❶ 化工大数据的种类
石油化工,农业化工,化学医药,高分子,涂料,油脂。
它们出现于不同历史时期,各有不同涵义,却又关系密切,相互渗透,具有连续性,并在其发展过程中被赋予新的内容。
广义地说做悉旅,凡运用化学方法改变物质组成或结构、或合成新物陆大质的,都属于纯凳化学生产技术,也就是化学工艺,所得的产品被称为化学品或化工产品。
❷ CXO联盟张晨博士:大数据、5G、AI在化工数字化转型中的应用
以下文章为CXO联盟特邀嘉宾 张晨博士 在2022年5月13日晚举办的中国泛化工行业数字化云端峰会上的精彩分享节选 。
一、 数字化转型从范围或广度来讲都比较大,对于化工行业来说,我们则定位在以下三个方面
1、 化工是一个高危行业,从建立客户需求敏捷供应链角度来看。供应链产业的安全稳定是一个重要抓手。
2、 化工的产业链很长,包括基础化工、精细化工、纺织化纤、石油化工等等,对于化工产业来讲,全局、全流程的优化,确保这个价值链的最大化也是一个重要抓手。
3、 整个数字化赋能的目的是为了使这个行业更加绿色,因为化工的高危行业,所以整个环境的实时监控,整个生产的环保安全,也是一个很重要抓手。
二、化工行业跟其他行业有相似之处,也有有区别的地方,那为什么会跟其他行业有一些差别呢?
因为化工行业自身的特点。简单的一个说法叫 “三传一反” 。
什么叫“三传一反”。做一个形象的比喻,我们人体实际上是一个很大的化工厂,当然他是一个生物化工。我们人的身体里面平时一直在发生各种各样的化学反应。 “三传” 就是传热、传质、传动能。试想一下我们的呼吸系统、循环系统、消化系统等等,它实际上跟周围的环境保持着传热,不光是皮肤,还有我们的内脏,包括血液系统,它实际上都是传热,不管是冬天夏天,大家都会有这样的感觉。“传质”可以理解为我们吃食物进行消化,实际上是有物质在传送。“传动能”就是我们人体的循环。任何一样东西都在里面有流动,血液,包括各种各样的物质,营养通过我们的心脏来进行整个提供动能到各内脏的吸收营养的化学反应,实际上跟一个大型的化工厂类似。“三传一反”的特色从我们人自身的角度也能看出来,每分每秒都在发生,以维持这个生命。
那么在这样“三传一反”的这个特点下,实际上就是5G和AI的赋能,跟其他行业,或者说其他的制造业都有一定区别。
三、5G和AI如何赋能化工企业数字化发展?
从体系架构上来讲,底层要有5G甚至于是以后6G的物联网的架构,在这个之上要有工业大数据的中台和平台,再在这之上去进行数据的治理。在这个过程当中数据的支撑就包括AI,在上面使用的有各类的专家系统、机器学习、知识图谱,以及支撑安全、环保决策生产的各类应用等。
四、设备基于5G可以做些什么呢?
巡检、监控、应急指挥、移动作业,无限的素材,还有人员定位。具体来说包括以下几类:
1、 可以用视频来做行为的识别;
2、 用于危化品的管理;
3、 用于报警管理;
4、 用于突发状态下的应急管理。
在环保和排放方面,5G和大数据分析的赋能就显得尤为重要。例如在一个园区或周边社区进行溯源调控,通过风险评估以及空气流畅的扩散模型来计算来追溯在这个园区里面的哪一家,或是哪个源头有污染排放、有机物排放等,如果通过传统方式,靠人肉眼去看,或鼻子去闻这样肯定达不到理想效果。找到源头不是为了让大家互相推诿,或瞒天过海。想要解决问题首先重要的是把问题根源找出来。通过5G和网格化的传感器的布置、大数据的分析就能够极大的提升能力,使绿色低碳的发展水平能够得到赋能去实现。这就是5G赋能的一个重要点。
五、AI人工智如何赋能化工行业?
通过人工智能的算法赋能在数字化摄像头上可以做很多工作。包括 防火安全服检测 ; 人员的异常行为检测 。 周边环境检测 , 是否有烟雾、火灾、本身操作流程问题的检测。 这些检测有了之后能够替代原来安全员的很多工作,或者是辅助工作,比如说报警事件的截图,视频的合成,原始记录的跳跃。可以自动去分级通知应急的处理和现场多媒体的互动等,这些都是能够通过 AI和5G的场景去做的事情。而AI的算法。可以在相当程度上去提升我们原来靠人工去监控的这样一个作用的这个效果。甚至于在未来有可能甚至于都是用全自动来做,这就是一个探索方向。
CXO联盟(CXO UNION)、数字化转型网共同出品
❸ 化工智能制造技术专业就业方向与就业岗位有哪些
高敬羡慎考 填报志愿 时,化工智能制造亮敬技术专业 就业方向 与 就业 岗位有哪些是广大考生和家长朋友们十分关心的问题,以下是相关介绍,希望对大家有所帮助。
1、就业方向与就业岗位
面向化工产品生产工艺人员、化工生产工程技术人员、智能制造工程技术人员等职业,化工生产控制、技术与生产管理、大数据系统运维和管理派绝等岗位(群)。
2、主要专业能力要求
具有使用智能制造系统、操作智能制造设备进行化工生产控制的能力;
具有利用智能制造系统进行生产管理的能力;
具有对智能制造系统及软硬件进行日常维护及监控,保证其平稳运行的能力;
具有利用大数据分析结果,周期性评估化工生产全过程,协助发现生产技术问题,进行安全隐患整改的能力;
具有进行数据分析、挖掘,优化工艺指标,实现优质低耗生产的能力;
具有选择智能制造系统、功能开发,协助实施与验证的能力;
具有开展化工生产岗位安全、环保、经济和清洁生产的能力;
具有化工生产专业领域相关标准、法律法规的查询、理解和执行能力;
具有探究 学习 、终身学习和可持续发展的能力。
3、职业类 证书 举例
职业技能等级证 书 :化工精馏安全控制、化工危险与可操作性(HAZOP)分析、大数据分析与应用
❹ 化工领域中人工智能,机器学习,大数据的应用情况
人工任务的自动化
虽然我们对机器人接管我们工作的期望仍然很遥远,但有证据表明科技技术正在兴起,而大数据正在帮助实现这一点。用于执行更多任务的技术使用正在迅速增长,并将在未来几年持续增长,技术更多地用于我们一直认为是“人性化”的任务,例如计划,策略和面部识别。正如我们在2017年看到的,创意产业在写作音乐和文学等领域屈服于这种“接管”。
机器学习功能
机器学习能力正在快速增长,将各种行业的商业应用从医疗和保健转向自动驾驶汽车,游戏和欺诈检测等等。我们期望机器学习处理在2018年变得更加快速和更加智能,我们可以看到它在更多不同领域和业务问题中得到应用。今年,我们看到人工智能融入了我们生活的许多方面以及无数社交项目。明年,我们会看到很多的初创公司展示高科技先进的产品,而且除美国意外以及中国和欧洲等硅谷典型场景中,这些公司的工作量也有明显增加。
物联网
我们看到连接技术和可穿戴设备的同比增长。根据Gartner的统计,到2020年,物联网的安装量将增长到260亿个,这比2009年的9亿增长了30倍。越来越多的企业开始利用从消费者的可穿戴设备中生成和收集的大量数据。活动追踪器和其他连接设备不断在工作中提供公司数据,如果使用正确,这些数据将促进业务增长和决策。另一方面,随着物联网产品使用的不断增加,IoT安全漏洞的风险也随之增加,尽管人们意识到这一点,但实施安全控制的速度并没有像技术本身那样快。
网络安全
随着越来越多的连接设备缺乏先进的安全控制措施,我们可能面临的问题是未来一年预计的一般网络安全漏洞的增加。继2017年大规模公开破坏数据和网络攻击之后,网络安全是2018年以来投资,改进和增长的巨大市场。人工智能将在保护人们的数据方面发挥关键作用,因为技术变得更加擅长学习从数据集无监督和预测结果,它将能够实时保护安全数据免受威胁,人工智能还可以在发现更复杂的攻击之前发挥作用。
❺ 数字化工厂属于大数据在工业领域的应用吗
属于。
数字化工厂是在物理工厂的基础上,采用先进的信息化技术、虚仔尘余拟仿真真实工厂、实现对产品设计、生产、物流、质量管理、财务管理和供应链管理等各个阶段的规划、管理、诊断和优化,以求提高产品质量、降低各环节成本、提高工作效率。
数字化工厂(DF)以产品全生命周期的相关数据为基础,在计算机兄神虚拟环境中,对整个生产过程进行仿真、评估和优念滚化,并进一步扩展到整个产品生命周期的新型生产组织方式。
❻ 化工智能制造技术专业怎么样_就业方向_主要学什么
高考 填报志愿 时,化工智能制造技术 专业怎么样 、带毕 就业方向 有哪些、主要学什么是广大考生和家长朋友们十分关心的问题,以下是相关介绍,希望对大家有所帮助。
1、培养目标
本专业培养德智体美劳全面发展,掌握扎实的科学文化基础和化学基础、自动化技术、化工生产工艺智能控制与运行等知识,具备化工智能生产与管理、大数据系统运维等能力,具有工匠精神和信息素养,能够从事化工生产控制、工艺运行和生产管理、大数据系统运维和管理等 工作 的高素质技术技能人才。
2、 就业 方向
面向化工产品生产工艺人员、化工生产工程技术人员、智能制造工程技术人员等职业,化工生产控制、技术与生产管理、大数据系统运维和管理等岗位(群)。
3、主要专业能力要求
具有使用智能制造系统、操作智能制造设备进行化工生产控制的能力;
具有利用智能制造系统进行生产管理的能力;
具有对智能制造系统及软硬件进行日常维护及监控,保证其平稳运行的能力;
具有利用大数据分析结果,周期性评估化工生产全过程,协助发现生产技术问题,进行安全隐患整改的能力;
具有进行数据分析、挖掘,优化工艺指标,实现优质低耗生产的能力;
具有选择智能制造系统、功能开发,协助实施与验证的能力;
具有开展化工生产岗位安全、环保、经济和清洁生产的能力;
具有化工生产专业领域相关标准、法律法规的查询、理解和执行能力;
具有探究 学习 、终身学习搭行运和可持续发展的能力。
4、主要专业课程与 实习 实训
专业基础课程:基础化学、物理化学、化工制图、化工HSE与清洁生产、过程控制技术、 计算机 网络技术、数据库应用基础、Python编程 语言 。
专业核心课程:化工单元生产技术、化工生产技术、化工安全与环保技术、化工自动化技术、大数据平台运维、大数据分析及应用、化工智能化应用技术。
实习实训:对接真实职业场景或工作情境,在校内外进行化工单元操作、化工自动控制、大数据技术、物联网技术、化工智能制造(仿真)等实训。在化工智能知梁制造生产企业、化工智能制造仿真工厂等单位进行岗位实习。
5、职业类 证书 举例
职业技能等级证 书 :化工精馏安全控制、化工危险与可操作性(HAZOP)分析、大数据分析与应用
接续高职本科专业举例:化工智能制造工程技术、应用化工技术、现代精细化工技术
接续普通本科专业举例:化学工程与工艺、能源化学工程
❼ 大数据应用在哪些行业
大数据应用于各个行业包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
(7)大数据在化工领域扩展阅读:
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销
2) 做小而美模式的中小微企业可以利用大数据做服务转型
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。
著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
参考资料:大数据_网络
❽ 工业大数据对中国有什么意义
现阶段物联网大肆其道,工业设备也纷纷利用物联网技术实现设备间的联内网;
通过收集到的数容据(例如生产进度、物料消耗、工序过程等等)处理再呈现在管理者的手机端;
但工业物联网涉及到的智能设备非常多,每个设备、传感器产生庞大的数据流,普通的人工根本运算不过来,云端服务器技术、大数据运算技术就有了实际意义。
简单来说,大数据技术可以帮助中国制造业由自动化→数字化工厂转化,为智能制造打下基础。
❾ 数字化工厂,塑造制造业的未来!!
数字化让制造型企业从根本上改头换面。随着企业对各类创新技术的采用以及对不同资质人才的聘用,新型的数字化工厂正悄然引领制造业的转型,并推动着制造业的中心迈向高度定制化的产品和系统。
领先的制造型企业正采用一系列的先进技术实现生产乃至整条供应链的数字化。这些技术包括大数据分析解决方案、端至端的实时规划和互联、自控系统、数字孪生等。凭借这些技术,效率得以提升,企业能够批量生产高度定制化的产品。然而,想要完全发挥出数字化的潜力,企业仍需要与主要供应商和大客户实时互联。
作为在电子商务和电子支付领域内全球公认的数字化领先者,中国在制造业领域内对数字化的应用却仍处于起步阶段。尽管“中国制造2025”战略的颁布为产业变革注入了强心针、突显了战略紧迫性,但只有在企业大胆拥抱数字化的情况下才能取得实质性的进展,并产生深远影响。
在朝着数字化转型的道路上大步前行时,在“数字化工厂—欧洲数字化工厂高管调研”中梳理出的关键发现以及提出的数字化工厂蓝图,将协助企业规避实施中的风险,成功达成既定的目标。
调研成果综述
就数字化工厂这一热点话题,普华永道对来自大型工业及制造业领域内的200位企业高管开展了一次定量市场调研,并对行业领先企业的多位高管进行了深度的访谈。
参与此次调研的高管均为各自企业在产品开发、生产或技术领域的决策者。
据调研结果显示,领先的工业企业已经完成了项目的试点工作,开始着手推广数字化解决方案。以成熟的数字化战略为依托,这些工业先驱者采用创新型的数字化战略,拥抱全面的数字化转型。此外,通过培训和沟通,他们让员工参与转型,为企业的数字化成功做出自己的贡献。
通过战略、效益、技术和人才这四个维度(见下图),普华永道详细探究了数字化工厂背后的推动力,或许能为计划建设数字化工厂的中国企业提供一些参考。
1、战略
数字化工厂在高层心目中的战略地位甚高:调研结果显示,91%的工业企业正投资数字化工厂,但认为他们的工厂已经“完全数字化”的仅占6%。
数字化能围绕客户提供更好的生产支持:在计划对数字化工厂追加投资的受访者中有四分之三的人表示,通过本地化制造来更贴近客户,以及个性化、灵活化的生产是促成投资的两大主要因素。
数字化工厂对“德国/欧洲制造”起到推进作用:在计划岩知举对数字化工厂追加投资的受访者中总共有93%的人表示,有意在未来五年内将部分或全部的数字化工厂迁至德国。未来五年内的投资中有77%将用于新建数字化工厂或扩容。数字化正在强化欧洲工业中心的竞争力。
如果没有数字化工厂的打算,那么企业可能会在未来丧失竞争力。实现数字化工厂需要资金投入,需要携手内外部利益相关方来推行开放式创新。例如,飞利浦就在荷兰德拉赫滕工厂采猛裤用了这种方法。此外,还需要聘请和培养人才,应对诸多变化,在员工间建立信任感并得到他们的全力支持和充分投入。
有些企业在建设数字化工厂的问题上似乎准备浅尝辄止,并没有进一步追加投资的意愿。鉴于数字化工厂能够带来的巨大利益,这些企业可能会被积极实现数字化并不断改善的竞争对手抛在身后。
企业想要在如今竞争激烈的市场中生存,以客户为中心是一大关键要素。企业不断地贴近客户,能够更及时地对客户偏好的变化做出反应。此举还能有助于减少运输和物流成本,客户能以极小或者可以忽略不计的配送成本,从定制化的产品中获益。在部分行业中,受即时生产和即时供货等物流战略的推动,供应商更加贴近客户,整条价值链的本地化程度不断提升。
许多企业利用数字化来提升工厂柔性,更好地应对客户需求的波动。为了充分利用这些工厂的潜力,企业计划在占主要收入来源的市场中新建或扩建工厂。从推粗碧动生产决策的力度看来,对客户的聚焦远远大于劳动力成本。
2、效益
短期内难见回报——对数字化工厂的投资是战略性的举动,收回投资需要两到五年:近半数的受访者希望能在五年内收回对数字化运营的投资,而仅有3%的受访者希望在一年内收回投资。
企业希望五年后显著提升效率:几乎所有的受访者(98%)都将提升效率视为投资数字化工厂的主要原因。综合规划、资产利用率提升、质量成本降低以及自动化均有助于效率的提升。
大多数的受访企业将收回数字化工厂投资的期限定为五年。一般来说,决定的背后是翔实的商业论证和对投资的仔细考量。随着企业对各种数字化工厂解决方案的不断熟悉,他们对所需的实施时间和投入力度有了更清楚的认识,因而对收回投资的期限做出了较为保守的预测。
除了提升工厂效率之外,数字化工厂还能带来其他一些效益。例如,在航空领域,有些企业利用数字化工厂解决方案开展先进的飞机及发动机设计,打破了传统制造的局限性。此外,数字化工厂还能帮助企业减少能源和原材料的消耗,实现可持续发展的目标。企业正在利用数据来改善资源效率,让供应链更合理,实现按需订购原材料,减少库存。
但企业的目标远远不限于此。部分企业已经在规划无人值守工厂,在这些工厂中,电力将按需消耗。根据最新数据显示,自1990年起,工业品领域的能耗不断下降。但我们有理由相信,在数字化工厂的协助下,工业品企业在节能方面仍有潜力可挖。
3、技术
通过综合的制造执行系统(MES)实现工厂内外部互联:
数字化的第一步,是通过共用基础架构实现机器与其他资产间的互联。MES系统能实时规划和控制生产,提升效率、生产柔性和资产利用率。为了实现效益最大化,MES系统需要与ERP系统整合,从而让企业不仅实现内部流程的数字化,还能实现整条供应链的数字化。
协作机器人、数字孪生或增强现实等技术促使运营更精益、生产率更高:能够协助工人提升生产效率和产量、改善流程和产品质量的数字化技术正在迅速普及 — 未来五年,采用这些技术的企业数量有望翻番。工人和机器间的协作是重点发展领域,并诞生了数字孪生这种虚拟工厂的表现形式。增强现实的相关解决方案协助员工生产零缺陷的产品。企业通过预测性数据分析和机器学习等手段做出更明智的决策:
人工智能和数据分析是数字化工厂的推动力,半数以上的调研对象企业已经采用了智能化算法来做出更合理的运营决策。工厂内部和企业生态系统内部的全面互联,以及信息的智能化应用,对于保持竞争力而言将不可或缺。
4、人才
数字化生产意味着打造数字化劳动力:数字化工厂需要全新的工作方式。劳动力的组成将会发生变化,企业需要招聘和挽留相应的人才。数据科学家需要发现智能算法来提升运营表现,而人机智能交互也需要全新的技能。数字化培训项目以及招聘外部的“数字原住民”能确保成功打造数字化工厂。
数字化转型必须由高层挂帅、立即开始:企业的数字化转型需要高层的领导和指导。随着全球范围内的竞争对手迈上数字化之路,企业需要立即行动起来。
数字化工厂需要截然不同的工作方式,企业因此也需要打造数字化的劳动力。企业需要调整员工的组成,需要相应地招聘和挽留人才。随着我们步入人机交互的新时代,人才对数字化工厂的影响力不容低估。数字化工厂能协助企业面临老龄化社会的挑战。随着大批技术工人退休,大多数行业可能面临熟练劳动力短缺的局面。数字化能够从一定程度上弥补这种短缺。
通向数字化工厂的蓝图
领先的工业企业已经在数字化工厂的建设和发展方面迈出了坚实的步伐,在提升生产效率的同时,能够迅速可靠地生产出更多定制化、高质量的产品服务于市场。
对于许多没有打算建设数字化工厂的企业而言,缺乏一套数字化的愿景和企业文化是让他们裹足不前的最大阻碍。目前看来,这正是数字化工厂先行者们不可获取的一大要素。数字化愿景不仅只是考虑各项技术,而且还定义了这些技术如何在整个产品生命周期和企业生态圈中相互配合。阻碍企业制定数字化工厂计划的其他因素还包括机会不定、经济效益不明、投资代价不菲。
❿ 大数据在企业中的应用
大数据在企业中的应用
2015年9月10日,首席数据官联盟成立仪式暨第一届首席数据官大会在北大召开,本次活动由中国新一代IT产业联盟和易观智库联合主办,中国新一代IT产业推进联盟技术分委会秘书长鲁四海发表演讲并参与对话讨论。本次对话环节由易观智慧院副院长葛涵涛主持,参与对话的嘉宾有北大电子政务研究院副院长杨明刚、壳牌中国CIO徐斌、华为大数据总监刘冬冬、北京瀚思安信科技有限公司联合创始人董昕。各位嘉宾从大数据在企业的应用、人才队伍建设等方面进行深入讨论,以下是对话实录:
葛涵涛:首先我想请大家做一下自我介绍。
刘冬冬:今年上半年开始代表华为做大数据生态圈的建设,我们这个生态圈是1+6的模式,华为提供公有云,大计算等服务,与数据挖掘,商业应用,数据可视化展示等合作伙伴,国内筛选200多家大数据公司,和比较核心的合作伙伴,开始了第一批,第二批,第三批的流程,第一批选择16家签约,第二批还有十几家,今年年底会完成初步50家的合作伙伴的合作。
徐斌:壳牌品牌是比较大的公司,壳牌中国业务比较大,壳牌中国在今年已经是121年了,1894年正式进入中国了,就没有离开。目前我们在中国的业务有上油的油气的开采,中油的炼化等业务。大数据在壳牌的应用历史比较悠久,我们开采油田的时候需要用海量的数据做分析,帮助我们在哪里打井更有效,如何保证制造环节更顺畅,更早的发现潜在的风险,这方面有比较多的应用。针对我们几百万的用户,也在做很多的和社交媒体的合作,掌握我们的客户,留住我们的客户,寻找新的商业机会。今天很高兴有机会和大家交流大数据,特别是我们传统行业如何使用大数据。
董昕:谢谢大家,我们是瀚思大数据安全,一个新的创业公司。大家想安全和大数据有什么关系?其实有非常深的关系,我们后面有机会再和大家讲。我们这个团队是2014年成立的,主要成员是来自于埃森哲、甲骨文等这些公司。我们致力于把大型企业云中心、互联网里面所有跟安全相关的,跟业务、应用安全相关的数据做统一大规模的存储、挖掘、学习和展现,帮助IT从业者,运维人员,甚至企业的领导层从数据终发现一些跟安全相关的东西。希望通过数据驱动整个行业,和整个企业实现由传统的基于防御的安全策略,转向主动智能的安全策略。我们成立一年多,我们公里56人,40多个人都是研发人员,数学科学家等跟数据相关的人员。非常高兴有机会和大家探讨比较新的行业。
杨明刚:非常感谢主办方的邀请,很多朋友可能了解电子政务,电子政务就是政府的信息化,还有所谓的智慧城市,还有数字城市。在过去一年多,一直做政府相关的信息化的应用,包括顶层设计。现在随着大数据概念的提出以后,应用和需求在过去一直存在,只是提升了一个水平。电子政务这块近两三年提上很重要的地位。电子商务对大数据的需求也是蛮多的,过去三四年,我们一直研究政务数据和商业大数据,非常高兴和大家探讨数据和首席数据官未来在整个企业决策和政策决策中的作用。
葛涵涛:我们的各位嘉宾对大数据,对数据资产进行了前期的描绘和支撑。我们都知道现在大数据产品和数据产品数据来源非常广,包括来自于智能设备,可穿戴设备,来自于金融,来自于终端设备。有了大量的数据,基于数据进行挖掘和分析,数据产品化以后,再将数据产品应用到业务中。但是这些数据产品安全性怎么样?针对数据安全和用户数据隐私与大数据是什么关系?
杨明刚:我先从价值方面跟大家分享一下。美国有一本书《数字化生存》目前这个社会,随着网络的发展,我们所有的网络,所也的社会的形态都可以用数据来表达,这个时候无论是政务数据,还是商业数据,还是个人数据都可以用来提供,或者给我们未来决策提供参考。无论是政府治理,还是企业的科学决策,或者个人未来合理的消费计划,都可以从数据中提取到相关的决策参考。所以这块,其实所有的数据,看似杂乱无章,各种非结构数据和结构化的数据,通过适当的方法处理,或者通过数学模型处理,能够给我们管理和决策带来新的支持或者更大的支持,这是我对整个目前数字这块所谓的资产,数据是可以增值的资产。
其实我们有了互联网以后,每个人在网络上,无论是购物,还是通过社交工具或者社会化媒体发表相关的看法或者思想等,我们在网络上留下了大量的数字的网络痕迹,其实提取这些痕迹,包括相关的特征,用一定的方法去分析,就可以找寻每个人或者相关的机构未来的表现。这个东西在这里面,有很多东西涉及到个人隐私,可能在这里买的房子,或者附近相关的消费,根据你的社会属性可以判断你未来的行为。从某种行为来说,会让我自己感觉很不舒服,但是这些信息是通过我们允许的放在网络上,只是相关的机构提取过来做一些加工,可能对个人的隐私或者个人尊严是一种挑战。随着国家立法的完善,我相信网络的隐私权保护会逐渐解决。
董昕:其实好恶夸张的说,我们在座的每一个人都不安全,在网络空间,无论是你产生的数据,还是你的痕迹,还是你的隐私,或多或少在自己的手机里,PC里,或者是服务器端,安全和隐私可能是永恒的话题,比较大,我就不展开讲了。从我们的角度来说,我们更关注的,从一个角度如何把核心的数据,核心的资产保值增值,安全隐私的问题。无论是大数据下面的数据隐私,数据安全,还是小数据的数据隐私和数据安全方法论是一样的。在管理制度上怎么进行保障?
过去谈论到数据安全,更多的时候是靠技术手段为主,所以才会出现各种各样的防火墙,加解密设备,数据防泄漏,防入侵。这些东西都有用,但是无法解决所有的问题。要不然也不会出现JP摩根信用卡数据泄漏等问题。我们需要拥抱新型的技术,新型的平台,通过技术本身解决安全问题。
另外一个国外很多报告中都写到了,设备本身控制数据资产不太现实,我假设所有的东西都是不安全的,把所有的东西都放一个安全体系,这是国际探讨的问题。我们怎么用新型技术保护数据安全,同时结合技术,如何使安全管理的流程和措施,能够在企业中获得更多的认识,从而解决这个问题。
葛涵涛:关于数据能力开放的问题,在之前大数据会议上,阿里集团代表上讲过,阿里的数据不开放,他们是不是有数据安全的考量。因为他们收购了高德等一系列的社交和位置的公司,掌握了用户全维度的数据,这是出于隐私保护,基于安全的数据开放,还是比较遥远的话题。刚才我们在CDO调研报告里面,在未来的数据业务和大数据技术方向上,在行业领域里面的发展是非常重要的,我想请刘冬冬和徐总分别谈谈,比如说大数据业务,还有数据资产等等相关的技术和服务,在你们相应的通讯和能源行业怎么与你们的业务结合落地的。
徐斌:像大数据的应用,在我们自己的传统行业会产生什么样的作用?我们自己内部把大数据的企业进行划分。从企业决策中大数据起了很多的作用,同行用爆破的方式采集信息,帮助我们判断出这个地方打一口井效率是不是高,因为每一口的井的成本是上百万的,提高10%的成功率是很可观的,这是决策支持。
第二个是运营优化,比如说油站地下油库存在非常大的隐患,汽油和柴油泄漏的时候,一对环境造成很大的风险,第二对地下水有影响,甚至产生爆炸。一旦发生这种情况,通过大数据技术能不能提前发现潜在的泄漏风险。通过对比站的分析,提前发现是否存在不适当的损耗的发生,从而发现风险。
第三个就是市场营销,在我们消费互联网层面谈了很多,我们怎么样找到客户的特性,延伸业务领域,包括业务合作。另外通过合作,找到我们潜在的客户。像今天的孙总,我们客户最典型的,对油品的质量要求比较高。我们从互联网找到这个维度,在电商上购买率很高的,经常谈到汽车的,这两个碰撞就能找到潜在客户。
第四个就是企业安全进行风险管控。能源行业是高危行业,包括油品配送过程中,配送的时候出现问题,可能出现爆炸的风险,包括成本的增加。因此我们在海外作业的时候,不能很好及时发现风险,可能造成重大的人身伤害,包括知识产权的保护,有跟多配方,这是很关键的,这个怎么防止黑客攻击。这个和董总有相关性,企业安全,人身的安全,包括信息安全。
第五是业务创新,第六是模式变革。这两个把我们传统的,我们通过卖汽油变成我们可能变成第三方汽车服务后市场。以后我们油品可能免费,免费的意义在于盈利模式通过后面衍生的新业务,就是羊毛出在猪身上狗来买单。这就是大数据在我们能源行业6方面的价值。
葛涵涛:我们原来做过石油远程管道安全监护。现在俄罗斯他们传输的油气管道,很多油气管道每隔多少公里就有检查油压、温度,还有油管表面的状况,加入了很多传感器,获取管道表面的数据,另外还有相应的机器人,会在轨道上定期巡逻,用光来检查表面的状况。将这些数据全部汇总在当地的数据中心,最后汇总到欧洲数据中心,如果正常就显示为绿色的。大数据帮助能源运输企业,在你发生问题之前就帮你预测问题即将在什么时间大概发生。在发生之前进行预警,我觉得这个也是大数据跟商业智能整合的非常好的一个案例。
徐斌:在我们石油行业,特别是化工行业,生产行业一旦有一些事故终止生产,想恢复是非常长的时间,一般是三个月,三个月损失多大。越早预测到危险,提前采取措施,效率是很明显的。
刘冬冬:我们通讯行业跟石油行业是很像的。我们华为也会装各种各样的传感器采集数据,知道什么地方有什么问题,然后解决问题。比如说一个大型会场,一个足球场,数万人,大家都在发微信,这个时候能不能发出去,信号如何?这是我们自身运营商的应用场景。衍生出来的应用场景,如果华为或者运营商更早的把大数据应用到企业的经营管理等等各个维度中去,就不会发生像上海那样的踩踏事件。当外滩单位面积内聚集的人口超过一定量以后就应该有一个预警,告诉相关的管理部门,公安也好,告诉相关的部门人说这个地方已经超多了,通过手机我们可以捕捉这个信息。我们在大数据行业刚刚起步,我相信将来所有的行业,都会面临变成以数据为驱动,或者以数据为核心驱动力的,而不是像以前以产品为驱动力,以渠道或者品牌为驱动力的。以数据为驱动力的话,这个问题是蛮大的,作为华为来说,现在从各个方面改为以数据为驱动力。从宏观来说,我们将要做什么,我们要做哪些产品,这些都可以通过数据给我们进行指导。
在大数据产品里面,哪些是最需要的,哪些是最急迫的,我们可以通过分析挖掘出来,这个可以指导我们企业将来做什么,不做什么。从很小的细节来说,华为2016年找谁做手机形象代言人,我们可以用大数据做。华为手机的粉丝超过100万。这些人共同关注的是谁,他们共同兴趣爱好是什么?他们每天什么时间上网,数据的统计就告诉我们了,不需要决策部门每天坐在一起拍脑袋决定是谁,不是谁。刚才说到数据安全问题,我认为数据安全和技术是矛和盾的问题。现在接受就可以了,当我们现在收到骚扰短信垃圾短信,为什么会收到,是因为他们掌握了我们手机信息。当企业掌握了很多的信息以后,这时候就造成可以满意度的问题,让数据决定数据安全,让市场决定技术到什么程度,自然会有优胜劣汰,服务好的企业就会持续发展,服务部好的企业就会死掉。
葛涵涛:我们对用户数据掌握的越来越多,我们对数据精准分析越来越多,我们传递出来的消息就是精准营销,传递的信息就是有用的信息,而不是垃圾信息。这实际上对我们大数据企业,对技术和算法提出了更高的要求。如何通过大数据分析方法寻找数据中隐藏的,还没有被发现的价值和知识。
杨明刚:其实所谓大数据,大价值,大数据应该不是大忽悠,我为什么这么说?因为我在过去一段时间,有一个地方政府,某一个行业部门在使用大数据,但是建完的大数据系统无法满足他们的业务需求。我们传统的大数据,一部分是对现有数据的发现,这就是数据检索,传统的数据方法就可以做到,对已知的东西,已知的问题,每个数据单元都是了解的,这时候无论是结构化数据,还是非结构化数据,我们可以带着问题找到蛛丝马迹,问题存在什么地方。另外一部分应该是预测的部分,就像海尔孙总谈到的问题,其实可以预测。业务管理专家和业务模型建构专家需要有一个紧密结合。大数据其实是一件奢侈品,对华为这样的产品,对我们海尔这样的企业,对壳牌这样的企业是可以投得起资金的,大数据是奢侈品,但是绝大部分的中小企业也需要科学决策,也需要了解市场需求,这时候面临很重要的选择,要面临高昂的成本建立系统,这是不可能的。但是绝大多数的大数据企业都需要高投资,中小企业怎么通过在数据时代不被淘汰,需要大数据解决方案提供商,或者需要大数据研究者提供一种更典范的,或者更普世的大数据解决方案,不是依托与传统的数据检索,或者传统的数据包装实现大数据的方案,而是需要跳出传统的大数据分析方法之外,能不能有另外一种更科学,更普世的方法,让我们很多中小企业都能享受到当今的大数据服务,需要我们在座的一起探讨。实际上个人也需要大数据服务。
葛涵涛:跟简单,更方便使用的大数据产品,方便企业减少这方面的预算,让更多的人使用大数据带来的便利。
杨明刚:中国的天气预报部门利用大数据是最好的,把过去一百多年的历史数据拿过来进行预报。真正的大数据是对未来可能的知识的发现,通过大数据发现潜在的数据之间的关联。
葛涵涛:实际上我们刚才提到了各个不同的行业和企业对大数据的应用,因为你在北大做了十年CIO方面的培养,你们对CDO这方面的人才培养有什么样的动作和支持。
鲁四海:我们也在探讨,刚才我们在PPT里面分享,首先为什么会有这样的角色存在,驱动力是什么?然后再说需要什么杨得技能?我觉得CDO有一部分的东西需要从课堂学习的,偏技术这块的,能涵盖技术和基础管理这块。CDO需要有一些经济学的基础在里面。大数据更大的是告诉我们未来是什么样,告诉我们一些未知的东西。不是提一个假设,拿数据进行分析证明这个假设是对的或者是错的,这个意义不大。真正的意义能够告诉你未来是这样的。我觉得CDO在培养过程当中,除了课堂学习以外,还要跟内部的业务部门进行内部的学习和交流。因为我们面临着未知的世界,更多的需要广阔的舞台,像CDO联盟一样,未来我们做一些交流性的东西,各个行业,不同行业的方式方法进行跨界整合,因为数据在这个时代就是跨界。
葛涵涛:下面我们请我们在座的各位嘉宾,用简单的一两句话展望一下大数据时代下,我们这些数据管理人才,CDO们如何在整个大数据背景下做好我们的工作,能在工作上出新出彩,在我们业务设计上有相应的业务创新。
鲁四海:应该说任何一个行业任何一个企业的数据都是资产,每个企业都将拥有将数据变成核心竞争力的能力,这个能力可能是自建也可以购买服务获得。
杨明刚:大数据应用成为未来决策的核心推动力,今天的大数据不能成为大忽悠。
董昕:我们谈了很多技术方面的话题,我觉得一个CDO第一应该有大数据的理念,未来主要的价值都是数据。另外一点,我们认为作为一个CDO,一定要跟我们业务相联系,懂我们的业务,知道我们的收入从哪里来,成本在哪里,效率从哪里提升,这样CDO才能落地。
徐斌:数据本身有没有价值,我个人认为数据是没有价值的,虽然我今天讲了很多大数据。只有当数据能帮助企业产生价值的时候才能成为有价值的资产。我经常说数据资产,每个公司都有大量的数据,他们不是资产,因为它没有用。数据只有成为有用的信息,成为知识,变成智慧,它才是真正的数据资产。不要神话大数据,大数据产生业务的价值,产生商业的价值才叫大。第二我们企业有CDO,或者有虚拟CDO职位,通过其他的CIO、CMO承担。最主要的是脚踏实地,循序渐进,如果你不把企业的数据用好,谈何大数据。如果企业没有从数据支持决策的文化,大家做任何事情不用客观数据帮我们做分析,给你再多的数据也没用。首先是企业文化。第二把现有的数据用好,然后循序渐进引用更多的数据做分析。通过数据发现未知东西,这是伪命题。因为你发现未知东西,因为你不知道,原因是什么。当形成智慧知道为什么会发生,这是我们追求的目的,只不过我们现在不知道,所以通过相关的分析找到了相关性,但是不知道原因。未来当我们有足够多的知识积累,我们就知道原因了。未知领域是大数据的使用阶段。
刘冬冬:大数据这块没有找到盈利模式,没有找到市场,推不动。现在大家找到了盈利模式才推下去了,这才是有用的,大数据有用才是硬道理。对于CDO来说,我认为跨界才是最重要的。不光要有知道企业内部的小数据,同时也要知道外部的数据如何和企业内部的数据相结合。比如说做销售的,系统能不能很快的告诉员工,这个公司销售额有多大的产能,以及其他合作公司等等的情况,有价值才是最重要的。
以上是小编为大家分享的关于大数据在企业中的应用的相关内容,更多信息可以关注环球青藤分享更多干货