『壹』 通过大数据与影视行业案例,可以发现大数据具有哪些特点
你好,在大数据的指导下,影视作品的生产方式是先锁定观众,选择他们喜欢看的小说做剧本,然后请一些他们喜欢的明星、导演进行拍摄,再到他们社交网站上经常提到的景点取景,用人气歌手配乐,最后再到观众喜欢看的综艺节目上宣传。这样生产出来的产品,在热点活跃的时候,很吸人眼球。但是,当热点一消失,就会因艺术性缺乏而不被接受。
大数据是线性存在的,随着时间轴的发展,随时随地都在发生着微妙的变化。因此,作为制作者,在依赖大数据的同时,也需要挖掘用户的深度需求。当大众对颜值、流量的追求被海量生产的作品满足时,就应该转向颜值、流量的对立面——质量。制作方,可以在精准的定位与艺术性之间找到一个平衡点,让影视作品不仅仅是一个商品。
『贰』 大数据时代对个人生活的影响
最近几年,大数据已经成为一个超级热门的话题,几乎所有的互联网公司都投身于大数据的研究。自此,“大数据时代”已经来临到我们身边,大数据作为一种新的资源方式,正在快速的影响、改变我们的生活。大数据的本质是,通过对海量的数据进行分析,获得有巨大价值的产品和服务,获取更深刻的洞察力
大数据对个人的影响是全方位的,包括了“衣、食、住、行”,买衣服再也不用跑遍商场,饿了么、美团也重新定义了吃饭。当然,这些可能只是大数据时代最基础的便利,还有更多大数据的利用方式正在开发当中。
当我们讨论一个新兴产品时,我们最先说起的是随之而来的便利,目前几乎所有关于大数据的报道都是积极的,我们也不得不承认,大数据对生活所带来的方便实在是太多了。下面是一些大数据时代真实的例子:
1.在医院,儿科部会记录早产儿和患病婴儿的每一次心跳,然后将这些数据与历史数据相结合来识别模式。基于这些分析,系统可以在婴儿表现出任何明显的症状之前就检测到感染,这使得医生可以早期干预和治疗;
2.当我们每天在公路上开车时,我们的智能手机会发送我们的位置信息以及速度,然后结合实时交通信息为我们提供最佳路线,从而避免堵车。结合位置应用程序,还可以为你提供附近的餐馆、银行、加油站等信息;
3.最新的apple watch可以达到医疗水平的监测心率,及时提醒一些我们平时注意不到的身体隐患,同时他还可以检测到意外的摔倒,如果摔倒后因为受伤失去行动能力,手表会自动拨打求救电话。
除了上述这些已经实现在我们日常生活当中的例子,大数据会进一步的推动移动设备的发展,对人工只能领域的发展起相当大的作业,这些未来的发展也不仅仅局限于硬件端,各种应用软件也会变得更加智能,提供更多的便利。
刚才我门提到的只是使我们生活质量完全提升的影响,毫无疑问,大家都支持这些由大数据所带来的便捷,甚至于希望会有更好的新技术。但是大数据所带来的一些影响,也是不容忽视的。首当其冲的就是安全问题,在手机支付兴起之前,太多的人质疑了安全问题,备受关注的安全现在一点问题都没有,但问题往往出现在不容易被发现的地方。
譬如说,今日头条这些互联网公司,本身并不会生产最新的新闻,但是通过整合的方式推送到你的手上,统计你经常点开的新闻类型、关键词,进一步给你推送相关的新闻,久而久之,你看的越多,他就推送的越准确,你就看的更加喜欢,所以就看的越多。突然有一天,发现看新闻花去了这么多的时间,但却只知道这一小块部分的新闻,别的却什么也不知道。
网上购物的时候,系统会自然而然的给你推荐之前你所浏览过的商品,只要你上次购物浏览的是衣服,首页推荐自然全都是衣服,甚至于在在浏览其他的网页时,弹窗广告也全都是之前的浏览记录。在弄清楚这是大数据作祟之后,往往会让我们感到头皮发麻。
至此,我们发现大数据所带来的影响不全都是积极的,它同样会带来很多让人始料不及的负面影响,时刻被抓取的数据一方提高了生活的质量,但是却也像是一双死死盯住你的眼睛,让你失去了真正意义上的隐私。作为生活在社会群体中的个人,我们没有能力去阻止大数据时代的到来,抵制大数据也是不理智的,正确的做法应该是辨证的去看待这个问题。
首先我们理应享受大数据带来的便捷,不仅仅因为我们消费了,更因为我们就是大数据的提供者。吃穿,住行所带来的问题,会因为这项新技术的出现大大减少,我们不用再多花时间在这些问题的思考上,所以更多的时间被节省了出来。更多的问题是关于被节省出的这段时间怎么处理,可能只是想娱乐的玩会智能手机,看某音五分钟,等自己意识到的时候,其实已经过去了一个小时。这也是由大数据这个新技术所带来的问题,和某头条一样,会推送最符合你胃口的产品给你,所以得到的快感过大,根本意识不到时间的流逝。在知道了出现这这样问题的起因之后,如何处理就不用多说了。
接着,安全问题确实需要被解决,因为我们普通人的生活越来越透明化了,一个个都变成了“透明人”,每一个行为都可能产生数据,并且被记录下来。比如,每一次心脏跳动、生活中的每一笔花销、每一次外出旅行等等,遍布城市各个角落的大小摄像头也是收集个人数据的重要渠道。这所带来的问题就像科幻电影中的一样,只要通过一个算法和一台计算机,输入有关你个人身份的几个简单关键词,所有信息都被暴露给别人。那么,对我们个人的要求就是,在可能会产生数据的时候,保证提交信息的平台,方式都是官方认可的,这样就是我们保护自己最简单的方式。
『叁』 大数据都体现在哪些方面
第一:大数据技术不断提升数据自身的价值。大数据技术的核心诉求之一就是数据的价值化,大数据产业链几乎都是围绕数据价值化来打造的,随着大数据技术的不断发展,数据的价值必然会越来越大。
第二:人工智能离不开数据。数据作为人工智能发展的三个重要基础,在未来的智能化时代也将扮演着重要的角色,所以数据的价值也必然会随着人工智能技术的发展而得到提升。在工业互联网时代,人工智能技术是一个重要的发展趋势,借助于人工智能技术,工业互联网能够发挥出更大的作用,从而能够为广大的行业企业赋能。
第三:数据是互联网的价值载体。互联网发展到现在,急需一个体现互联网价值的载体,而数据就是这个天然的载体,相信随着互联网的不断发展,互联网整合社会资源的能力会越来越强,数据的价值也会不断得到攀升。由于互联网无处不在,所以通过数据来承载互联网价值也比较方便,未来通过互联网来实现“价值交换”也是一个比较明显的发展趋势。
『肆』 大数据应用价值发现的三大方法
1. 数据服务
数据服务针对用户非常明确的数据查询和处理任务,以高性能和高吞吐量的方式实现大众化的服务,是数据价值最重要也是最直接的发现方式。由于要处理大众化的服务请求,每个服务任务必须能够被快速地处理掉,因此,数据服务的单个任务负载不能过于复杂,单任务直接处理的数据不能太大,任务对应的用户需求和采用的数据处理方法必须是明确的。一些典型的数据服务包括事务处理、数据查询、信息检索、数据预测。
2. 数据分析
数据分析是指用适当的统计分析方法对大量数据进行分析或建模,提取有用信息并形成结论,进而辅助人们决策的过程。在这个过程中,用户会有一个明确的目标,通过“数据清理、转换、建模、统计”等一系列复杂的操作,获得对数据的洞察,从而协助用户进行决策。常见的数据分析任务又可以被进一步划分为描述型分析、诊断型分析、预测型分析、策略型分析。
3. 数据探索
数据探索是指针对目标可变、持续、多角度的搜索或分析任务,其搜索过程是有选择、有策略和反复进行的。它将以找到信息为目的的传统信息检索模式变为以发现、学习和决策为目的的信息搜寻模式。这样的搜索模式结合了大量的数据分析与人机交互过程,适合于人们从数据中发现和学习更多的内容和价值。
关于大数据应用价值发现的三大方法,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据应用价值发现的三大方法的相关内容,更多信息可以关注环球青藤分享更多干货
『伍』 大数据应用价值发现的三大方法
大数据应用价值发现的三大方法
关于大数据的讨论,一方面人们需要厘清大数据的概念,开发适用的大数据系统和工具,探索大数据的应用模式等,另一方面人们更关心如何将大数据的价值变现。这对于一个企业来说尤其重要,否则,收集和存储了大量的数据,消耗了大量的钱财,如果大数据不能被很好地利用,从经济上讲就是不合算的,这样的事情也不会长远。
大数据价值的发现与其所处的应用场景密切相关。概括起来,大数据价值发现可以划分为三大类:数据服务、数据分析和数据探索。数据服务是面向大规模用户,提供高性能的数据查询、检索、预测等服务,通过直接满足用户需求而将数据价值变现的形式;数据分析是分析人员利用经验,通过对大规模数据使用特定的计算模型进行较为复杂的运算,从而发现易于人们理解的数据模式或规律所进行的数据价值变现的一种运算形式;数据探索是一种利用数据分析和人机交互的结合,通过不断揭示数据的规律和数据间的关联,引导分析人员发现并认识其所未知的数据模式或规律,其价值更多地体现在对未知途径的数据模式和规律的探索。
1. 数据服务
数据服务针对用户非常明确的数据查询和处理任务,以高性能和高吞吐量的方式实现大众化的服务,是数据价值最重要也是最直接的发现方式。由于要处理大众化的服务请求,每个服务任务必须能够被快速地处理掉,因此,数据服务的单个任务负载不能过于复杂,单任务直接处理的数据不能太大,任务对应的用户需求和采用的数据处理方法必须是明确的。一些典型的数据服务包括事务处理、数据查询、信息检索、数据预测。
事务处理是传统数据库范畴的价值发现形式,它针对的主要是任务关键型的数据服务,如银行记账、商业交易等; 数据查询主要是面向快速查找或修改数据的服务需求,它比事务处理更简单,对数据一致性要求没那么强,但对服务的吞吐量要求非常高;信息检索是指从大规模的数据集中快速查找满足用户需求的资料或数据片段的过程;数据预测和数据分类被很多人认为是一种数据分析任务,其实,很多针对个体的数据预测和分类任务实际上是一种数据服务,它使用数据分析得来的预测模型,对个体数据实例进行预测,从而能够高并发地为大规模用户提供分类和预测服务,进而更好地体现出数据的价值。
2. 数据分析
数据分析是指用适当的统计分析方法对大量数据进行分析或建模,提取有用信息并形成结论,进而辅助人们决策的过程。在这个过程中,用户会有一个明确的目标,通过“数据清理、转换、建模、统计”等一系列复杂的操作,获得对数据的洞察,从而协助用户进行决策。常见的数据分析任务又可以被进一步划分为描述型分析、诊断型分析、预测型分析、策略型分析。
描述型分析的主要特点是对数据代表的含义进行描述性的揭示,通过数据统计分析揭示数据隐含的现象,从而帮助人们更好地进行决策。
诊断型分析主要用来揭示一些现象背后的成因,因此,它比描述型分析更深入。很多数据挖掘方法与诊断型分析密切相关。比如相关性分析和因果关系的分析等,都是想通过对数据的深度分析揭示描述型分析所发现的某些现象背后的成因。
预测型分析主要是使用机器学习技术,对现有的大数据进行深度分析,构建数据预测和分类的模型,从而更好地支持数据预测和分类服务。
策略型分析也称指导型分析,是在分析过程中减少甚至排除人的参与,在给定目标的驱动下,直接帮助人们找到好的策略,作用于大数据应用,使得未来数据指标能够按照设想的某些趋势发展。它是数据分析的高级阶段,更能发挥出大数据的价值。
总之,数据分析一般基于大量数据和较为复杂的运算模型,其结果信息量通常很大,适用于宏观决策。而对于细节层面信息的获取,数据分析缺乏如索引和访问控制等方面的技术支持。如何在一个平台上,既支持宏观的分析,也支持细节的分析,是当今一个挑战的技术难题。
3. 数据探索
数据探索是指针对目标可变、持续、多角度的搜索或分析任务,其搜索过程是有选择、有策略和反复进行的。它将以找到信息为目的的传统信息检索模式变为以发现、学习和决策为目的的信息搜寻模式。这样的搜索模式结合了大量的数据分析与人机交互过程,适合于人们从数据中发现和学习更多的内容和价值。
对于数据探索,用户可以在微观层面(数据搜索)和宏观层面(数据分析)之间进行自由切换,用交互式的方式探索并发现数据的价值。
目前,随着大数据研究的兴起,探索式搜索这种交互式分析和探索数据价值的方式,逐渐引起人们的重视,还有很多问题等待研究者们进行深入的研究。
数据服务强调从微观层面获取满足用户需求的精准信息,数据分析强调从宏观层面为用户提供数据洞察,进而提供决策支持,而数据探索则需要在宏观和微观两个层面进行自由切换。大数据蕴含大价值,数据服务、数据分析和数据探索是3个层次的数据价值发现方法。在很多应用下,这3类方法需要混合使用,才能更好地发现大数据的价值。
『陆』 闲话国内大数据发展简史&产业化落地
文·blogchong
之所以想要说一说这个话题,是因为下午在技术群中不经意间,就类似话题进行了比较剧烈的脑暴讨论。
讨论范围包括了互联网公开数据的挖掘、价值变现、数据获取的合法性以及数据产业落地等相关方向。
当时就一直在思考这个问题,后续完了自己又想了几遍,发现确实有所得,也挺多东西想表达一下的。
大数据是在2009年开始相对比较正式引入国内的,基本上与Hadoop的“入侵”国内同步。
但在那时其实并没有实际落地的东西,除了一些大公司在试探性使用,直到2012-2013年,国外已经完成一轮“探险”,国内才陆续开始思考大数据如何落地的事了。
确实是这样的,国内在新技术领域上,一向落后于国外半拍,而我也恰恰也是在那个时候“入坑”的。
那个时候其实很多公司企业(除了当时BAT内部使用的案例),也是在尝试性的涉足大数据领域,一边追逐技术的完善,一边在探索大数据与实际业务的结合点。
直到2014年,算是大数据在国内的一个爆发点,正式的转折点。
首先,以Hadoop为代表的生态趋于成熟,甚至结合内存处理领域、数据实时处理领域,已经形成了一套完整的大数据平台技术解决方案。
其次,已经越来越公司结束了探索性实验,用实际的成果尝到了大数据这种处理模式的好处,已经形成了越来越多的实际可参考的良性案例。
当然,最重要的是确实存在实际的规模数据处理的需求。其实这个需求一直存在,只是很多时候没有找到合适的契机爆发出来。
也就是从2014开始,大数据的人才市场需求在急剧扩增,很多其他IT领域开发人员纷纷转型到数据行业,其中以逐渐没落的传统IT行业为代表。
有人才市场需求,进一步促进了大数据培训市场的发展,各种大数据培训机构如雨后春笋般的出现。
其实这也是没办法的事,因为当时还没有哪个高校开设有大数据相关的课程呢。
当然,这波浪潮同样卷到了学术界,部分高校也意识到了这个技术大势,陆续有不少高校开始开设大数据相关的专业课程。
2015年,随着互联网的发展,市场各种互联网应用需求的饱和,导致了流量红利的消失,让很多企业公司不得不考虑通过数据来提升效率以及推进用户体验,例如推荐系统、个性化服务等。
资本市场从2014-2015年逐渐介入,进一步促进各大互联网企业公司向数据化转型,使得大数据这个领域进一步达到高潮。
我们知道,资本市场算是迎来半个寒冬,流量红利的消失,o2o在15年底都死的差不多了,16年让资本市场变得更谨慎。
但是,就算是这样,国内很多以大数据为技术驱动的公司依然拿了不少融资,包括神策、诸葛IO、GrowingIO等第三方数据分析公司,明略数据等这种针对于服务偏传统行业的数据公司,甚至如DataEye类似垂直领域的数据分析公司都活的好好的。
同时,在国家政策方面,2016年可谓是大数据的国家政策元年,各种国家政策开始偏向大数据。
这意味着,大数据已经从半个风口的状态,过渡到理性、稳健的状态,这是一个良性的状态。
正如上面所说,目前大数据已经逐渐从“潮流”这种略带风险性的标志状态,过渡到稳健、良性发展的状态。
提前“入坑”的童鞋,相信已经享受到“潮流”带来的部分福利,包括比其他普通IT同行们略高的薪酬待遇,以及更多、更自由的选择性等。
好吧,其中也包括我了~~ 哈哈
那么,后续会是一种什么样的情况呢?
首先,数据化依然会是一个不可逆的趋势,在资本以及政策的驱动下,更多的公司会逐渐的进行数据化,甚至包括很多传统IT产业,一样挡不住这个大势。
那么在人才市场需求上的情况呢?个人感觉需求还是在的,因为市场远没有达到饱和,但是福利待遇会有所下降。
这是为什么呢?
2016-2017年,各大高校逐渐会开始投放专业的“正规军”,是的,那些大数据专业的学生们将被正式投放到市场中了。
此外,从2014年到2016年,大数据的培训市场一直在增加的,不管是线上的还是线下的。
这意味着,每年,哦不,应该是每几个月都会有大量的大数据速成工投放到人才需求市场中。
最重要的一点,经过四五年的大浪淘沙,市场已经有一大批“自学成才”的“老司机”可以撑起场面了。
在人才需求以及人才的待遇上,而不是一才难求的现象了,也会逐渐的趋于良性,趋于理性(之前写过一篇大数据招聘乱象的文章,喜欢可以看看 《你们是不是真的很缺大数据工程师?》 )。
所以,如果你从大学刚毕业出来,发现大数据没有传说中那么“香馍馍”,也不要奇怪;而从大数据培训流水线上下来的童鞋们,也需要做好准备,薪水可能无法跟你想象中那样了,翻个几倍之类的。
不过“老司机们”到不用太过于担心,虽然大数据的人才市场趋于日渐饱和,但是“驾龄”足够,“车”开的足够溜的,依然只有那么一小戳人。
你依然是稀缺资源,所以不要怕怕。
你看我就不怕怕,哈哈~~
虽然,这一切看似良好,但是有些东西依然值得我们更进一步的深思。
正如之前在技术群中进行脑暴讨论的那样,这几年大数据虽然市场需求不少,但是依然难以达到产业化的状态。
这里贴一个产业化的概念:产业化是指某种产业在市场经济条件下,以行业需求为导向,以实现效益为目标,依靠专业服务和质量管理,形成的系列化和品牌化的经营方式和组织形式。
目前大数据的实际落地形式大部分都以辅助、加速其他业务为主,起一个催化剂,提升效率,加快速度的作用,鲜有看到以大数据作为独立产业而存在的。
当然也有,比如上面提到的第三方数据分析商、垂直领域的DataEye,以及为企业提供大数据解决方案的明略数据等,也算是以大数据为根深立命而存在的。
但是总体来说,真的不多,而且绝大部分都是以2B的形式存在。我们知道,从格局上来看,2B的产品永远是难以做到2C产品那种真正宏伟规模,改变产业格局的。
所以,从这点来说,虽然你市场需求放在这里,但想真正以大数据为切入点、为立足的根本做点事,其实也没有想象中那么容易。
纠结~~
不过作为大数据领域的半个“老司机”,依然是希望大数据这个技术领域、这个行业,有一天能够形成独立的、推动人类进程的一些东西。
亦如互联网、亦如社交网络、亦如电子商务、亦如移动互联网等!
最近一直有很多新手同行们向我请教大数据方向上的一些事,自己也一直在思考互联网开放数据落地变现、以及大数据产业格局相关的问题。
所以,想的多了,对一些东西还是有一些看法的,藏在心中不吐不快。
也希望,上面闲话里的一些东西能够引起你的一些共鸣,当然反驳也欢迎,欢迎一切与人格无关,与技术有关、与业态有关的探讨。
下次希望有时间,能和大家一起探讨一些关于互联网开放数据落地变现相关的话题,这也是我目前一直想探索的东西,下次如果有所收获再写点 东西吧。
(正文完)
『柒』 大数据应用现状 从发现价值到创造价值
大数据应用现状:从发现价值到创造价值
从发现价值到创造价值, 大数据将成为“互联网+” 产业升级的驱动力。 过去,数据的价值主要应用在决策领域,典型应用是商业智能(BI, Business Intelligence)在企业经营管理层面的应用, 即通过数据收集、管理和分析等方法,将数据转化为知识, 发现数据的价值,进而提供决策支持。随着数据体量的不断增加和处理数据能力的提升, 大数据已经成为一类新的资产, 其应用场景正在不断扩宽,除了决策支持、 提高效率等发现价值功能之外,大数据还能创造价值的功能: 一方面,大数据可以帮助提供传统模式下所无法提供的产品, 满足用户需求, 例如大数据完善个人征信体系,帮助金融机构提供消费金融产品;又如千方旗下的掌城科技通过浮动车模型提供实时交通信息服务;另一方面,大数据还可以创造需求, 例如,大数据可以助力实现人工智能, 这是新技术创造的新需求。
大数据延伸 BI 内涵, 提高企业效率
大数据分析结果为企业经营决策提供支持,帮助企业提高效率,这实际上是传统 BI 范畴的延伸。 在人口红利逐渐消失的背景下, 我国企业传统的粗放型模式受到了 越来越大的挑战, 互联网与产业结合背景下的大数据应用将有助于提升企业经营管理效率,助力企业经营从粗放型向集约型转型, 实现产业升级。
大数据促进商业智能的加速发展,这是因为:第一,大数据的分析过程和结果更具有灵活性、可靠性和价值性;第二,大数据的存在提高了企业的商业智能意识, 引导企业主动寻求商业智能的帮助。一些大型企业往往拥有几十个甚至数百个信息系统,其所包含的大量数据反映了企业的日常经营情况,若能加以分析和利用,将为企业创造巨大的价值。
目前,大数据应用可以帮助企业实现户关系管理、盈利能力分析、控制成本、衡量绩效等功能:
客户关系管理(CRM):通过客户信息统计,使企业有针对性的根据客户需求来定制产品和服务,提高客户忠诚度,还可以通过分析偏好挖掘潜在客户;
赢利能力分析:帮助企业分析利润来源、各类产品赢利能力、费用支出是否与销售成正比等;
控制成本:根据统计信息优化流程,如降低库存、减少损耗等,助于企业控制成本;
绩效管理:利于商业智能确立对员工的期望,帮助他们跟踪并管理其绩效。
麦肯锡调查显示, 数据挖掘的商业价值巨大, 大数据在美国医疗行业每年能提高 0.7%的生产力,创造约 3000 亿美元的价值;在欧洲公共管理部门 ,每年能提高 0.5%的生产力,创造 2500 亿欧元的价值;在美国零售业,每年能提高 0.5%-1.0%的生产力 和 60%的净利率。
大数据满足需求, 市场空间巨大
大数据可以帮助提供过去所无法提供的产品, 满足用户需求。 这种模式在传统产业中比较常见, 过去,一些行业的用户需求虽然存在, 但是由于缺乏有效的技术手段,导致市场参与者无法提供合适的产品迎合市场需求。大数据技术兴起后,将带动一系列创新产品推出市场, 这在各行各业都能找到案例,考虑到传统产业的广度,这将是是一个正在挖掘的巨大市场。
以交通领域的实时交通信息服务和车险定价为例,这两个细分领域的需求本来就存在,但在大数据兴起之前,传统模式无法提供最优的产品,而大数据技术下的产品优化可以更好的满足需求,提高用户体验。
千方科技旗下掌城科技通过大数据技术提供实时交通信息服务。 掌城科技通过向出租车公司和公交车公司购买数据、 向政府部门臵换数据、利用千方自有数据的形式汇集城际交通数据, 基于浮动车的算法模型,对数据进行二次开发,以建立实时交通信息服务平台。 目前, 掌城科技运营着北京、上海等全国 30 余个大中城市的实时路况信息,准确率极高。 目前,千方已将交通数据收集从城际交通扩大至整个陆路交通和航空等领域,目标通过大数据技术提供更加全面的公众智慧出行服务。
大数据技术将参与车险定价,使定价更加科学。随着车联网的兴起,OBD(On-BoardDiagnostic车载诊断系统)等联网的车载设备,成为车联网中的智能节点,连接运动中的人、车和道路环境,读取行车数据,从而分析出车辆能耗、故障等车况信息以及驾驶者的行车习惯:通过G-sensor监测车主的诸如急刹车、急加速和急转弯等危险行为,通过破解Can-bus协议监测车主的诸如转弯不打灯、驻车不拉手刹等不良驾驶习惯,通过GPS获取车辆的位臵信息和里程数据,这些数据将改善车险定价技术与核保政策,提升精准定价能力。
大数据创造需求,拓宽市场边界
大数据创新产品拓宽市场边界, 供给创造需求。 大数据创造价值功能, 除了提供产品满足市场已经存在的需求外, 基于大数据的新产品还将创造新供给,带动新需求, 打破原有的市场边界,想象空间巨大:
一方面大数据能够前所未有的精准洞悉现在,深入挖掘现有商业价值:
例如 Airbnb 拥有海量的独有数据,包括旅游地、用户评论、房源描述、社区信息等, Airbnb还有一支队伍去各地和当地人交流,搜集所有的相关历史数据。当用户在搜寻一个住宿的地方时, Airbnb 利用大数据分析通过 Airbnb 社区告诉未来的客人哪里是更好的住宿地,甚至能够帮助用户更深入地了解某个地点,包括地理信息无法描述的文化或宗教上的区分。 Uber 则是利用地理位臵和其用户的综合数据,大大缩短司机开着空车去接下一位乘客的时间和乘客等待的时间。
另一方面大数据能够空前准确的预测未来,从而能获得前瞻性的商业价值:
例如社交数据分析公司 Topsy 准确预测了 iPhone 4S 上市后的市场表现,同时还成功预测美国大选结果和奥斯卡颁奖结果。它在商业分析、市场销售、新闻等领域拥有很高价值,因而苹果以 2 亿多美元的价格收购 Topsy。
大数据产业链分析
大数据产业链的主要参与方
大数据产业链可以分为四个部分: 数据采集和整合、数据存储和运算、数据分析和挖掘、数据应和消费。数据采集和整合是指通过技术手段从互联网、 移动终端、 物联网、 应用软件等采集数据,然后把数据按照一定的规则进行存储和运算,再按照需求调用数据并进行智能分析和挖掘,将数据转化成价值信息或者产品,为决策支持、提升效率、 创新产品提供依据。
数据资产开始成为核心资源
拥有数据,大数据时代的王者。在大数据时代, 数据资产已经成为核心资源, 2012 年,奥巴马政府明确提出 将“大数据战略”上升为国家意志,并将数据定义为“未来的新石油”, 因此,拥有数据可谓是大数据时代的王者。 拥有数据的机构可以分为三类:
一是既有数据、 又有大数据思维的互联网公司,如阿里巴巴、腾讯、京东、 Google、 Amazon等,在互联网端积累了大量的数据资源,而且此类公司 IT 起家, 对大数据有天生敏锐的嗅觉, 大数据技术也相对成熟, 因此,互联网公司 可谓是最早使用大数据的机构,成为大数据应用的先行者;
二是传统软件公司转型互联网,通过 SaaS 模式为用户提供服务, 例如用友软件推出畅捷通,以云模式为小微企业提供财务管理应用, 也可以认为是既有数据、 又有大数据思维的模式;
三是拥有数据,缺乏大数据思维的机构,这类机构手里掌握着大量的数据,但是没有能力自己有效利用, 例如金融机构、 运营商、政府部门等。
使用数据,数据变现的推动者。对于手里掌握大量数据,但没有能力变现的机构而言,需要专业的第三方公司提供大数据服务,主要是各类 IT 咨询机构和行业应用软件厂商,尤其是行业应用软件厂商, 在各自的领域具有天然的卡位优势: 软件公司提供了行业应用软件和相关的运营维护, 行业应用软件本身就是重要的数据来源,软件公司 属于不拥有数据,但可以接触到数据的机构, 且天然拥有大数据思维和大数据技术,以及良好的行业客户关系,从信息系统建设延伸到大数据运营顺理成章。因此,各个细分行业的应用软件提供商有望成为传统拥有数据机构的重要合作伙伴, 助力其探索大数据价值变现。
大数据技术是重要生产力
大数据应用好坏的关键除了 数据本身,还在于大数据技术, 大数据技术包括数据采集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现等环节,涉及的技术环节极广, 随着数据体量增大和数据复杂性程度提高,大数据技术本身也处于快速迭代的发展过程中。值得一提的是,大数据技术落地的一大重要因素在于如何实现技术与业务的融合, 这背后需要深厚的业务理解, 对于既有数据、 又有大数据思维的互联网公司 来说,技术和业务本身是相互驱动、共同发展的, 对于拥有数据,缺乏大数据思维的机构而言, 在行业深耕多难的应用软件提供商则是最好的选择。
以上是小编为大家分享的关于 大数据应用现状 从发现价值到创造价值的相关内容,更多信息可以关注环球青藤分享更多干货
『捌』 通过大数据和影视行业的案例,可以发现大数据具有哪些特点
大数据主要特征有大量性、多样性、高速性、价值性。
价值性是指海量数据中真正有价值的数据占比非常低,即价值密度低。
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
数字经济作为一种新的经济型态,是以云计算、大数据、人工智能、物联网、区块链、移动互联网等信息通信技术为载体,基于信息通信技术的创新与融合来驱动社会生产方式的改变和生产效率的提升。
数字化技术就是通过利用电子计算机软硬件、周边设备、协议、网络和通信技术,实现信息离散化表述、定量、感知、传递、存储、处理、控制、联网的集成技术。下表是其具体的应用领域介绍。