享更多干货
㈡ 有一个群买了大数据让大家投资利息很高有风险吗
有一个群买了大数据让大家投资利息很高有风险。因为通过微信群、朋友圈向你推荐“高回报”投资项目,鼓吹“致富机会”,其实背后隐藏着危险的骗局。已经有很多受骗者报警处理了。
㈢ 大数据时代,企业数据蕴藏着的商业价值
如今大数据早已不再是什么新鲜词,它已经被大众熟悉,可以称作是移动互联时代流动的黄金。
据《大数据产业发展前景与投资战略规划分析报告》(前瞻产业研究院发布)数据统计显示,中国大数据产业在2017年达到4700亿元的规模,同比增长30%,预计到2020年,中国大数据市场产值将突破万亿。随着大数据市场的快速发展,企业决策人员越来越重视对大数据的利用,如何借助大数据让企业快速成长也成为了人们的关注重点。
大数据挖掘商业价值的方法主要分为四种:
客户群体细分 ,然后为每个群体量定制特别的服务。
模拟现实环境 ,发掘新的需求同时提高投资的回报率。
加强部门联系 ,提高整条管理链条和产业链条的效率。
降低服务成本 ,发现隐藏线索进行产品和服务的创新。
对于企业来说,100条理论确实不如一个成功的标杆有实践意义,从亚马逊、Facebook、谷歌、LinkedIn,到腾讯、阿里、网络,都因其拥有大量的用户注册和运营信息,成为天然的大数据公司。
如果全球哪家公司从大数据发掘出了最大价值,截至目前,答案可能非亚马逊莫属。
亚马逊也要处理海量数据,这些交易数据的直接价值更大。作为一家“信息公司”(而非国内许多电商自己定位的“零售公司”),亚马逊不仅从每个用户的购买行为中获得信息,还将每个用户在其网站上的所有行为都记录下来:页面停留时间、用户是否查看评论、每个搜索的关键词、浏览的商品等等。这种对数据价值的高度敏感和重视,以及强大的挖掘能力,使得亚马逊早已远远超出了它的传统运营方式。
亚马逊CTO Werner Vogels早期在CeBIT上关于大数据的演讲,向与会者描述了亚马逊在大数据时代的商业蓝图。
长期以来,亚马逊一直通过大数据分析,尝试定位客户和和获取客户反馈。“在此过程中,你会发现数据越大,结果越好。为什么有的企业在商业上不断犯错?那是因为他们没有足够的数据对运营和决策提供支持,”Vogels说, “一旦进入大数据的世界,企业的手中将握有无限可能。” 从支撑新兴技术企业的基础设施到消费内容的移动设备,亚马逊的触角已触及到更为广阔的领域。
推荐: 亚马逊的各个业务环节都离不开“数据驱动”的身影。在亚马逊上买过东西的朋友可能对它的推荐功能都很熟悉,“买过X商品的人,也同时买过Y商品”的推荐功能看上去很简单,却非常有效,同时这些精准推荐结果的得出过程也非常复杂。
预测: 用户需求预测(Demand Forecasting)是通过历史数据来预测用户未来的需求。对于书、手机、家电这些东西——亚马逊内部叫硬需求(Hard Line)的产品,你可以认为是“标品”(但也不一定)——预测是比较准的,甚至可以预测到相关产品属性的需求。但是对于服装这样软需求(Soft Line)产品,亚马逊干了十多年都没有办法预测得很好,因为这类东西受到的干扰因素太多了,比如:用户的对颜色款式的喜好,穿上去合不合身,爱人朋友喜不喜欢…… 这类东西太易变,买得人多反而会卖不好,所以需要更为复杂的预测模型。
测试: 你会认为亚马逊网站上的某段页面文字只是碰巧出现的吗?其实,亚马逊会在网站上持续不断地测试新的设计方案,从而找出转化率最高的方案。整个网站的布局、字体大小、颜色、按钮以及其他所有的设计,其实都是在多次审慎测试后的最优结果。
记录: 亚马逊的移动应用让用户有一个流畅的无处不在的体验的同时,也通过收集手机上的数据深入地了解了每个用户的喜好信息;更值得一提的是Kindle Fire,内嵌的Silk浏览器可以将用户的行为数据一一记录下来。
以数据为导向的方法并不仅限于以上领域。对于亚马逊来说,大数据意味着大销售量。数据显示出什么是有效的、什么是无效的,新的商业投资项目必须要有数据的支撑。 对数据的长期专注让亚马逊能够以更低的售价提供更好的服务。
还有一个很典型的案例,就是几年伴随社区营销火气来的小红书。
和其他电商平台不同,小红书是从社区起家 。2016年初,小红书将人工运营内容改成了机器分发的形式。通过大数据和人工智能,将社区中的内容精准匹配给对它感兴趣的用户,从而提升用户体验。
如今的小红书,已经不是简单的社交分享了,更多的是基于后台的大数据分析和智能推送,最终形成了良好的正向闭环反馈。
通过以上两个大数据服务案例,我们不难看出数据团队其实是一个独立性很强的团队,因为他们需要完成的事情很多,这其中包含从数据源开始到数据的输出。对研发而言,他们相当于纪检委,需要组织协调数据的周转,实现对数据的监控,同时也要配合研发完成一些数据聚合挖掘累开发。对业务而言,他们相当于研发,因为他们需要输出报表和相应的产品,所以如何构建一个高效的数据团队,对很多企业来说一直在探索,感觉隔雾看花,捉摸不清。
一个企业想要自主研发一个数据平台,创建一个数据分析团队,会是一个很庞大的工程量。企业数据的类型大致可分为三类:
传统企业数据: 包括CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
机器和传感器数据: 包括呼叫记录,智能仪表,工业设备传感器,交易数据等。
社交数据: 包括用户行为记录,反馈数据等。如微博、微信这样的社交媒体平台。
从理论上来看,大部分企业都会从大数据的发展中受益。但由于数据缺乏以及从业人员本身的原因,对于中小型的初创企业来说,独自开发的成本太高了。而有财力的传统企业呢,也产生了大量的数据,但是数据源很乱,也没有统一的存储方式,更别说研发了。即使招人来做数据分析,也不知道从何下手。该怎么办呢?
其实,数据的价值就是从获取数据,存储,加工到挖掘分析,最终实现可视化,辅助商业决策。想真正去应用在企业的流程中,多少要依赖于专业的工具或平台,归云智能打造的大数据系统解决方案,可以帮助传统企业完成数据化,智能化的升级改造。帮助企业建立稳定高效的运营机制,推动企业实现降本增效和业务的高速发展。
通过新兴的智能技术,企业可以有新的视野,探索更宽广的商业模式,实现最大的商业价值。产品部署使用方便,中小企业可以使用归云智能提供的云服务,大型企业可以选择私有化部署到自己的服务器。 感兴趣的总们可以访问官网: http://www.guiyum.com ,了解详情。
㈣ 为何有人说数据将成为无价之宝
首先要知道数据从何而来,才能知道数据如何产生价值。现在的数据是指所能收集到的所有信息统称为数据,数据的生成包含方方面面,比如人类活动可以产生数据,大自然春夏秋冬变化也能产生数据,甚至一颗树木的生长过程也能产生数据。数据本身如果不能应用,就没有价值,如果吧数据应用起来,就能产生无限的价值。同类数据量越大,通过数据分析也就能产生更大的价值。这些价值也可以应用于各种领域,涵盖我们的衣食住行。数据能创造无限可能那就是当之无愧的无价之宝。
大家好,我是 科技 1加1!感觉这个问题很有意思!是啊,当前什么最值钱,要我说就是数据!
这个问题分两方面来回答
1.什么是数据数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。
它不仅指狭义上的数字,还可以是具有一定意义的文字、字母、数字符号的组合、图形、图像、视频、音频等,也是客观事物的属性、数量、位置及其相互关系的抽象表示。例如,“0、1、2...`”、“阴、雨、下降、气温”“学生的档案记录、货物的运输情况”等都是数据。数据经过加工后就成为信息。
在计算机科学中,数据是指所有能输入到计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。现在计算机存储和处理的对象十分广泛,表示这些对象的数据也随之变得越来越复杂。
信息
信息与数据既有联系,又有区别。数据是信息的表现形式和载体,可以是符号、文字、数字、语音、图像、视频等。而信息是数据的内涵,信息是加载于数据之上,对数据作具有含义的解释。数据和信息是不可分离的,信息依赖数据来表达,数据则生动具体表达出信息。数据是符号,是物理性的,信息是对数据进行加工处理之后所得到的并对决策产生影响的数据,是逻辑性和观念性的;数据是信息的表现形式,信息是数据有意义的表示。数据是信息的表达、载体,信息是数据的内涵,是形与质的关系。数据本身没有意义,数据只有对实体行为产生影响时才成为信息。
数据的语义
数据的表现形式还不能完全表达其内容,需要经过解释,数据和关于数据的解释是不可分的。例如,93是一个数据,可以是一个同学某门课的成绩,也可以使某个人的体重,还可以是计算机系2013级的学生人数。数据的解释是指对数据含义的说明,数据的含义称为数据的语义,数据与其语义是不可分的。
分类
按性质分为
①定位的,如各种坐标数据;
②定性的,如表示事物属性的数据(居民地、河流、道路等);
③定量的,反映事物数量特征的数据,如长度、面积、体积等几何量或重量、速度等物理量;
④定时的,反映事物时间特性的数据,如年、月、日、时、分、秒等。
按表现形式分为
①数字数据,如各种统计或量测数据。数字数据在某个区间内是离散的值[3] ;
②模拟数据,由连续函数组成,是指在某个区间连续变化的物理量,又可以分为图形数据(如点、线、面)、符号数据、文字数据和图像数据等,如声音的大小和温度的变化等。
如今,大数据早已经不是一个陌生的名词,很多的行业在使用大数据之后都得到了非常好的效果,大数据与互联网相辅相承,互联依赖,并且不断的在快速发展。
互联网上的数据每年增长40%,每两年便将翻一番左右,而目前世界上90%以上的数据是最近几年才产生的。据IDC预测,到明年全球将总共拥有35ZB的数据量,互联网是大数据发展的前哨阵地,随着互联网时代的发展,人们似乎都习惯了将自己的生活通过网络进行数据化,方便分享以及记录并回忆。
大数据围绕在我们生活的很多方面
大数据围绕在我们生活的方方面面,最直观的反映在我们每天都会使用的社交工具上面。例如腾讯拥有用户关系数据和基于此产生的社交数据,这些数据能够分析人们的生活和行为,从里面挖掘出政治、 社会 、文化、商业、 健康 等领域的信息,甚至预测未来。说简单一点,就是我们每天都在通过自己的QQ、微信、微博更新自己的动态、朋友圈等,这些都将构成一种数据,大数据就是可以通过你更新的这些大量的信息,推测出你的爱好,你的工作,你的住址,你的收入情况等等这些信息。
互联网时代大数据有多厉害
互联网时代大数据到底有多厉害?大数据就像蕴藏能量的煤矿,煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样,和这个相像,大数据并不在于“大”,而在于“有用”,价值含量、挖掘成本比数量更为重要。大数据应用工程师专业主要学习WEB技术、JAVA、JSP、大型数据库Oracle、LINUX集群、非关系数据库NoSql、Hadoop等技术,通过这些课程的学习,让学生具有JAVAEE开发能力的同时能够进行大数据的分析和挖掘能,学生在就业的过程中即可以进入传统的软件公司,进行OA和ERP等传统软件项目开发,同时也能进行大数据的分析和大数据深度挖掘以及对服务器集群的组建等。
大数据时代,我们要合理利用大数据,才可以创造更高的工作效率,才可以创造更多的财富。
所以说数据就是金钱!掌握了大数据就是掌握了财富!
感谢大家的阅读!
数据自身是没有价值或者说微乎其微的,价值是被赋予的,就像黄金一样,黄金的价值是他的应用前景或场景。
数据的价值就是数据能力体现出的收益,或者说投资回报率。
今天我们就来聊聊数据能力和价值。 说到大数据就不得不提数据仓库,企业数据仓库演化至最终阶段或许会变为大脑中枢神经,如果要支撑起整个复杂的大脑和神经系统,需要一系列的复杂机制配合。
一、抽象的数据能力架构我把数据能力抽象概括为四个方向:传输能力、计算能力、算法能力和数据资产量级,后面会讲述在这四个能力之上泛化出的数据应用和价值。
1. 数据传输能力
数据大部分的使用场景必然会涉及到数据传输,数据传输性能决定了部分应用场景的实现,数据实时的调用、加工、算法推荐和预测等;而传输抽象出来的支撑体系是底层的数据存储架构(当然非同机房的传输还要考虑到网络环境等。单纯的小数据量调用等一般不会涉及到这些,但数据量级大、高并发且对SLA要求非常严格的时候,就是对数据传输能力的考验)。
从产品的角度我把数据传输能力分解为: 底层数据传输效率 和 应用层数据传输效率 。
底层的数据传输效率是指数据源进入后的预处理阶段的传输效率,即加工为产品所需的数据交付物之前阶段。
Ps:数据在可为产品所用之前需要很长的一段加工过程,应用层数据产品基本不涵盖底层数据加工环节,而数据产品会用到规定好的数据交付物(即已约定好的结构化或标准化的数据),而利用此数据交付物再经过产品对实际应用场景的匹配和加工来提供数据服务。即使涉及底层数据管理的相关产品也是对Meta元数据、使用日志或写好的shell等的调用。
底层数据加工计算所涉及到的传输效率,直接决定了支撑数据产品高性能、高可靠的自身需求;而应用层的传输影响了用户体验和场景实现。传输机制和体系就像毛细血管一样遍布全身错综复杂,但是流通速率直接决定了大脑供氧是否充足。
2. 数据计算能力
数据计算能力就像造血系统一样,根据多种来源的养分原料进行生产加工最终产出血液。而源数据通过高性能的底层多存储的分布式技术架构进行ETL(抽取、转换、装载)清洗后产出的是数据中间层通用化的结构化数据交付物。计算速度就像造血速度一样,决定了供应量。而计算速度直接决定了数据应用的时效性和应用场景。
目前最多最普遍的就是离线数仓,离线数仓大部分担任着事后诸葛亮的角色,即没办法保证数据的及时性而延后了数据分析及应用的产出,导致更多的是沉淀经验而难以做到实时决策。而实时数仓,甚至说对Data Lake(数据湖)的实时处理已经逐步开放应用多种场景。我们先不考虑越来越强烈的实时性要求带来的巨大成本是否真的可以创造等值的收益。
强实时可以更接近一个“未来”的状态,即此时此刻。这远比算法对未来的预测更有价值,因为把握眼前比构造多变的未来对一个企业更有价值。甚至说当数据过程快过神经元的传递,那么从获取到你脑电波的那一刻起,数据处理的驱动结果远比神经元传递至驱动四肢要快。
是不是与兵马未动,粮草先行的场景相似?当然这是以数据计算能力的角度来看待这个问题。跳出来以我个人的观点来说,整体数据能力强大到一定阶段后,会从主观改变个人的意愿,即通过引导你的大脑从而来控制或决定个人行为且不会让你感知,所以可以理解为从主观改变个人意愿。从人的角度来说,你并不知道或者直观意愿去凭空决定下一步要做什么,因为大脑是逻辑处理器,当然这又涉及到心理学,这些观点就不在此赘述了,等往后另起一个篇幅来说数据应用未来前景和假想。
3. 数据资产能力
都在说“大”数据,那么数据量级越大越好吗?并不是,从某种角度来说大量无价值或者未 探索 出价值的数据是个负担,巨大的资源损耗还不敢轻易抹灭。
随着数据量级的急剧放大,带来的是数据孤岛:数据的不可知、不可联、不可控、不可取;那么散乱的数据只有转换成资产才可以更好的发挥价值。
什么是数据资产,我觉得可以广泛的定义为可直接使用的交付数据即可划为资产,当然可直接使用的数据有很多种形式,比如meta元数据、特征、指标、标签和ETL的结构化或非结构化数据等。
目前也在拓展Data Lake的使用场景,直接实时的使用和处理Data Lake数据的趋势是一种扩大企业自身数据资产范围和资产使用率的方式。这有利于突破数仓模型对数据的框架限定,改变数据使用方式会有更大的想象空间。
数据资产的价值可以分两部分来考虑:一部分是数据资产直接变现的价值;另一部分是通过数据资产作为资源加工后提供数据服务的业务价值。
第一部分比较好理解,就是数据集的输出变现值,如标签、样本和训练集等的直接输出按数据量来评估价值;第二部分价值比如通过自身数据训练优化后的算法应用而提升业务收益的价值或依于数据的广告投放的营销变现等,甚至说沉淀出的数据资产管理能力作为知识的无形资产对外服务的价值。这些间接的数据应用和服务的变现方式也是数据资产价值的体现并可以精细的量化。
4. 数据算法能力
其实无论是传输能力还是计算能力,都是相对偏数据底层的实现,而离业务场景最近的就是算法能力所提供的算法服务,这是最直接应用于业务场景且更容易被用户感知的数据能力,因为对于传输和计算来说用户感知的是速度快慢,从用户视角快是应该的,因此用户并不知道何时何地计算或传输。
而算法对业务应用场景是一个从0到1,从无到有的过程。并且算法是基于数据传输、计算和资产能力之上泛化出的应用能力,或者换句话说是三个基础能力的封装进化。
而算法能力是把多元的数据集或者说获取到尽可能多的数据转化为一个决策判断结果来应用于业务场景。算法能力的强弱反映了三个数据能力是否高效配合,是否存在木桶效应,更甚者木桶也没有。当然单纯的算法也可以单独作为无形资产的知识沉淀来提供服务。
对于数据能力架构中的四大能力,传输、计算和资产是基础能力,而算法是高级的泛化能力。而能力的输出和应用才能体现数据价值,数据能力的最大化输出考验着整个数据产品架构体系的通用性和灵活性。因为需要面对的是各种业务演化出的多种多样场景,对数据能力的需求参差不齐:可能是片面化的,也可能是多种能力匹配协调的。这对产品的通用性就是一个巨大的挑战,想更好的应对这个问题,可能就需要整个数据平台的产品矩阵来支撑和赋能。
二、数据能力对应数据价值的呈现从数据应用的角度,每个能力都可以独立开放也可以组合叠加。如果把能力具象出来就会衍生到产品形态的问题,产品形态是对能力适配后发挥作用的交付物。说到产品形态我们可以想象一下应用场景。
首先最基础的应用场景就是数据直接调用,数据资产的使用基本会基于特征、指标、标签或者知识等交付形态。而对于使用方来说这些数据会作为半成品原料或依据来进行二次加工应用于业务场景中,如数据分析、数据挖掘、算法的训练与验证、知识图谱、个性推荐、精准投放(触达)和风控等。数据资产可以统归为在数据市场中通过构建的一些OpenAPI进行赋能。
而对于一个工厂来说,仅仅进行原材料的加工(ETL)输出即除了自身原材料(数据资产)的壁垒外核心竞争力很小,需要包装一些上层的基础服务来提升竞争力,那么数据计算的能力融合进来对原材料进行二次加工(聚合统计)。
计算的聚合统计能力加入进来后可以满足大部分的数据分析场景的支持,就不单单是原材料毫无技术含量的输出,并可以以半成品的形态规避数据敏感。因为对于统计值来说,这是一个分析结果或结论,并不会涉及到自身敏感数据的输出,因此你的核心资产不会泄露,而输出的仅仅是资产的附加值。换句话说知识产权专利依然在你手中,通过控制专利泛化出的能力进行投资回报。
融入计算能力后的一些分析场景如:人群的画像分析、多维度的交叉分析、业务的策略分析和监控分析等多种场景。
随着时代的发展和业务场景的增多,这时工厂继续需要产业变革,要深耕服务业逐步抛弃制造业形态,全面提升更高级的数据服务。这时算法能力的加入来更好的完善服务矩阵。
算法通过封装了传输、计算和资产能力而进行统一的更好理解的业务场景目标预测和识别等。这样对于企业来说可以更容易接受和低成本使用数据服务而不需要再涉及到数据加工链路中,而仅仅需要一个目标结果,通过算法的决策作为参考来指导业务方向。像算法对一些业务场景的预测分析,甚至说一些人工智能场景的识别或学习思考,都可以通过算法赋能来实现。对于企业来说就是从无到有的突破,企业发展进程甚至可能提升好几年。
而贯穿以上能力应用场景都是对数据传输能力的考验。
“数据”的重要性可以有以下几点。
1、数据能够为企业高层提供决策支持。将企业海量数据进行统计分析挖掘后,能够让高层制定合理的措施。
2、数据能整合企业庞杂业务。每个企事业都有很复杂的业务系统,借助数据及对应平台可以将其庞杂的业务进行整合。
3、数据能反应事件本质与趋势。真实数据能够更好地去了解事件的本质问题,预判事态发展。
4、数据能够让人们更加了解自己。未来你可能真的不是最了解你自己的人?但是可以使用个人的数据进行画像,充分了解个人。
5、数据能反应 历史 ,展望未来。通过 历史 数据查询过往,也能够使用以往的数据进行感知未来。
总之,在大数据和5G技术逐渐成为趋势的时代背景下,“ 数据 ”是越来越常见,如社交网络、消费信息、 旅游 记录……企业层面的销售数据、运营数据、产品数据、活动数据……
㈤ 调研显示中国大数据应用与全球仍有差距
调研显示中国大数据应用与全球仍有差距
BM发布了全新《分析:速度的优势》白皮书,该白皮书基于IBM对60全球多个国家中超过1000位业务和IT高管的深度调研,对当前大数据[注]在中国及全球企业应用的现状进行了全面分析。该白皮书指出目前影响快速发展的数字市场的四个重大变化趋势,并基于企业的数据分析能力将他们分为领跑者、慢跑者、参与者和旁观者四个组别。同时,白皮书就企业在分析生命周期的三个关键阶段提出了快速将数据转变为洞察并驱动行动的建议,帮助企业在竞争中保持领先优势。作为全球发展最快的大数据市场,在此次调研中,虽然超过四分之三的大中华区企业在一年内实现了大数据的投资回报,显示了高于全球的投资信心,但是更多的中国企业更注重利用大数据分析来赢得新客户而不是创造更好的客户体验,同时,中国企业普遍在利用大数据推动数字和流程整合转型方面落后于全球整体水平。
IBM 大中华区全球企业咨询服务部高级合伙人兼副总裁Steven Davidson 表示:“随着大数据应用的不断深入,新的发展与变化已经产生。通过此次《分析:速度的优势》白皮书的发布,我们可以看到,速度优势对企业在竞争取胜至关重要。一部分企业正通过速度驱动的数据和分析实现差异化发展,对业务绩效和竞争地位产生了显著的影响。这一趋势对于全球企业高管,尤其是那些致力于利用创新技术推动自身发展的中国企业的领导尤为重要。IBM一直致力于与中国企业紧密合作,分享自身丰富的大数据分析洞察与资源,共同携手推动业务的创新与增长。”
四大变化引领全球大数据应用发展
作为IBM第六次全球数据分析调研,此次调研对象包括60多个国家中超过1,000位业务和IT高管,其中也包括大中华区企业。IBM 2014年全球分析调研揭示了影响快速发展的数字市场的四个重大变化:
变化1:绝大多数企业目前在一年内实现了大数据投资的回报。
变化2:以客户为中心仍是分析活动的主要目的,但企业越来越多地将注意力集中于利用大数据应对运营挑战。
变化3:通过将数字化能力集成到业务流程中实现企业转型。
变化4:大数据的价值推动力从数量转变为速度。
领跑者数据分析驱动实践,速度成关键
该白皮书指出要跟上当前的发展速度,企业需要全面地采用分析技术。基于企业现阶段分析能力,白皮书将企业分为四个组别:领跑者、慢跑者、参与者和旁观者。占10%的领跑者最有能力满足速度需求,并创造了巨大的商业价值。超过一半的领跑者都表示分析对业务表现和收入产生了显著影响并且使他们获得了显著的竞争优势。但大中华区在分析对业务、收入和竞争力方面产生影响的表现仍与全球领跑者存在着较大差距。为了创造业务价值,中国企业需要仿效领跑者,并且加快速度管理数据和分析,并依据数据洞察采取行动。
通过大数据分析构建速度驱动型企业
此次研究还表明,将原始数据的数量和多样性转变为洞察驱动的行动的速度是企业从数据和分析中创造价值的关键。支持这一速度的力量是使用大数据技术。在企业内加快分析速度不能一蹴而就,企业必须在分析生命周期的每个关键阶段保持领先:获取、分析和行动。
在获取阶段,快速获取和整合数据的能力对于创造速度优势非常关键。企业在寻找和管理数据时必须能够保证数据使用方式和时间的灵活性和敏捷性。企业需要推出支持数据多样化的解决方案,让数据为企业提供动力。
在分析阶段,追求行动速度的企业需要集中精力分析数据,并确定最有可能对业务产生积极影响的洞察。
在行动阶段,企业提高当前所需的快速行动能力的最后一步是真正地采取行动,并且快速处理数据。企业需要通过数字与流程的整合提升端到端的速度,使分析数据可供员工和高管使用,从而做到洞察交付和洞察需求相互匹配。
IBM推动中国企业大数据应用的快速发展
作为全球大数据技术与应用的领导者之一,IBM一直努力与广大中国企业、组织保持紧密的合作关系,并通过自身丰富的全球实践帮助众多企业成功应用大数据分析技术,实现了业务的创新与发展。
在汽车工业领域,IBM帮助上汽集团成功打造中国汽车市场首个O2O[注]电子商务平台——车享网。该平台将基于线上客户数据,有效判断客户潜在需求(+微信关注网络世界),提高运营分析效率,为客户提供及时的、个性化的服务与信息。通过全面的客户洞察做到精细化营销,车享网平台将大幅提升会员管理水平。通过数据分析提升汽车消费者全生命周期服务能力,真正做到高品质的客户体验。
在金融领域,去年,IBM帮助中国银行天津分行打造智能化网点,通过整合中国银行的后台数据分析平台,利用大数据分析技术,分析用户的业务偏好,为验证销售具体产品市场策略的有效性能提供重要的数据依据。
在快消领域,IBM与蒙牛集团于去年底达成战略合作。借助IBM强大的社交大数据分析与商务智能等解决方案,蒙牛将构建有效的大数据分析能力,发现新的客户洞察,并以此作为企业决策与业务流程优化的依据。
在零售领域,今年初IBM在帮助国内休闲食品领先企业良品铺子打造全渠道信息化应用平台的过程中,通过大数据分析,帮助企业将顾客有效地分群,从而实现精准营销和差异化服务。
在新互联网时代下,随着大数据、云计算[注]、社交及移动趋势的快速崛起,IBM正在构建自身全新的服务能力。在大数据应用领域,IBM一直引领着创新和发展,并不断融合自身在各行业与全球化发展中的经验,不断帮助中国客户紧抓新时代下的发展机遇,以稳健的步伐成长为全球企业的领导者。
以上是小编为大家分享的关于调研显示中国大数据应用与全球仍有差距的相关内容,更多信息可以关注环球青藤分享更多干货
㈥ 将大数据转化为大价值的10种途径
将大数据转化为大价值的10种途径
大数据可以产生很多价值,但前提是只有当您企业真正知道如何充分利用这些大数据的时候。
当前,大数据显然已经登上了历史舞台——在全球范围内,拥有超过半数的企业组织都已经将大数据项目视为其未来发展的机遇,并计划在未来几年内进一步的增加对大数据项目的投资。
但是,大数据的价值并不仅仅只是来自对于相关数据信息的收集而已,这仅仅只是起点。大数据的真正价值来自于您所在的企业组织利用所存储的信息以发现新的洞察分析见解的能力,然后从中提取出有用的价值,以推动企业做出更好的业务决策,促进企业业务的发展。
现如今,现代化的商务智能解决方案可以通过用户友好的解决方案来降低企业进入的大数据项目的壁垒,并进一步的提升大数据的价值。这允许企业组织内的更多的相关人员(不仅仅只有数据科学家)能够就您企业所收集的数据进行访问、分析和协作。
您企业的团队如何获取大数据的驱动价值?
大数据能够为您的公司提供更为详细的洞察分析,来洞察企业的各个方面的关键要素,以推动更好、更自信、且数据驱动的商业决策。
其培养一种积极开拓探索的企业文化,鼓励企业员工们通过数据分析来试验和验证他们的想法。
通过让每名相关的工作人员都能访问到这些大数据信息,推动您企业业务的下一此大的创意性变革的理念可以来自企业的任何一名员工——而不仅仅只是数据科学家。
究竟什么是大数据?
大数据是数据量相当庞大或结构相当复杂,以至于一般性的企业组织机构难以使用标准的数据库和软件工具对其进行管理。但由于每家公司都有不同的能力和要求,故而“大数据”其实可以说是一个相对较为主观性的术语——对某一家企业组织来说的“大”数据,对另一家企业组织而言可能仅仅只是“平均”性的数据。
想要从您企业的大数据投资项目中获得更多价值吗?
如下,我们将为您介绍10种有助于您所在的企业更好的从大数据分析项目中获取价值的方法:
选择正确的访问大数据的方法。
获得更好的洞察分析的能力与企业所收集到的数据信息有关。
让整个企业组织都能够访问到大数据。
让相关用户能够很容易的找到他们所需要的数据信息。
推动企业内各部门间的协同合作,以推动创新。
打造一个灵活敏捷的分析环境,以便满足每位用户的需求。
确保企业所采用的分析解决方案能够方便的让相关员工在任何地方采用任何设备均能够轻松访问。
部署可扩展的解决方案,确保其能够随着企业组织的业务需求的不断变化而变化。
确保您企业的商务智能解决方案可以很容易地适应未来的技术。
选择具有广泛合作伙伴生态系统的BI解决方案。
一、选择正确的访问大数据的方法
当涉及到如何访问和分析所有的数据信息时,没有一套一成不变的方法——毕竟,每家不同的企业组织都会有着不同的需求、不同的用例和不同的基础设施配置。
您企业所选择的方法或方法的组合将取决于所需要满足的特定用户的实际需求,并权衡您所愿意接受的各种折衷。
当企业组织在选择大数据的访问方法时,所需要考虑的相关问题:
您企业需要支持多少数据?数以百万计的?抑或是数十亿的?
相关非技术用户是否需要访问您企业的数据,或者仅仅只有IT和数据专家们访问这些数据呢?您企业将只在整个数据集上运行数据分析吗?或者您企业还希望能够分析可选择的相关数据呢?
您企业是否需要为终端用户提供流畅、高交互性的体验?灵活性或用户性能对您企业的业务来说是最为重要的吗?
二、企业获取洞察分析的能力更多的关乎到企业对相关数据是如何收集的
以前,您企业的大数据项目所面临的最大的挑战可能是从广泛的数据源中识别和收集您企业业务真正所需要的数据信息。
而到了今天,这部分比以往更容易。现在,真正重要的是您企业是否可以收集并整合所有这些数据信息——无论这些大数据具体是来自何处也不管其格式究竟如何,并最终发现所有相关数据信息中的所有可能的联系。
为了获得对于大数据的更为全面的掌握,企业组织亟待采用具有关联模型的BI解决方案,以便您企业可以浏览所有数据中的所有关联。这样,您企业的用户将始终可以访问您企业业务的完整视图,以便他们可以做出更好、更明智的决策。
与传统的数据模型不同(传统的数据模型会限制您所能够看到的数据,这些数据如何连接以及您所能够执行的查询),关联模型则可以识别您企业的所有数据之间的所有关系。这使得每位用户 ——不仅仅是数据科学家——均可以快速轻松地探索他们所需要的合适的数据,并使用交互式的选择和关键字搜索来发现意想不到的关键和洞察见解。
三、让整个企业组织均可以访问大数据
当大数据这一理念刚刚兴起的时候,仅仅只有极少数的人意识到其所蕴含的巨大潜力——这些人主要是数据科学家和分析师。非专业人士根本不具备以有意义的方式探索和使用数据所需的知识、工具或经验。
而今,这种状况已经一去不复返了。现在,您企业必须将大数据置于业务部门的用户手中。毕竟,只有那些与您企业的业务最接近的员工们才真正的知道要提出哪些有价值的问题;以及由数据所驱动的哪些分析见解将对企业的业务产生最大的影响。
正确的自助式商务智能解决方案可以在这方面为企业客户提供有力的帮助,其能够让业务部门的用户顺利访问到他们所需的数据,同时让数据治理和管理的权限掌握在您企业的IT团队手中。借助自助式服务商务智能解决方案,业务部门的用户可以使用交互式的可视化仪表板来自由的探索数据,并在不依赖IT部门的情况下找到问题的答案,改进业务流程,并推动整个企业组织内的创新。
推动企业朝着自助式分析方向转变的因素:
在最近的一份报告中,Forbes Insights调查了449位资深的IT和商业专业人士,了解了他们为什么决定转向采用自助服务模式:
62%的受访者希望对于数据获得更多的开放式访问。
76%的受访者希望获得更为及时的数据分析。
71%的受访者希望获得质量更高的数据和分析。
四、让用户可以轻松找到其所需的大数据信息
越来越多的企业业务管理者希望通过确凿的证据来支持他们的业务决策过程。但不幸的是,这些用户往往缺乏经验,因为他们需要在一个庞大的,不断增长的数据存储库中找到他们所需要的答案。
为了帮助业务部门的用户们找到这些答案,并从大数据中获得更多的投资回报,您企业需要让他们难过轻松的探索大数据。
您企业可以通过提供BI解决方案来实现这一点:
允许业务部门的用户直观地访问到所需的数据,而不需要依靠IT来运行查询和生成报告。
并提供自然语言搜索功能,便于查找他们所需的信息。
发现不同来源的数据之间的连接和关系——甚至是以意外的方式发现不相关的数据。
用清晰简洁的方式实现数据的可视化和形象化。
何为自然语言搜索,其如何为企业提供帮助?
借助自然语言搜索,用户可以使用常规口语进行查询。这对于缺乏数据专业知识,并且可能并不知道在数据库中如何查找精确信息所需的技术术语的用户极其有用。包含此功能的BI解决方案使更多的用户(而不仅仅是数据科学家)能够从企业的大数据中获得洞察分析能力。
五、促进企业部门间的协作,以推动创新
一项伟大的发现如果不能共享,又有什么益处呢?如果您企业内部的相关人员不能与更广泛的同事们分享他们的见解,那么您企业无疑错过了最佳的推动部门间合作的机会,也不利于这些好的最初的想法理念进一步的扩展,并使其更好。更糟糕的是,如果其他的同事没有听说过您的发现,他们最终可能会重复类似的数据探索,进而导致企业生产力的下降。
但仅仅分享数据是不够的,您企业必须以正确的方式分享数据。
考虑采用一款“企业就绪”的商业智能解决方案——其既能够提供自助分析的自由度(允许每位用户在他们认为合适的时候探索和共享数据),同时还能够为企业提供全面的治理能力(控制谁有权限访问哪些数据信息,所以每位员工都能够基于单一的事实来源开展工作)。
通过在自助服务和大数据管理之间取得平衡,您企业可以充分利用整个企业组织的集体智慧,结合多个团队和个人的专业知识来传播新的想法和理念,促进讨论,并推动创新。
确保企业的BI解决方案得到妥善管理:
有效的数据治理可确保在整个企业组织内正确控制和管理对分析功能和对于大数据的访问。
如果缺乏适当的大数据治理水平,就会出现错误、变化和冗余,进而导致用户难以验证数据中的真实情况,从而导致延迟和中断。
正确的大数据治理可以帮助您企业避免发生上述的不一致,并确保每位员工都能够从相同的可信数据中获得他们所需的洞察分析。
六、打造灵活敏捷的分析环境,以切实满足每位用户的需求
保持与大数据所提供的大量新信息的同步是一个不小的挑战。大数据的猛烈冲击可能会使商业用户难以真正深入的挖掘,探索并及时获得他们所需的答案。
为了保持活力,您企业应该考虑创建灵活敏捷分析环境,您的IT团队可以快速并逐步构建BI解决方案,以应对业务用户不断变化的需求。
例如,随着用户对数据更加熟悉,您企业可能需要从指导分析发展到自助服务BI。
这使他们能够自行探索更多的大数据,并更快速地深入细节。使用灵活的框架,您企业可以轻松的满足这些用户的需求,而无需花费大量成本或开发时间。
七、确保用户能够在任何设备上随时随地访问分析解决方案
随着手机、平板电脑和笔记本电脑的计算能力的不断增强,企业员工们越来越多地在办公室之外进行业务的处理。
无论是在火车上,在机场候机厅还是在客户会议上,现在的企业业务团队都希望能够在任何业务需要的时候访问他们的工作资料。
为了满足这些需求,您企业需要能够以各种形式向客户和用户提供分析解决方案——确保他们无论何时何地,对于所需全部功能都能够得到满足的期望。
除了通过基于云服务或在线门户提供对分析解决方案的直接访问之外,确保用户能够在任何地方均能够实现顺利访问的另一种方式是在企业的嵌入式分析应用程序中使用开放式API。通过在用户的日常工作环境中提供强大的分析功能,您可以确保每位业务用户都可以在他们需要时随时访问所需的信息。
自助服务商业智能为大众带来了分析的力量,但对于一些用户来说,获得额外的应用程序则可能是一大真正的挑战。 这就是为什么有些产品和组织直接将分析嵌入到用户每天所使用的熟悉的环境或应用程序中的原因所在了。
八、部署实施可随企业业务需求不断变化的可扩展的解决方案
通常情况下,企业所收集的大数据的量只会越来越大。但无论数据存储库怎么扩展,您的用户都希望获得顺畅的访问体验,而不必等待很长时间或经历中断。随着数据集的不断增长,大多数工具都难以跟上这一需求。
为了确保用户能够以他们想要的方式继续探索数据,请采用可随需扩展的BI平台,即使数据量增加并且应用程序变得更加复杂,也可以提供出色的性能。该平台应该采用多种工具和方法,以便您企业可以保持为最终用户提供交互式的动态体验,而不管您企业产生了多少数据。
此外,寻找一款使用内存处理执行即时计算的商业智能解决方案。
这些解决方案可以以“思考速度”处理和回答问题,使用户可以不断的保持继续的挖掘和探索。这反过来可以在整个企业组织内推动勇于开拓创新和探索的企业文化。
何为内存中的处理,其能够为企业组织带来什么样帮助:
内存数据库 (in-memory database) 是一种数据处理技术,其在随机存取存储器(RAM)中暂时存储和计算信息,而无需在每次用户进行新的选择或计算时都从磁盘存储中提取数据。数据可以在RAM中更快速地读取和分析,从而使得较之采用更传统的方法,报告(和决策制定)更快。
九、确保您企业的BI解决方案可以轻松适应未来的技术
管理和探索大数据的技术正在迅速改变,以便为当下的企业客户提供更好,更快的解决方案,进而从大数据中获取洞察分析。但是将最新技术整合到现有的分析平台中可能具有挑战性,有时甚至是不可能的。故而企业应该确保您所采用的分析解决方案能够快速,轻松地与新技术实现集成。
例如,开放的API可以为您企业的现有解决方案带来新的功能,就像添加几行代码一样简单。拥有专注于定制开发的在线社区也很重要。由此,开发人员们可以通过与其他人员轻松协作来确保您的产品或解决方案能够与最新的技术进步保持同步。
什么是开放式API?
一款开放的API是一个公开的接口,开发人员可以使用它将第三方解决方案集成到他们自己的解决方案中。实质上,开放式API能够控制两款不同的应用程序如何轻松地进行通信,并相互交互。提供开放式API的BI解决方案使企业能够轻松插入多种解决方案,执行独立解决方案所无法实现的特定功能。
十、选择具有广泛合作伙伴生态系统的商务智能解决方案
当涉及到大数据项目时,有时候企业需要一点额外的帮助才能看到整体的状况。在选择商业智能解决方案时,企业务必需要寻找能够与大量多种技术维持合作关系的供应商。
这将有助于简化数据交互,确保您企业的所有BI解决方案能够高效地工作。此外,拥有足够的合作伙伴可以随时为您企业的业务需求提供最合适的解决方案——无论现在还是未来。
您企业应选择哪些类型的技术合作伙伴?
数据存储和管理解决方案提供商可存储和查询您企业的数据,并提供运行分析解决方案所需的基础架构。
数据整理(Data wrangling)解决方案提供商将原始数据精炼,并重塑为可用数据集。
机器学习解决方案提供商通过使用从数据迭代学习的算法来自动化分析模型构建。
大数据,大潜力
大数据有可能改变您企业的业务,但为了能够真正从贵公司的大数据项目中获得真正的价值,您企业需要知道如何充分利用大数据。
恰当的商业智能解决方案可以帮助您企业最大化您的大数据投资回报,其方法是:
提供完整的业务视图和影响企业业务的外部因素。
在您的业务的每个领域推动更好的以数据为导向的决策。
让更多的业务用户能够随时随地访问和探索大数据。
在整个企业组织中培养协作、积极开拓探索和创新的企业文化。
随着业务的增长而实现规模化的扩展,以满足未来的需求。
㈦ 商业大数据分析有什么价值
1、客户群体细分,然后为每个群体量定制特别的服务。
2、模拟现实环境,发掘新的需求同时提高投资的回报率。
3、加强李弊部门联系,提高整条管理链条和产业链条的效率。
4、降低服务成本,发现隐藏线索进行产品和服务的创新。
㈧ 如何利用机器学习和大数据分析来优化投资组合和风险管理策略
机器学戚扒习和大数据分析可以在投资组合和风险管理方面提供有价值的信息和洞见,以下是一些基本的步骤:
数据准备:获取和整理数据,包括资产价格、财务指标、市场数据、宏观经济数据等。
特征工程:从数据中提取有意义的特征,如市场波动、行业变化、财务稳定性等,用于机器学习模型的训练和预测。
模型选择和训练:根据投资组合和风险管理的需求,选择合适的机器学习算法,如回归、分类、聚类等,利用历史数据对模型进行训练。
模型评估和优化:评估模型的表现,比较不同算法和参数组合的效果,进行枯缺优化,以提高预测准确度和投资回报率。
风险管理:利用机器学习模型高败昌预测风险和波动性,制定相应的风险管理策略,如对冲、分散投资等。
实时监控和调整:定期更新数据和模型,实时监控投资组合和风险管理策略的表现,及时调整和优化。
在以上步骤中,特征工程和模型选择和训练是非常重要的,需要具备一定的数据科学和机器学习技能。此外,还需要一定的金融和投资知识,以确保模型的合理性和有效性。
㈨ 大数据对企业运营管理有哪些价值
未来几年,全球数据量将呈指数级增长。据国际数据公司(IDC)统计,全球数据总量预计2020年达到44ZB,中国数据量将达到8060EB,占全球 数据总量的18%。
如今,大数据已成为一项业务上优先考虑的工作任务,因为它能够对全球整合经济时代的商务产生深远的影响。除了为应对长期存在的业务挑战提供解决方案之外,大数据还为众多行业、甚至社会本身的转型激发了许多新的方式。研究表明,72%的企业首选大数据应用需求是基于客户行为分析的大数据营销,其次产品创新、风险预测、供应链管理、客户服务等也是企业优先考虑的大数据应用。
提升客户洞察力
传统的拍脑袋的决策方式和营销手段,对大数据时代消费模式的战略决策已经不再那么适用,尤其是越到后来,市场、媒体、渠道成本越高,企业所换取的收益越来越少。那么,如何才能在新时代里,寻找到投资和回报的平衡点,就需要利用大数据去预测消费者的行为,提高其购买力,从而获得利益。
大数据的核心就是预测,大数据能够预测体现在很多方面。大数据不是要教机器像人一样思考,相反,它是把数学算法运用到海量的数据上来预测事情发生的可能性。正因为在大数据规律面前,每个人的行为都跟别人一样,没有本质变化,所以商家会比消费者更了解消费者的行为。
助力精细化运营
好产品是运营出来的,互联网产品需要不断运营、持续打磨。产品运营的目的是为了扩大用户群、提高用户活跃度、寻找合适的商业模式并增加收入。成功的互联网运营要做到精细化运营,成功的精细化运营需要大数据支撑。大数据和互联网思维在此方面关联度最高。所以,企业在大数据的应用场景上,一定是要优先考虑如何通过大数据进行精细化运营,以驱动更好的运营效率和效果的提升。
企业如何推动大数据应用
受应对业务挑战这一需求的推动,并且根据不断进步的技术和数据不断变化的特点,众多企业已经开始更深入地考察大数据的潜在价值。
1.以客户为中心推动初始举措。 最初的大数据举措必须注重能够为企业提供最大价值的领域,这一点势在必行。对许多行业来说,这意味着从客户分析开始,通过真正了解客户需求,并预测未来行为,从而为客户提供更好的服务。
要想有效地培养与客户之间有意义的关系,企业必须以客户认为有价值的方式与客户联系。价值可能来自更及时、更明智或者更相关的交互;也可能来自于企业通过改进底层运作而增强交互的整体体验。无论来自何处,分析都有助于从大数据中获得洞察力,这对于在这些关系中达到这一深度日益重要。
2.从现有数据开始,实现近期目标。 要实现近期目标,同时为持续开展大数据项目创造发展动力和专业知识,企业必须采取实用的方法。我们的调研表明,要开始寻求新的洞察力, 最具逻辑性和性价比的地点就是企业内部。
从内部着眼允许企业利用现有数据、软件和技能,提供近期业务价值, 并且在考虑提升现有的能力而处理更复杂的数据来源和类型之前积累重要的经验。大多数企业希望通过这样做而充分利用现有存储库中的信息,同时扩展其数据仓库,以处理更大数量和更多类型的数据。
3.制定整个企业的大数蓝图。 大数据环境下,企业需要根据自身行业特点制定企业的大数据蓝图。蓝图包含企业内的大数据愿景、战略和要求,对于在业务用户的需求与IT实施路线图之间做到协调非常关键。它实现了关于企业如何利用数据改进业务目标的一致理解。
有效的蓝图通过确定大数据适用的关键业务挑战、规定如何使用大数据的业务流程要求,以及包含实现该蓝图所需数据、工具和硬件的架构,从而定义了企业内大数据的范围。这是为指导企业以实用的方式,并以创造可持续的商业价值为出发点,开发并实施大数据解决方案而制定蓝图的基础。中科点击作为行业大数据应用专家,多年实战经验形成一套标准化的大数据应用开发模式,深挖各行业应用痛点,为企业量身定制大数据应用服务,已经为汽车、教育、金融、医美等众多行业客户提供了数据应用和商业增值。
未来,大数据产业会形成一个生态系统,大数据的应用将会影响到更多行业,实现更多价值,企业级的大数据应用会蓬勃发展,目前很多企业已经意识到数据资产的重要性,有效的利用数据技术,把客户数据承载下来,管理好,将是下个10至20年企业的核心竞争力!雪脉科技有着一批精深的专业算法工程师,对大数据有深入研究,助理企业使用大数据管理,实现企业腾飞。
㈩ 如何将大数据进行到底
如何将大数据进行到底
“大数据”这个词可以说是已经完全把“云计算”的风头盖了下去,现在各种行业会议仿佛不提大数据就跟不上时代。而Gartner近日有报告显示,虽然全球范围内各大企业用户都加强了对大数据(Big Data)业务的投资力度,但有6成企业对大数据投资额的回报产生质疑。是什么原因让企业对这个趋之若鹜的技术产生了怀疑?
60%企业认为谈回报拍丛率为时尚早
Gartner报告显示,2012年全球各大企业用于大数据业务的投资总额达到43亿美元,其中绝大部分投资是针对公司服务器上运行的软件。预计2013年期间,这个投资总额将增至340亿美元。
但是,尽管企业加大了对大数据业务的投资,大部分企业未能确信这些投资将有良好回报。通过对800多名商业和IT主管的调查显示,60%的受访者表示,目前判断大数据投资能够带来良好回报还为时过早。
大数据光鲜背后
什么是大数据?到现在对于 “大数据”还没有标准的定义。维基网络上有人对大数据作了如下描述:数据增长如此之快,以至于难以使用现有的数据库管理工具来驾驭,困难存在于数据的获取,存储,搜索,共享,分析和可视化等方面。
作为未来发展的必然趋势,毫无疑问大数据对于企业有着极为深远的意义。近两年来,包括IBM、惠普等在内的存储厂商在追捧“大数据”的概念,他们提出除了为客户提供基础的存储解决方案外,还向企业推广一袭高樱系列针对“大数据”的分析解决方案,挖掘数据背后的价值。
但在各种文章铺天盖地描述大数据的美好前景的同时,却鲜有大数据项目实念悄施的实际效果的相关报道。
能够引起企业对回报率的质疑,首先我们必须看到的是,“回报率”在有些行业并不是显而易见。在金融服务领域,大数据能够促使服务更好、更有效,从而实现更有利的经营策略。媒体公司可以销售更多的广告版面。电子商务公司可卖出更多产品。
但是这些公司拥有一般企业经营公司不具备的一个共同点:投资回报率显而易见,足以使这些公司排除进入障碍进入大数据领域。而对于大多数企业,大数据是否具有足够的吸引力?很可能不会。大数据价值必须非常高、便宜而且足够成熟,才能吸引企业购买。
如何将大数据进行到底
有业内人士指出,制约大数据发展的因素主要有两个:第一,能够发掘大数据的技术还没有成熟;第二,成本太高。做大数据的时候,存储应该非常便宜,虽然存储比很多年前便宜很多,但还是很高。
非结构数据的快速增长加大了数据处理的难度。同时,许多公司仍处于大数据的研发阶段。也因此,在很多企业内心增加了很多不确定性。大数据技术必须更加容易,项目管理技能更广泛,大数据方可真正成为主流。
从具体技术上来看,数据投资回报是数据价值除以数据成本,首先,我们需要降低数据成本,提升数据价值。降低数据成本的方法很多,最重要的是把低活跃度的数据转移到低成本的存贮器上去。而增加数据的价值则要收集更多、更全面的数据,最近比较火的社交化软件正可以在此发挥作用。其次,要针对数据质量有一个数据治理的队伍和流程。最后,要有很好的数据分析的能力,“数据可视化”是当前的大趋势。