1. 什么是大数据,大数据时代有哪些趋势
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
2. 大数据时代下的数据分析行业发展前景
【导读】报告随着云时代的来临,大数据也吸引了越来越多的关注。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。那么,今天小编将为大家分享一下,大数据行业的用途分析。
大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域。目前人们谈论最多的是大数据技术和大数据应用。工程和科学问题尚未被重视。大数据工程指大数据的规划建设运营管理的系统工程;大数据科学关注大数据网络发展和运营过程中发现和验证大数据的规律及其与自然和社会活动之间的关系。
物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
有些例子包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务。
以上就是小编今天给大家整理发送的关于“大数据时代下的数据分析行业发展前景”的相关内容,希望对大家有所帮助。那我们如何入门学习大数据呢,如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
3. 什么是大数据时代
大数据时代是数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。
“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在,却因为来自互联网和信息行业的发展而引起人们关注。
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数大数据时代来临据,并命名与之相关的技术发展与创新。
大数据时代已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
(3)大数据时代数据资讯行业扩展阅读:
大数据时代特征:
1、数据量大(Volume)
第一个特征是数据量大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
2、类型繁多(Variety)
第二个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
3、价值密度低(Value)
第三个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
4、速度快、时效高(Velocity)
第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。
4. 大数据时代是一个怎样的时代
大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
所以大数据时代就是信息爆炸的时代,网络的广泛使用,人们的行为像淘宝、购物、旅游等等,都会产生许多的数据,并且这些数据都会被记录和分析。数据正在不断地膨胀变大,这些数据对企业生产、推销等有很重要的作用,能帮助企业抓住着重点以及引流产品,能帮助企业在爆炸的数据中找到商机,为企业带来无限机遇。
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用g或t来衡量。大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张dvd;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量)。
5. 大数据时代下新生了哪些新的职业例如,数据分析师还有数据挖掘,还有数据分析工程师,还有呢说说,谢
偏业务的可以称之为运营分析师,偏管理的可以称之为数据决策分析师,偏版金融的可以称之为注册项目数据权分析师,工作方向为维护数据可以称之为数据库管理员,数据库工程师,工作方向为挖掘方向的称之为数据挖掘师等等,数据分析师在 业务、数据维护、数据挖掘、数据获取等方向都有涉及,因行业和发展方向的不同,就衍伸出很多职称,他们统称为数据分析师
6. 大数据时代来袭企业宜加紧布局
大数据时代来袭企业宜加紧布局
“大数据”,这一新兴概念,正在被赋予极其丰富的内涵,并被寄予特别巨大的希望……大数据时代,我们该如何寻找对策,迎接挑战?得大数据者得天下,是一些推崇大数据时代的变革者坚信不疑的判断。很多专家认为,在大数据时代,谁能有效地垄断数据,谁就有可能成为世界霸主。
大数据及其分析,将会在未来10年改变几乎每一个行业的业务功能。根据麦肯锡预测,如果具备相关的IT设施、数据库投资和分析能力等条件,大数据将在未来10年,使美国医疗市场获得每年3000亿美元的新价值。
人类正在迈入大数据时代
关于“大数据(BigD ata)”,麦肯锡全球研究所在报告《大数据:创新、竞争和生产力的下一个前沿》中定义:大数据,是指大小超出了传统数据库软件工具的抓取、存储、管理和分析能力的数据群。也有专家认为,大数据的“大”是指大型数据集,即数据量一般在10T B规模左右;多个用户把多个数据集放在一起,形成PB级的数据量;同时,这些数据又来自多种数据源,并以实时、迭代的方式来实现,即“大数据=海量数据+复杂类型的数据”。
我们正处在一个数据爆发增长的时代。移动互联网、移动终端和数据感应器的出现,使数据以超出人们想象的速度在快速增长。据国际数据资讯公司(G lobalPulse)估测,数据数量一直在快速增加,每年增长50%,这个速度不仅是指数据流的增长,而且还包括全新的数据种类的增多。
有研究统计,从人类文明开始到2003年,人类共创造了5T B(兆亿字节)的信息。而现在,这样的数据量却仅需两天就能够被创造出来,且速度仍在加快。由此可见,我们的确已经迈入了大数据时代。
世界各国加紧大数据布局
世界上许多国家都已经认识到了大数据所蕴含的重要战略意义,纷纷开始在国家层面进行战略部署,以迎接大数据技术革命,正在带来的新机遇和新挑战。
“大数据资源”成为重要战略资源
互联网时代,“资源”的含义正在发生极大的变化,它已不再仅仅只是指煤、石油、矿产等一些看得见、摸得着的实体“大数据”,也正在演变成不可或缺的战略资源。互联网、物联网每天都在产生大量的数据,这些庞大的数据资源,为人们依据数据了解世界、了解市场、了解人们的生活提供了可能。大数据已经被视为一种资产、一种财富、一种可以被衡量和计算的价值。得大数据者得天下,是一些推崇大数据时代的变革者所坚信不疑的判断。
“大数据安全”上升为国家安全
传统意义上的国家安全,是指军队对国家领土安全的保护,是国家之间军事实力的较量。但在互联网高度发达的大数据时代,网络变成了几乎是透明的虚拟世界,也因此使国家安全的环境和内涵发生了极大的变化,对大数据的安全保存、防丢失和防破坏等问题,成为我们必须要面对的安全难题。大数据安全,已经上升成为国家安全的重要组成部分。
在大数据时代,数据安全的威胁随时都有可能发生。各种国家信息基础设施和重要机构所承载着的庞大数据信息,如由信息网络系统所控制的石油和天然气管道、水、电力、交通、银行、金融、商业和军事等,都有可能成为被攻击的目标。
此外,大数据也为网络恐怖分子提供了新的资源支持,有可能使恐怖分子通过网络侵入到人们工作生活的方方面面,并通过威胁、攻击、破坏,瘫痪民用或军事基础设施等手段,达到其制造心理恐慌和财产损失,威胁国家安全和社会安全的目的。
“大数据决策”成为一种新决策方式
依据大数据进行决策,从数据中获取价值,让数据主导决策,是一种前所未有的决策方式,并正在推动着人类信息管理准则的重新定位。随着大数据分析和预测性分析对管理决策影响力的逐渐加大,依靠直觉做决定的状况将会被彻底改变。
2009年爆发的甲型H 1N 1流感病毒,谷歌公司就是通过观察人们在网上搜索的大量记录,在流感爆发的几周前,就判断出流感是从哪里传播出来的,从而使公共卫生机构的官员获得了极有价值的数据信息,并做出有针对性的行动决策,而这比疾控中心的判断,提前了一两周。美国的Farecast系统,它的一个功能就是飞机票价预测,它通过从旅游网站获得的大量数据,分析41天之内的12000个价格样本,分析所有特定航线机票的销售价格,并预测出当前机票价格在未来一段时间内的涨降走势,从而帮助虚拟乘客选择最佳的购票时机,并降低可观的购票成本。
“大数据应用”促进信息技术与各行业深度融合
有专家指出,大数据及其分析,将会在未来10年改变几乎每一个行业的业务功能。从科学研究到医疗保险,从银行业到互联网,各个不同的领域都在遭遇爆发式增长的数据量。在美国的17个行业中,已经有15个行业大公司拥有大量的数据,其平均拥有的数据量已经远远超过了美国国会图书馆所拥有的数据量。
在医疗与健康行业,根据麦肯锡预测,如果具备相关的IT设施、数据库投资和分析能力等条件,大数据将在未来10年,使美国医疗市场获得每年3000亿美元的新价值,并削减2/3的全国医疗开支。
在制造业领域,制造企业为管理产品生命周期将采用IT系统,包括电脑辅助设计、工程、制造、产品开发管理工具和数字制造,制造商可以建立一个产品生命周期管理平台PLM (Proct Lifecycle M an-agem ent),从而将多种系统的数据集整合在一起,共同创造出新的产品。
此外,在交通、能源、材料、商业和服务等行业领域,甚至在新闻传媒领域,也都在以大数据为发展契机,加速这些行业与信息技术的深度融合。
“大数据开发”推动新技术和新应用不断涌现
大数据的应用需求,是大数据新技术开发的源泉。在不久的将来,也许很多原来单纯依靠人类自身判断力的领域应用,最终都将被计算机系统的数据分析和数据挖掘功能,所普遍改变甚至取代。一小片合适的信息,也许会促使创新迈进一大步;一组数据,也可能会得到数据收集人难以想象的应用,甚至可能在另一个看起来毫不相关的领域得到应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
7. 大数据可以应用在哪些行业
大数据基础知识有三个主要部分,分别是数学、统计学和计算机,同时辅助社会学、经济学、医学等学科。
可以到这边看看
8. “大数据时代”的数据挖掘
“大数据时代”的数据挖掘
大数据是什么?有何神奇之处?
大数据是指一切都数据化了,我们平常上网浏览的数据,我们的医疗、交通、购物数据,统统都被记录下来,这就是大数据的起源。在这个时候,我们每个人都成了一个数据产生者,数据贡献者。大数据的神奇之处在哪里?从某种意义上来讲,你们可能只是安装了一个游戏并允许它提取你的GPS位置,但这就把你是不是一个同性恋,是不是一个高消费者,之类的信息暴露给了研究机构。通过大数据的分析,我们甚至能够在很大层次上精确地知道你是谁。
您之前也提到了大数据时代已经到来,所以企业、商家对数据的挖掘也在深化。那么什么样程度的数据挖掘才不算是过度挖掘呢?
其实没有什么办法能够防止数据的过度挖掘。任何一个企业都需要挖掘到更多的内容。我们能做的,只是通过政府和行业的监管,使得但凡侵犯用户隐私,并且给用户造成恶意伤害的企业,受到很严重的惩罚。要求一个用户,用自己的方法去保护自己的隐私,是不现实也是不公平的。
您现在另一个身份是百分点科技的首席科学家,那能不能谈谈百分点网是怎样挖掘数据的呢?
百分点科技把用户在电子商务网站上的浏览、购买、收藏数据,以及在资讯网站上的浏览数据聚合在一起。分析用户自身的喜好,预测用户的意图,再利用这些喜好和意图,对用户进行更精准的资讯或者购物的推荐。
很多人现在听到数据挖掘就觉得很害怕,怕自己的隐私会泄露出去,那么有没有方法可以防止自己的个人数据被人挖掘呢?
就像我们没有办法利用自己的能力去鉴别假食品、假商品一样,我们不需要要求用户去保护自己的隐私。因为这种东西实际上是无能为力的。比如说你带着你的手机,我们通过传感器就能知道你在哪里。你没办法回避这个事实。所以,这就要回到刚才的那个回答,我们只能够通过去惩罚那些恶意使用个人隐私数据,谋取不正当利益的公司,来回避这个问题。
什么样的方式属于恶意使用个人隐私呢?能否举例说明?
销售一个人的手机号码、一个人的家庭地址,或者在网上通过一些不正当的公开数据使得一个人的隐私——比如你上了什么网站、买了什么东西、上了什么交友网站、看过什么图片等等,被其他人得知。这些都属于不正当的使用。
那么是否有一些切实可行的方法可以避免自己的隐私被恶意使用呢?
表面上用户在上网的时候不停地清除cookie,可以避免自己的隐私泄露,但实际上很多后台的软件还是可以获取你上网的记录。尤其是一些防病毒的软件,它本质上既可以在某种意义上保护你的隐私,也拿到你更全面的隐私数据。从技术层面上来讲,用户保护自己的隐私还是很困难的,并且用户体验很差——我们的注意力要从提高用户水平转移到严厉要求企业上面。
现在智能手机普及,很多人手机里有黑名单,可以把推销的短信、电话都加进去防止骚扰,这算不算是一种隐私保护呢?
如果你觉得一个电话是恶意的,那只能说明它的定位不太精准。我估计可能只是你(的电话)出现在某个名单中,而对方的客服挨个儿地打电话。但它的确会对你的生活产生一些干扰。我们现在没有什么办法可以完全防止这些干扰,虽然也可以通过很多手段去除掉一些垃圾短信。
9. 大数据是一个什么行业
问题一:什么是大数据产业 大数据概念包含几个方面的内涵吧
1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处理。
2. 要求快速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。
3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据。
4. 价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。
很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。
随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。
大数据产业包括新兴的数据分析行业,或者厂商。
如果需要分析大数据,则可以Hadoop等开源大数据项目,或国内Yonghong Z-Suite等商业大数据BI工具。
问题二:大数据 哪些行业 很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。
随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。
如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等商业大数据BI工具。
不同行业的数据有不同的自身特点,还需要结合自身的行业知识才能把大数据转换为价值。
问题三:国内大数据公司有哪些? 大数据包涵很广泛,涉及到很多方方面面,技术难度也很大,国内能做的公司不太多,我知道的有网络、华为、联想、浪潮、电科华云、腾讯、阿里巴巴、中科曙光等。
问题四:大数据属于什么专业? 应该归于计算机(软件)方面的专业吧
问题五:目前大数据在哪些行业有案例或者说应用? 1、体育行业预测
世界杯期间,谷歌、网络、微软和高盛等公司都推出了比赛结果预测平台。其中,网络在小组赛阶段的表现最为亮眼,而进入淘汰赛阶段,网络与微软则以16场比赛15场准确预测的成
绩让人们见识到大数据在预测领域的魅力。从互联网公司的经验来看,只要有体育赛事相关的历史数据,并且与指数公司进行多方合作,就可以在赛事预测领域取得不错的成绩。
2、经济、金融行业预测
2013年,英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以把脉金融市场的走向,相应的投资战略收益高达326%。而此前,也有专家尝试
通过Twitter博文情绪来预测股市波动。从预测的原理上来看,稳定发展的美国股市是比较适合大数据预测发挥其作用的。
对国内而言,网络推出的中小企业景气指数预测,应用网络海量的搜索数据来刻画我国中小企业运行发展的景气状态,以期能够及时、有效地反映中小企业运行状况,提高经济监测的
全面性和及时性。目前该功能已经上线投入应用。
3、市场物价预测
CPI表征已经发生的物价浮动情况,但统计局数据并不权威。但大数据则可能帮助人们了解未来物价走向,提前预知通货膨胀或经济危机。单个商品的价格预测更加容易,尤其是机票
这样的标准化产品,去哪儿提供的“机票日历”就是价格预测,可以告知你几个月后机票的大概价位。商品的生产、渠道成本和大概毛利在充分竞争的市场中是相对稳定的,与价格相
关的变量相对固定,商品的供需关系在电子商务平台可实时监控,因此价格可以预测,基于预测结果可提供购买时间建议,或者指导商家进行动态价格调整和营销活动以利益最大化。
后面还有用户行为预测、个人健康预测、交通行为预测等领域都有涉及,你可以自己好好看看,希望对你有帮助。ruanyun/news/ryyc/n152.aspx
问题六:大数据能做什么 如果说砍树是一个职业,那你手中的斧头就是大数据。大数据是一种覆盖政商等领域的超大型平台,你可以用大数据来瞄准你所关心领域的长短点并很快很准地得出预判,升华概念,你能通过数据预测未来,行业的未来你能掌握了,就能赚钱。
问题七:大数据是一个什么时代 10分 大数据时代,应指当前我们所处的以大数据等技术为潮流的技术时代。
大数据包含几个方面的内涵:
1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处理。
2. 要求快速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。
3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据。
4.
价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。
很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。
随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。
如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等商业大数据BI工具。
不同行业的数据有不同的自身特点,还需要结合自身的行业知识才能把大数据转换为价值。
问题八:国内比较好的大数据 公司有哪些 你好,说的是什么领域?数据挖掘、数据研发、数据应用方面都有佼佼者。像商业智能领域的话,国内我比较了解的帆软,一开始做报表软件,做得很好,有比较深的行业基础,后来出的FineBI商业智能软件也延续了FineReport的精华,在行业内比较有代表性,具体的,有官网,可以去了解一下。
问题九:什么是大数据时代 世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从 *** 到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?
一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3、大数据应用,是 指对特定的大数据 *** ,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据 *** 和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二:大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。
三:大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新......>>
问题十:大数据指的是什么?有哪些跟大数据相关的工作 大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。