Ⅰ 国内目前有几家做大数据BI的公司都有什么不同
国外BI:SAS BI、的cognos、Oracle BIEE、SAP BO、Power-BI、Informatica、Arcplan、QlikView、Tableau等等;
国内BI:海致BDP、smartbi、用友华表、帆软、润乾报表,永洪科技等。
国内BI比较熟悉的有这3款
1、BDP商业数据平台
1)这两年很热,行业都比较赞赏。BDP旨在帮助企业快速完成多数据整合,建立统一数据口径,支持自助式数据准备(ETL),并提供灵活、易用、高效可视化探索式分析能力,帮助企业构建贴合自身业务的企业洞察。BDP可以灵活接入与同步多种数据源,包括各类数据库连接、OpenAPI以及各种SaaS平台API,满足企业多种多样的业务场景、亿行数据秒反应,快速实现数据清洗、整合、加载,通过拖拽即可可视化分析,支持近数据地图、漏斗图、旭日图、饼图、柱状图、折线图、词云、雷达等30种图表类型,让数据更加直观、美观。
2)BDP商业数据平台为企业提供的核心价值在于用直观、多维、实时的方式展示和分析数据,并可在APP实时查看和分享,全面激活企业内部数据,用数据驱动业绩,适应快速变化的市场。目前他们服务的客户也很多,涵盖互联网、零售快消、物流、O2O、教育SEM等多个行业。
3)跟他们公司的人接触过,服务态度很好,也很专业,价格不贵。
3、永洪
1)永洪利用sql处理数据,不支持程序接口,实施交由第三方外包。永洪的技术主要分为大数据和可视化两点。在大数据方面,通过列存储、分布式计算、内存计算、分布式通讯等技术,永洪自主研发了高性能的大数据计算引擎,作为分析用的数据集市,可实现百亿级数据在秒级时间内完成计算。
2)在可视化方面,永洪将复杂的多维分析功能隐藏在背后,在前端通过点击和拖拽的简单可视化操作实现各种复杂的分析过程。
3)需要一定的技术门槛,交互比较复杂点
Ⅱ 传统数据和大数据的区别
传统数据和大数据的区别
无疑,数据信息的大爆炸不断提醒着我们,未来将会因大数据技术而改变。大数据(Big data)通常用来形容数字化时代下创造出的大量非结构化和半结构化数据。大数据无疑是未来影响各行各业发展的最受瞩目的技术之一。2009年时,全世界关于大数据的研究项目还非常有限,从2011年开始,越来越多的管理者开始意识到,大数据将是未来发展不可规避的问题,而到2012年年底,世界财富500 强企业中90%的企业都开展了大数据的项目。IDC的研究显示,到2015年,大数据市场前景将达到169亿美元的规模。当前所有企业的商业数据每隔1.2年就将递增一倍。
那么,大数据为什么成为所有人关注的焦点?大数据带来了什么样的本质性改变?为此,我们与中国计算机学会大数据学术带头人、中国人民大学信息学院院长杜小勇教授进行了访谈。
杜小勇教授认为,大数据带来了三大根本改变:第一、大数据让人们脱离了对算法和模型的依赖,数据本身即可帮助人们贴近事情的真相;第二、大数据弱化了因果关系。大数据分析可以挖掘出不同要素之间的相关关系。人们不需要知道这些要素为什么相关就可以利用其结果,在信息复杂错综的现代社会,这样的应用将大大提高效率;第三、与之前的数据库相关技术相比,大数据可以处理半结构化或非结构化的数据。这将使计算机能够分析的数据范围迅速扩大。
传统数据和大数据的区别
第一、计算机科学在大数据出现之前,非常依赖模型以及算法。人们如果想要得到精准的结论,需要建立模型来描述问题,同时,需要理顺逻辑,理解因果,设计精妙的算法来得出接近现实的结论。因此,一个问题,能否得到最好的解决,取决于建模是否合理,各种算法的比拼成为决定成败的关键。然而,大数据的出现彻底改变了人们对于建模和算法的依赖。举例来说,假设解决某一问题有算法A和算法B。在小量数据中运行时,算法A的结果明显优于算法B。也就是说,就算法本身而言,算法A能够带来更好的结果;然而,人们发现,当数据量不断增大时,算法B在大量数据中运行的结果优于算法A在小量数据中运行的结果。这一发现给计算机学科及计算机衍生学科都带来了里程碑式的启示:当数据越来越大时,数据本身(而不是研究数据所使用的算法和模型)保证了数据分析结果的有效性。即便缺乏精准的算法,只要拥有足够多的数据,也能得到接近事实的结论。数据因此而被誉为新的生产力。
第二、当数据足够多的时候,不需要了解具体的因果关系就能够得出结论。
例如,Google 在帮助用户翻译时,并不是设定各种语法和翻译规则。而是利用Google数据库中收集的所有用户的用词习惯进行比较推荐。Google检查所有用户的写作习惯,将最常用、出现频率最高的翻译方式推荐给用户。在这一过程中,计算机可以并不了解问题的逻辑,但是当用户行为的记录数据越来越多时,计算机就可以在不了解问题逻辑的情况之下,提供最为可靠的结果。可见,海量数据和处理这些数据的分析工具,为理解世界提供了一条完整的新途径。
第三、由于能够处理多种数据结构,大数据能够在最大程度上利用互联网上记录的人类行为数据进行分析。大数据出现之前,计算机所能够处理的数据都需要前期进行结构化处理,并记录在相应的数据库中。但大数据技术对于数据的结构的要求大大降低,互联网上人们留下的社交信息、地理位置信息、行为习惯信息、偏好信息等各种维度的信息都可以实时处理,立体完整地勾勒出每一个个体的各种特征。
Ⅲ 大数据开发和数据分析有什么区别
1、技术区别
大数据开发类的岗位对于code能力、工程能力有一定要求,这意味着需要有一定的编程能力,有一定的语言能力,然后就是解决问题的能力。
因为大数据开发会涉及到大量的开源的东西,而开源的东西坑比较多,所以需要能够快速的定位问题解决问题,如果是零基础,适合有一定的开发基础,然后对于新东西能够快速掌握。
如果是大数据分析类的职位,在业务上,需要你对业务能够快速的了解、理解、掌握,通过数据感知业务的变化,通过对数据的分析来做业务的决策。
在技术上需要有一定的数据处理能力,比如一些脚本的使用、sql数据库的查询,execl、sas、r等工具的使用等等。在工具层面上,变动的范围比较少,主要还是业务的理解能力。
2、薪资区别
作为IT类职业中的“大熊猫”,大数据工程师的收入待遇可以说达到了同类的顶级。国内IT、通讯、行业招聘中,有10%都是和大数据相关的,且比例还在上升。
在美国,大数据工程师平均每年薪酬高达17.5万美元。大数据开发工程师在一线城市和大数据发展城市的薪资是比较高的。
大数据分析:大数据分析同样作为高收入技术岗位,薪资也不遑多让,并且,我们可以看到,拥有3-5年技术经验的人才薪资可达到30K以上。
3、数据存储不同
传统的数据分析数据量较小,相对更加容易处理。不需要过多考虑数据的存储问题。而大数据所涉及到的数据具有海量、多样性、高速性以及易变性等特点。因此需要专门的存储工具。
4、数据挖掘的方式不同
传统的数据分析数据一般采用人工挖掘或者收集。而面对大数据人工已经无法实现最终的目标,因此需要跟多的大数据技术实现最终的数据挖掘,例如爬虫。
Ⅳ 大数据到底是什么行业啊,具体是干什么的啊
这不是某个行业,它是一个大数据分析,也就是说不断的收集数据,然后进行分析,然后对行业的发展有帮助。
Ⅳ 如何理解传统数据与大数据之间的区别
针对大数据带给教育的机遇与挑战,与读者深入探讨和分享大数据与传统数据的区别,及其行业落地的进展情况。
二、大数据时代潜藏的教育危机
“不得不承认,对于学生,我们知道得太少”——这是卡耐基·梅隆大学(Carnegie Mellon University)教育学院研究介绍中的一句自白,也同样是美国十大教育类年会中出镜率最高的核心议题。这种对于学生认识的匮乏,在21世纪之前长达数百甚至上千年的教育史中并没有产生什么消极的效应,但却在信息技术革命后的近十年来成为教育发展的致命痼疾。
“过去,对于学生来说,到学校上学学习知识具有无可辩驳的重要性,而那是因为当时人们能够接触知识的渠道太少,离开学校就无法获取成体系的知识”斯坦福大学教授Arnetha Ball在AERA(美国教育研究会)大会主旨发言中说道,“但是,互联网的普及将学校的地位从神坛上拉了下来。”Ball的担心不无道理。根据Kids Count Census Data Online发布的数据,2012年全美在家上学(Home-Schooling)的5-17岁学生已达到197万人,相对逐年价下降的出生人口,这一人口比重十分可观。
与此同时,应运而生的则是内容越来越精致的网上课堂,而创立于2009年并迅速风靡全球的可汗学院(Khan Academy)正是其中的杰出代表。从知名学府的公开课到可汗学院,这种网络学习模式受到热捧恰恰证明了:人们对于学习的热情并没有过去,但是人们已经极端希望与传统的学院式授课模式告别。一成不变,甚至“目中无人”的传统集体教学模式在适应越来越多元化、也越来越追求个性化的学生群体时显得捉襟见肘。
可汗学院模式不但支持学生自主选择感兴趣的内容,还可以快速跳转到自己适合的难度,从而提高了学习的效率。学习者没有学习的压力,时长、时机、场合、回顾遍数都可以由自己控制。
可以想象,如果可汗学院的模式进一步发展,与计算机自适应(CAT)的评估系统相联系,让使用者可以通过自我评估实现对学习进度的掌握以及学习资料的精准获取,那么它将形成互联网产品的“闭环”,其优势与力量将是颠覆性的。
而如果传统教育的课程模式不革新,课堂形态不脱胎换骨,教师角色与意识不蜕变,那么学校的存在就只有对现代化学习资源匮乏的学生才有意义;而对于能够自主获得更适宜学习资源的学生来说,去学校可能只是为了完成一项社会角色赋予的义务,甚至谈不上必要性,也就更谈不上愉快的体验或兴趣的驱使了。
大数据的研究可以帮助教育研究者重新审视学生的需求,通过高新的技术以及细致的分析找到怎样的课程、课堂、教师是能够吸引学生的。但问题在于,社会发展给予教育研究者的时间窗口并不宽裕,因为有太多人同样在试图通过大数据挖掘设法瓜分学生们有限的精力与注意力。而且从某种程度上,他们做得远比教育研究者更有动力与诚意。
首当其冲的是游戏的设计者——青少年是其主要消费群体。撇开驰名世界的暴雪公司(Blizzard Entertainment),美国艺电公司(Electronic Arts Inc.),日本任天堂公司(Nintendo)等国际巨鳄不谈;即使是国内的盛大网络,第九城市,巨人科技,淘米网络等游戏公司,亦都早已组建了专业实力强劲的“用户体验”研究团队。他们会通过眼动跟踪,心律跟踪,血压跟踪,键盘与鼠标微操作速率等各种微观行为来研究如何让玩家在游戏中投入更多的时间,更加愿意花真实世界的钱来购买虚拟世界的物品。什么时候应该安排敌人出现,敌人应当是什么级别,主人公需要耗费多少精力才能够将其击败,这些变量都得到了严格的设计与控制,原因只有一个——大数据告诉游戏创作者,这样的设计是最能够吸引玩家持续游戏的。
其次是电影视频、青春小说等链式文化产业。为什么在网站上看视频会一个接一个,无法停止,因为它会根据该账号的历史浏览记录推算出其喜欢看什么样的视频,喜欢听什么类型风格的歌,并投其所好;而畅销网络小说看似并没有“营养”,但里面的遣词造句、语段字数,故事起伏设定,甚至主人公性格的类型都是有相关研究进行支持——读者往往并不喜欢结构严密、精心设计的剧情——这就是为什么情节千篇一律的韩剧受人追捧的原因,他们通过收视率的反复研究,挖掘到了观众最需要的那些元素,并且屡试不爽。
此外还有许多更强大的研究者,比如电子商务,总能通过数据找到你可能愿意购买的商品——他们甚至知道买尿片的父亲更愿意买啤酒。
这些领域看似与我们教育者并无特别关联,但是他们与我们最关心的对象——学生却有着千丝万缕的联系。数百年甚至数十年前,学生并不会面对如此多的诱惑,学校在其生活中占据极大比重,对其影响也最为显着,因此教育者对于学生的控制总是有着充分的自信。但是,当不同的社会机构与产品开始争夺学生的注意力时,教育者的自信就只能被认为是一种无法认清形势的傲慢了——因为在这场“学生争夺战”中,传统学校看上去实在缺乏竞争力。
即使教育研究者愿意放下身段,通过大数据的帮助来悉心研究学生的需求与个性。但是人才的匮乏也是非常不利的一点因素——相比于商业环境下对研究实效的追逐,教育研究的缓慢与空洞显得相形见绌。在互联网企业纷纷抛出“首席数据官”的头衔,向各种数据科学狂人抛出橄榄枝,并且在风险投资的鼓舞下,动辄以百万年薪进行延聘时,大数据研究的前沿阵地必然仍是在互联网行业中最轰轰烈烈地开战。
分析形势后的姿态,以及投入的力度与强度,或许是教育领域在进入大数据研究时最先需要充分考虑的两个先决条件。
三、谁在为大数据欢呼:一场关于“人性”研究的启蒙
孜孜不倦地观测、记录、挖掘海量的数据,有朝一日终会推导出或简约或繁复的方程,以此得以在自然科学的历史丰碑上留名——数百年来,这种对数据的崇拜早已成为了物理学家、化学家、生物学家、天文地理学家们的信念。而牛顿,贝叶斯,薛定谔等一代代巨匠的伟业也揭示了数据对于科学发现的无限重要价值。
相形之下,社会科学领域的研究就要惨淡地多——他们同样看重数据,同样追求统计与分析的“程序正义”,同样勤勤恳恳地设计实验与调研,去寻找成千上万的被试,同样像模像样地去嵌套方程……但是几乎很少有研究结果能够得到普遍的承认,不管是社会学、心理学、经济学、管理学还是教育学。
当然,社会科学领域的研究者们遇到的困难是显而易见的:“人性”与“物性”是不同的,物质世界比较稳定,容易寻找规律;而由人组成的社会极其善变,难以总结。从数据的角度来说,人的数据不如物的数据那么可靠:
首先是人不会像物那样忠实地进行回应:谁知道一个人填写的问卷有多少是注意力不集中填错的、语文水平不高理解错的、还是压根没打算讲真话?此外,人与人本身的差距也大于物与物的差距:两个化学组成相同的物质表现出各种性质几乎是完全一样的,但即使是两个基因完全相同的双胞胎也会因为不同的人生经验,而表现出大相径庭的行为特征。
但这些都还并不关键,最最重要的是:人无法被反复研究。人不是牛顿的木块,不是伽利略的铅球,不是巴普洛夫的狼狗,人不会配合一次次从斜坡上被滑下来,一次次从比萨塔顶被扔下来,一次次流着口水干等着送肉来的铃声。而我们知道,在“科学”的三个标准中,首当其冲的就是“可重复验证”。
换句话说,我们可以获得的关于“人性”的数据不够大,不够多,不够随时随地,因此我们无法从数据中窥见人性。2002年诺贝尔经济学奖授予心理学家丹尼尔?卡尼曼(Daniel Kahneman)时,似乎标示着社会科学领域已经接受了这样一种事实:人类的行为是无法寻找规律、无法预测、难以进行科学度量的。社会科学开始怀疑用纯粹理性的方法是否可以解答关于“人性”的种种现象。与此相映成趣的是2012年的美国大选,奥巴马的团队依靠对网络数据的精准筛选捕捉到了大量的“草根”选民,而对于其喜好与需求的分析与把握更是赢得其信任,从而在不被传统民调与历史数据规律看好的情况下一举胜出。这跨越十年的两个标志性事件让人们对于“数据揭示人性”可能性的认识经历了戏剧性的转变。
如今,迅速普及的互联网与移动互联网悄然为记录人的行为数据提供了最为便利、持久的载体。手机,iPad等贴近人的终端无时不刻不在记录关于人的点点滴滴思考、决策与行为。最最重要的是,在这些强大的数据收集终端面前,人们没有掩饰的意图,人们完整地呈现着自己的各种经历,人们不厌其烦一遍又一遍重复着他们不愿在实验情境下表现出来的行为,从而创造着海量的数据——传统数据研究无法做到的事,传统研究范式苦苦纠结的许多难点,都在大数据到来的那一刹那遁于无形。
大数据的到来,让所有社会科学领域能够藉由前沿技术的发展从宏观群体走向微观个体,让跟踪每一个人的数据成为了可能,从而让研究“人性”成为了可能。而对于教育研究者来说,我们比任何时候都更接近发现真正的学生。
Ⅵ 国内大数据分析服务平台这么多,哪家比较好
以下为大家介绍几个代表性数据分析平台:
1、 Cloudera
Cloudera提供一个可扩展、灵活、集成的平台,可用来方便的管理您的企业中快速增长的多种多样的数据,从而部署和管理Hadoop和相关项目、操作和分析您的数据以及保护数据的安全。Cloudera Manager是一个复杂的应用程序,用于部署、管理、监控CDH部署并诊断问题,Cloudera Manager提供Admin Console,这是一种基于Web的用户界面,是您的企业数据管理简单而直接,它还包括Cloudera Manager API,可用来获取集群运行状况信息和度量以及配置Cloudera Manager。
2、 星环Transwarp
基于hadoop生态系统的大数据平台公司,国内唯一入选过Gartner魔力象限的大数据平台公司,对hadoop不稳定的部分进行了优化,功能上进行了细化,为企业提供hadoop大数据引擎及数据库工具。
3、 阿里数加
阿里云发布的一站式大数据平台,覆盖了企业数仓、商业智能、机器学习、数据可视化等领域,可以提供数据采集、数据深度融合、计算和挖掘服务,将计算的几个通过可视化工具进行个性化的数据分析和展现,图形展示和客户感知良好,但是需要捆绑阿里云才能使用,部分体验功能一般,需要有一定的知识基础。maxcompute(原名ODPS)是数加底层的计算引擎,有两个维度可以看这个计算引擎的性能,一个是6小时处理100PB的数据,相当于1亿部高清电影,另外一个是单集群规模过万台,并支持多集群联合计算。
4、 华为FusionInsight
基于Apache进行功能增强的企业级大数据存储、查询和分析的统一平台。完全开放的大数据平台,可运行在开放的x86架构服务器上,它以海量数据处理引擎和实时数据处理引擎为核心,针对金融、运营商等数据密集型行业的运行维护、应用开发等需求,打造了敏捷、智慧、可信的平台软件。
5、网易猛犸
网易猛犸大数据平台使一站式的大数据应用开发和数据管理平台,包括大数据开发套件和hadoop发行版两部分。大数据开发套件主要包含数据开发、任务运维、自助分析、数据管理、项目管理及多租户管理等。大数据开发套件将数据开发、数据分析、数据ETL等数据科学工作通过工作流的方式有效地串联起来,提高了数据开发工程师和数据分析工程师的工作效率。Hadoop发行版涵盖了网易大数据所有底层平台组件,包括自研组件、基于开源改造的组件。丰富而全面的组件,提供完善的平台能力,使其能轻易地构建不同领域的解决方案,满足不同类型的业务需求。
6.知于大数据分析平台
知于平台的定位与当今流行的平台定位不一样,它针对的主要是中小型企业,为中小型企业提供大数据解决方案。现阶段,平台主打的产品是舆情系统、文章传播分析与网站排名监测,每个服务的价格单次在50元左右,性价比极高。
Ⅶ 国内目前有几家做大数据BI的公司都有什么不同
极其流行,同样也是竞争力极其大的一种商业模式。虽然国内软件开发公司都发展壮大起来了,但是各地软件开发公司的实力及资质仍然参差不齐。下面为大家介绍下近期国内软件开发公司的排名汇总。
1:华盛恒辉科技有限公司
上榜理由:华盛恒辉是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在开发、建设到运营推广领域拥有丰富经验,我们通过建立对目标客户和用户行为的分析,整合高质量设计和极其新技术,为您打造创意十足、有价值的企业品牌。
在军工领域,合作客户包括:中央军委联合参谋(原总参)、中央军委后勤保障部(原总后)、中央军委装备发展部(原总装)、装备研究所、战略支援、军事科学院、研究所、航天科工集团、中国航天科技集团、中国船舶工业集团、中国船舶重工集团、第一研究所、训练器材所、装备技术研究所等单位。
在民用领域,公司大力拓展民用市场,目前合作的客户包括中国中铁电气化局集团、中国铁道科学研究院、济南机务段、东莞轨道交通公司、京港地铁、中国国电集团、电力科学研究院、水利部、国家发改委、中信银行、华为公司等大型客户。
2:五木恒润科技有限公司
上榜理由:五木恒润拥有员工300多人,技术人员占90%以上,是一家专业的军工信息化建设服务单位,为军工单位提供完整的信息化解决方案。公司设有股东会、董事会、监事会、工会等上层机构,同时设置总经理职位,由总经理管理公司的具体事务。公司下设有研发部、质量部、市场部、财务部、人事部等机构。公司下辖成都研发中心、西安研发中心、沈阳办事处、天津办事处等分支机构。
3、浪潮
浪潮集团有限公司是国家首批认定的规划布局内的重点软件企业,中国著名的企业管理软件、分行业ERP及服务供应商,在咨询服务、IT规划、软件及解决方案等方面具有强大的优势,形成了以浪潮ERP系列产品PS、GS、GSP三大主要产品。是目前中国高端企业管理软件领跑者、中国企业管理软件技术领先者、中国最大的行业ERP与集团管理软件供应商、国内服务满意度最高的管理软件企业。
4、德格Dagle
德格智能SaaS软件管理系统自德国工业4.0,并且结合国内工厂行业现状而打造的一款工厂智能化信息平台管理软件,具备工厂ERP管理、SCRM客户关系管理、BPM业务流程管理、
OMS订单管理等四大企业业务信息系统,不仅满足企业对生产进行简易管理的需求,并突破局域网应用的局限性,同时使数据管理延伸到互联网与移动商务,不论是内部的管理应用还是外部的移动应用,都可以在智能SaaS软件管理系统中进行业务流程的管控。
5、Manage
高亚的产品 (8Manage) 是美国经验中国研发的企业管理软件,整个系统架构基于移动互联网和一体化管理设计而成,其源代码编写采用的是最为广泛应用的
Java / J2EE 开发语言,这样的技术优势使 8Manage
可灵活地按需进行客制化,并且非常适用于移动互联网的业务直通式处理,让用户可以随时随地通过手机apps进行实时沟通与交易。
Ⅷ 国内有那些比较好的大数据平台呢
国内目前比较主流的大数据平台主要有:growingio ,talkingdata,诸葛io ,神策等,这些平台功能类似,基本上都能覆盖事件分析,用户分析,漏斗和路径分析,精准营销等
Ⅸ 大数据数据库有哪些
问题一:大数据技术有哪些 非常多的,问答不能发link,不然我给你link了。有譬如Hadoop等开源大数据项目的,编程语言的,以下就大数据底层技术说下。
简单以永洪科技的技术说下,有四方面,其实也代表了部分通用大数据底层技术:
Z-Suite具有高性能的大数据分析能力,她完全摒弃了向上升级(Scale-Up),全面支持横向扩展(Scale-Out)。Z-Suite主要通过以下核心技术来支撑PB级的大数据:
跨粒度计算(In-Databaseputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。
并行计算(MPP puting)
Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。
列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。
内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。
问题二:大数据使用的数据库是什么数据库 ORACLE、DB2、SQL SERVER都可以,关键不是选什么数据库,而是数据库如何优化! 需要看你日常如何操作,以查询为主或是以存储为主或2者,还要看你的数据结构,都要因地制宜的去优化!所以不是一句话说的清的!
问题三:什么是大数据和大数据平台 大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据平台是为了计算,现今社会所产生的越来越大的数据量。以存储、运算、展现作为目的的平台。
问题四:常用大型数据库有哪些 FOXBASE
MYSQL
这俩可算不上大型数据库管理系统
PB 是数据库应用程序开发用的ide,根本就不是数据库管理系统
Foxbase是dos时代的产品了,进入windows时代改叫foxpro,属于桌面单机级别的小型数据库系统,mysql是个中轻量级的,但是开源,大量使用于小型网站,真正重量级的是Oracle和DB2,银行之类的关键行业用的多是这两个,微软的MS SQLServer相对DB2和Oracle规模小一些,多见于中小型企业单位使用,Sybase可以说是日薄西山,不行了
问题五:几大数据库的区别 最商业的是ORACLE,做的最专业,然后是微软的SQL server,做的也很好,当然还有DB2等做得也不错,这些都是大型的数据库,,,如果掌握的全面的话,可以保证数据的安全. 然后就是些小的数据库access,mysql等,适合于中小企业的数据库100万数据一下的数据.如有帮助请采纳,谢!
问题六:全球最大的数据库是什么 应该是Oracle,第一,Oracle为商业界所广泛采用。因为它规范、严谨而且服务到位,且安全性非常高。第二,如果你学习使用Oracle不是商用,也可以免费使用。这就为它的广泛传播奠定了在技术人员中的基础。第三,Linux/Unix系统常常作为服务器,服务器对Oracle的使用简直可以说极其多啊。建议楼梗多学习下这个强大的数据库
问题七:什么是大数据? 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
说起大数据,就要说到商业智能:
商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。
商务智能的产生发展
商业智能的概念经由Howard Dresner(1989年)的通俗化而被人们广泛了解。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。
商务智能是20世纪90年代末首先在国外企业界出现的一个术语,其代表为提高企业运营性能而采用的一系列方法、技术和软件。它把先进的信息技术应用到整个企业,不仅为企业提供信息获取能力,而且通过对信息的开发,将其转变为企业的竞争优势,也有人称之为混沌世界中的智能。因此,越来越多的企业提出他们对BI的需求,把BI作为一种帮助企业达到经营目标的一种有效手段。
目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。
为了将数据转化为知识,需要利用数据仓库、线上分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是ETL、数据仓库、OLAP、数据挖掘、数据展现等技术的综合运用。
把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
企业导入BI的优点
1.随机查询动态报表
2.掌握指标管理
3.随时线上分析处理
4.视觉化之企业仪表版
5.协助预测规划
导入BI的目的
1.促进企业决策流程(Facilitate the Business Decision-Making Process):BIS增进企业的资讯整合与资讯分析的能力,汇总公司内、外部的资料,整合成有效的决策资讯,让企业经理人大幅增进决策效率与改善决策品质。
......>>
问题八:数据库有哪几种? 常用的数据库:oracle、sqlserver、mysql、access、sybase 2、特点。 -oracle: 1.数据库安全性很高,很适合做大型数据库。支持多种系统平台(HPUX、SUNOS、OSF/1、VMS、 WINDOWS、WINDOWS/NT、OS/2)。 2.支持客户机/服务器体系结构及混合的体系结构(集中式、分布式、 客户机/服务器)。 -sqlserver: 1.真正的客户机/服务器体系结构。 2.图形化用户界面,使系统管理和数据库管理更加直观、简单。 3.具有很好的伸缩性,可跨越从运行Windows 95/98的膝上型电脑到运行Windows 2000的大型多处理器等多种平台使用。 -mysql: MySQL是一个开放源码的小型关系型数据库管理系统,开发者为瑞典MySQL AB公司,92HeZu网免费赠送MySQL。目前MySQL被广泛地应用在Internet上的中小型网站中。提供由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。 -access Access是一种桌面数据库,只适合数据量少的应用,在处理少量数据和单机访问的数据库时是很好的,效率也很高。 但是它的同时访问客户端不能多于4个。 -
问题九:什么是大数据 大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机理解自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从大入手,大是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的......>>
问题十:国内真正的大数据分析产品有哪些 国内的大数据公司还是做前端可视化展现的偏多,BAT算是真正做了大数据的,行业有硬性需求,别的行业跟不上也没办法,需求决定市场。
说说更通用的数据分析吧。
大数据分析也属于数据分析的一块,在实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层――数据报表层――数据分析层――数据展现层
第二维度:用户级――部门级――企业级――BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台。
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现!BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。传统报表解决的是展现问题,目前国内的帆软报表FineReport已经算在业内做到顶尖,是带着数据分析思想的报表,因其优异的接口开放功能、填报、表单功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、FineBI之类,可分在报表层也可分为数据展现层。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,我常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份――商业智能,所以在大数据处理方面的能力更胜一筹。
3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完......>>
Ⅹ 国内外在利用大数据上的不同做法
近期外卖企业 大数据 杀熟受到知名媒体的批评,同时也证明了这一事实,由此可以看出中国互联网行业的短视,相比之下外国企业却是利用大数据进行创新,这或许就是中外互联网行业最大的不同吧。
大数据杀熟的疑问其实早已存在,例如此前的网约车企业杀熟就曾引发巨大的争论,不过当时并未有权威机构对此证实,而相关的网约车企业也迅速对此否认。
这次外卖企业以大数据杀熟则得到了知名媒体的证明,说明了中国互联网企业确实有利用它们掌握的大数据谋求更丰厚的利润,宰割国内消费者。
其实如果再放开来说,中国互联网行业存在着许多弊病,除了大数据杀熟之外,它们还利用自己的大数据优势广泛向消费者推送相关的广告,这是属于侵犯隐私的行为,实在过于肆意妄为。
或许也正是它们在国内可以如此做,导致它们只能蜗居国内市场,至今在海外市场都难以取得突破,因为在海外市场它们需要遵守当地的法规,重视消费者的隐私,无法如国内这样如此轻松的赚取丰厚的利润。
相比起中国的互联网行业,国外互联网企业却是利用大数据进行创新,不断增强自己的竞争力,同时获得消费者的支持。
以全球知名的互联网企业谷歌为例,它拥有大数据的优势,却是利用大数据研发健康产品等帮助人类预防疾病,对比起中国的互联网企业可以看出它们正利用大数据进行创新,实现更加高大上的目标,映衬出中国互联网行业的短视。
或许也正是这种差异,导致中国互联网企业出海往往难以与它们进行竞争,无奈之下中国的互联网企业在国内市场发展壮大之后考虑的是如何在国内市场如何掘金,甚至瞄准消费者手里那几块菜钱,却没有找到高大上的目标。
对比起在国内牛逼哄哄的互联网企业,中国制造却已在国际市场取得了可喜的成就,中国制造的产品如电视、手机等产品都已在国际市场站稳脚跟,证明了中国制造的实力,这更是映衬得中国互联网行业目光短浅。
如今新华网批评外卖平台大数据杀熟,或许能让这些互联网企业反思自己,不再以竭力压榨国内消费者为目的,将目标放在创新方面,增强自己的竞争力,以与国际企业竞争为目标。