Ⅰ 大数据的特征是
一,大容量
据马海祥了解,天文学和基因学是最早产生大数据变革的领域,2000年,斯隆数字巡天项目启动时,位于新墨西哥州的望远镜,在短短几周内搜集到的数据已经比天文学历史上总共搜集的数据还要多;在智利的大型视场全景巡天望远镜一旦于2016年投入使用,其在5天之内搜集到的信息量将相当于前者10年的信息档案。
二,多样性
随着传感器、智能设备以及社交协作技术的飞速发展,组织中的数据也变得更加复杂,因为它不仅包含传统的关系型数据,还包含来自网页、互联网日志文件(包括点击流数据)、搜索索引、社交媒体论坛、电子邮件、文档、主动和被动系统的传感器数据等原始、半结构化和非结构化数据。
四,真实性
1.数据的重要性就在于对决策的支持,数据的规模并不能决定其能否为决策提供帮助,数据的真实性和质量才是获得真知和思路最重要的因素,是制定成功决策最坚实的基础。
2.大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
Ⅱ 大数据的四个基本特征
大数据的四个基本特征如下:
1、数据量大(Volume)
大数据的显而易见的特征就是其庞大的数据规模。随着信息技术的发展,互联网规模的不断扩大,每个人的生活都被记录在了大数据之中,由此数据本身也呈爆发性增长。其中大数据的计量单位也逐渐发展,现如今对大数据的计量已达到EB了。
2、类型多样(Variety)
在数量庞大的互联网用户等因素的影响下,大数据的来源十分广泛,因此大数据的类型也具有多样性。大数据由因果关系的强弱可以分为三种,即结构化数据、非结构化数据、半结构化数据,它们统称为大数据。资料表明,结构化数据在整个大数据中占比较大,高达百分之七十五,但能够产生高价值的大数据却是非结构化数据。
3、价值密度(Value)
大数据所有的价值在大数据的特征中占核心地位,大数据的数据总量与其价值密度的高低关系是成反比的。同时对于任何有价值的信息,都是在处理海量的基础数据后提取的。在大数据蓬勃发展的今天,人们一直探索着如何提高计算机算法处理海量大数据,提取有价值信息的的速度这一难题。
4、高速(Velocity)
大数据的高速特征主要体现在数据数量的迅速增长和处理上。与传统媒体相比,在如今大数据时代,信息的生产和传播方式都发生了巨大改变,在互联网和云计算等方式的作用下,大数据得以迅速生产和传播,此外由于信息的时效性,还要求在处理大数据的过程中要快速响应,无延迟输入、提取数据。
大数据的重要性
(一)大数据是推动数字经济发展的关键生产要素
发展数字经济是实现经济高质量发展、构建现代化经济体系的必由之路。推进经济社会数字化转型实际上就是从工业经济时代向数字经济时代的转变。在这一转变过程中,数据发挥着至关重要的作用。
党的十九届四中全会首次将数据作为生产要素参与收益分配,是一次重大理论创新,标志着数据从技术要素中独立出来成为单独的生产要素。数据在提高生产效率、实现智能生产、提升要素配置效率、激发新动能、培育新业态方面具有巨大应用潜力,成为推动数字经济发展的创新动力源。
(二)大数据是重塑国家竞争优势的重大发展机遇
世界各国都已充分认识到大数据对于国家的战略意义,并早早开始布局。国家间的竞争将从资本、土地、资源的争夺转变为技术、数据、创新的竞争。
我国是数据资源大国,2010年我国数据占全球比例为10%,2013年占比为13%,2020年占比将达20%。大力发展大数据有利于将我国数据资源优势转化为国家竞争优势,实现数据规模、质量和应用水平同步提升,发掘和释放数据资源的潜在价值,有效提升国家竞争力。
Ⅲ 大数据的特征
大数据的四大特征如下:
第一,数据容量大
从TB级别,跃升到PB级别。
第二,数据类型繁多
相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
第三,商业价值高
价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
第四,处理速度快
这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
大数据的作用
1、提供个性服务
很多人觉得大数据好像离我们很远,其实我们在日常所使用的智能设备,就需要大数据的帮助。比如说我们运动时候戴的运动手表或者是运动手环,就可以在我们平时运动的时候,帮助我们采集运动数据及热量消耗情况。进入睡眠时,还可以帮助监控我们的睡眠,从而对这些数据进行分析,对未来阶段进行规划。
2、帮助企业
有了大数据企业就可以更便捷的收集到客户的爱好,从而帮助分析客户的需求。再根据每个客户的需要来提出应对方案,推测客户喜爱什么样的产品,对企业起到很大的帮助,也节省了很多时间和精力。同时大数据可以收集到市场上的各种产品数据,对未来市场走向进行预测,并对企业当前情况进行分析,为接下来的走向提供一个参考依据。
Ⅳ 什么是大数据,大数据的的基本特征是什么
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。 1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处理。 2. 要求快速响应,市场变化快,要求能及时快速的响应变化
大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据 *** 。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
一是数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB(1PB=210TB),而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
二是数据类型繁多(Variety)。这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
三是价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
四是处理速度快(Velocity)。这是大数据区分于传统数据挖掘的最显著特征。
社群营销,是基于圈子、人脉概念而产生的营销模式。通过将有共同兴趣爱好的人聚集在一起,将一个兴趣圈打造成为消费家园。
可以通过大数据预测进行组建社群为企业做宣传搞活动,让社群形成一个宣传途径或者一个小的发布平台,不过性质的社群,依赖于群主对群的组织和维护能力。
作为一名工作两年多的大数据系统研发师,之前在北京老男孩教育学习了四个多月的大数据,总结我学习和工作两年来对大数据的理解,从具体的应用上,也大概可以分为三类。一是决策支持类的二是风险预警类的第三种是实时优化类的从三个维度,我个人对大数据在各行业应用的可能性做了一个定位,但这个定位还是非常定性和粗略的,具体可能还需要对行业有更多的大数据应用的探讨和探索。我也是看书学的,但是效果很慢。
“大数据”是指以多元形式,许多来源搜集而来的庞大数据组,往往具有实时性。
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。
第一,Volume(大量),数据体量巨大。从TB级别,跃升到PB级别。
第二,Variety(多样),数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,Value(价值密度),价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,Velocity(高速),处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
所以通俗来说,大数据就是通过各种不同渠道收集到的大量数据,堆积起来帮助做决策分析的数据组
那么什么是大数据呢技术?大数据的概念是什么呢?本文就为大家详细解读大数据的构成、模型和未来大数据发展方向: 大数据概念: 随着每天互联网上海量数据的产生,数据分析尤其显得重要。所谓大数据技术,就是从各种各样类型的数据中,快速获得有价值信息的能力。 大数据产生的原因: 大数据时代的来临是由数据丰富度决定的。首先是社交网络兴起,互联网上每天大量非结构化数据的出现。另外,物联网的数据量更大,加上移动互联网能更准确、更快地收集用户信息,比如位置、生活信息等数据。从这些数据每天增加的数量来说,目前已进入大数据时代。 大数据书籍推荐: 一、《大数据-正在到来的数据革命.以及它如何改变 *** .商业与我们的生活》 大数据浪潮,汹涌来袭,与互联网的发明一样,这绝不仅仅是信息技术领域的革命,更是在全球范围启动透明 *** 、加速企业创新、引领社会变革的利器。 二、《大数据——大价值、大机遇、大变革(全彩)》 从实证的角度探讨了大数据对社会和商业智能的影响,能否对大数据进行处理、分析与整合将成为提升企业核心竞争力的关键,什么是大数据技术?既是一场大机遇,也将引发一场大变革!
要提一下魔据的数据不错的
大数据(big data),或称海量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
4V特征:Volume(大量)、Velocity(实时)、Variety(多样)、Value(价值)。
大数据已经成为各类大会的重要议题,管理人士们都不愿错过这一新兴趋势。毫无疑问,当未来企业尝试分析现有海量信息以推动业务价值增值时,必定会采用大数据技术。
大数据(BigData)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据 *** 。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。
数据类型繁多(Variety)。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
处理速度快(Velocity)。大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。
-------------------------------------------
社交网络,让我们越来越多地从数据中观察到人类社会的复杂行为模式。社交网络,为大数据提供了信息汇集、分析的第一手资料。从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化自身,就是大数据的价值。
所以,建立在上述的概念上我们可以看到大数据的产业变化:
1大数据飞轮效应所带来的产业融合和新产业驱动
2信息获取方式的完全变化带来的新式信息聚合
3信息推送方式的完全变化带来的新式信息推广
4精准营销
5第三方支付——小微信贷,线上众筹为代表的互联网金融带来的全面互联网金融改革
6产业垂直整合趋势以及随之带来的产业生态重构
7企业改革以及企业内部价值链重塑,扩大的产业外部边界
8 *** 及各级机构开放,透明化,以及随之带来的集中管控和内部机制调整
9数据创新带来的新服务
Ⅳ 大数据的特点是什么
选择答案D,完整的题目D选项是价值密度高。所以选择答案D,因为大数据的数据价值密度不是很高,可以用低来形容。
大数据是无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
(5)大数据的特征是什么意思扩展阅读:
大数据的特征:
1、数据的大小决定所考虑的数据的价值和潜在的信息、数据类型的多样性。
2、指获得数据的速度、妨碍了处理和有效地管理数据的过程。
3、数据的质量、数据量巨大,来源多渠道。
4、合理运用大数据,以低成本创造高价值。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
参考资料来源:网络-大数据
Ⅵ 大数据的特征
大数据(英语:Big data),或称巨量数据、海量数据,指的是所涉及的数据量规模巨大到无法通过目前主流软件工具,在合理时间内达到截取、管理、处理、并整理成为帮助企业经营决策更积极目的的信息
大数据一共具有四个特征:
(1)数据量大(Volume): 大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
(2)类型繁多(Variety): 包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
(3)价值密度低(Value): 随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值"提纯",是大数据时代亟待解决的难题。
(4)速度快、时效高(Velocity): 这是大数据区分于传统数据挖掘最显著的特征。既有的技术架构和路线,已经无法高效处理如此海量的数据,而对于相关组织来说,如果投入巨大采集的信息无法通过及时处理反馈有效信息,那将是得不偿失的。可以说,大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力
大数据时代特点是数据无处不在,我们身边处处都有大数据。
Ⅶ 什么是大数据大数据有哪些特征
大数据所包含特征,具体如下:
第一个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
第二个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
第三个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。
大数据的作用及其用途
大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
“大数据”的影响,增加了对信息管理专家的需求。事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。
1、变革价值的力量
2、变革经济的力量,生产者是有价值的,消费者是价值的意义所在。有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。这就是启动内需的原理。
3、变革组织的力量,随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。