导航:首页 > 网络数据 > 与大数据相关的产品

与大数据相关的产品

发布时间:2023-03-11 16:42:05

❶ 国内真正的大数据分析产品有哪些

大数据产品是有很多的,例如微信的大数据平台,DD打车的平台。

基于专数据挖掘技术的舆情监属测系统为另外一个十分重要的产品。

很多政府,企业会采用。它的作用,简单来说,就是发现负面信息,收集情报,有价值信息。

实施后好处:
1. 可实时监测微博,论坛,博客,新闻,搜索引擎中相关信息
2. 可对重点QQ群的聊天内容进行监测
3. 可对重点首页进行定时截屏监测及特别页面证据保存
4. 对于新闻页面可以找出其所有转载页面
5. 系统可自动对信息进行分类
6. 系统可追踪某个专题或某个作者的所有相关信息
7. 监测人员可对信息进行挑选,再分类
8. 监测人员可以基于自己的工作结果轻松导出制作含有图表的舆情日报周报

❷ 大数据产品有哪些

大数据产品有哪些我觉得大数据产品就是一些推荐,比如说你最近想买空调,只要你一搜索空调的话,那么后台就会在这几天一直给你发空调的一些推荐。

❸ 大数据分析工具有哪些

大数据分析工具有:

1、Hadoop:它是最流行的数据仓库,可以轻松存储大量数据。

2、MongoDB:它是领先的数据库软件,可以快速有效地分析数据。

3、Spark: 最可靠的实时数据处理软件,可以有效地实时处理大量数据。

4、Cassandra:最强大的数据库,可以完美地处理数据块

5、Python:一流的编程语言,可轻松执行几乎所有大数据分析操作。

不同类型的大数据分析是:

1、描述性分析:它将过去的数据汇总成人们易于阅读和理解的形式。使用此分析创建与公司收入、销售额、利润等相关的报告非常容易。除此之外,它在社交媒体指标方面也非常有益。

2、诊断分析:它首先处理确定发生问题的原因。它使用了各种技术,例如数据挖掘、机器学习等。诊断分析提供对特定问题的深入洞察。

3、预测分析:这种分析用于对未来进行预测。它通过使用数据挖掘、机器学习、数据分析等各种大数据技术来使用历史数据和当前数据。这些分析产生的数据用于不同行业的不同目的。

4、规范分析:当想要针对特定问题制定规定的解决方案时,会使用这些分析。它适用于描述性和预测性分析,以获得最准确的结果。除此之外,它还使用人工智能和机器学习来获得最佳结果。

❹ 大数据分析软件有哪些

hadoop作为一款开源分布式集群常常被用于大数据分析后台数据存储,但是并不能单独作为分析工回具答。国内永洪科技bi工具Yonghong
Z-Suite
可以看作是大数据分析软件,包含专业数据集市Yonghong
Z-Data
Mart
,是他们基于自己技术研发的,类似于hadoop
,然而查询和计算速度更快,适合用于大数据实时分析。

❺ 常见的大数据分析工具有哪些

大数据分析的前瞻性使得很多公司以及企业都开始使用大数据分析对公司的决策做出帮助,而大数据分析是去分析海量的数据,所以就不得不借助一些工具去分析大数据,。一般来说,数据分析工作中都是有很多层次的,这些层次分别是数据存储层、数据报表层、数据分析层、数据展现层。对于不同的层次是有不同的工具进行工作的。下面小编就对大数据分析工具给大家好好介绍一下。
首先我们从数据存储来讲数据分析的工具。我们在分析数据的时候首先需要存储数据,数据的存储是一个非常重要的事情,如果懂得数据库技术,并且能够操作好数据库技术,这就能够提高数据分析的效率。而数据存储的工具主要是以下的工具。
1、MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
2、SQL Server的最新版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
3、DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
接着说数据报表层。一般来说,当企业存储了数据后,首先要解决报表的问题。解决报表的问题才能够正确的分析好数据库。关于数据报表所用到的数据分析工具就是以下的工具。
1、Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。
2、Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为很多人经常用它来从数据库中进行报表和可视化分析。
第三说的是数据分析层。这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
1、Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
2、SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
最后说表现层的软件。一般来说表现层的软件都是很实用的工具。表现层的软件就是下面提到的内容。
1、PowerPoint软件:大部分人都是用PPT写报告。
2、Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
3、Swiff Chart软件:制作图表的软件,生成的是Flash

❻ 5个常用的大数据可视化分析工具

1.Tableau


Tableau 帮助人们快速分析、可视化并分享信息。它的程序很容易上手,各公司可以用它将大量数据拖放到数字“画布”上,转眼间就能创建好各种图表。数以万计的用户使用 Tableau Public 在博客与网站中分享数据。


2.ECharts


Echarts可以运用于散点图、折线图、柱状图等这些常用的图表的制作。Echarts的优点在于,文件体积比较小,打包的方式灵活,可以自由选择你需要的图表和组件。而且图表在移动端有良好的自适应效果,还有专为移动端打造的交互体验。


3.Highcharts


Highcharts的图表类型是很丰富的,线图、柱形图、饼图、散点图、仪表图、雷达图、热力图、混合图等类型的图表都可以制作,也可以制作实时更新的曲线图。


另外,Highcharts是对非商用免费的,对于个人网站,学校网站和非盈利机构,可以不经过授权直接使用 Highcharts 系列软件。Highcharts还有一个好处在于,它完全基于 HTML5 技术,不需要安装任何插件,也不需要配置 PHP、Java 等运行环境,只需要两个 JS 文件即可使用。


4.魔镜


魔镜是中国最流行的大数据可视化分析挖掘平台,帮助企业处理海量数据价值,让人人都能做数据分析。


魔镜基础企业版适用于中小企业内部使用,基础功能免费,可代替报表工具和传统BI,使用更简单化,可视化效果更绚丽易读。


5.图表秀


图表秀的操作简单易懂, 而且站内包含多种图表,涉及各行各业的报表数据都可以用图表秀实现, 支持自由编辑和Excel、csv等表格一键导入,同时可以实现多个图表之间联动, 使数据在我们的软件辅助下变的更加生动直观,是目前国内先进的图表制作工具。


关于5个常用的大数据可视化分析工具,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❼ 大数据分析工具都有哪些

大数据分析工具好用的有以下几个,分别是Excel、BI工具、Python、Smartbi、Bokeh、Storm、Plotly等。

1、Excel

Excel可以称得上是最全能的数据分析工具之一,包括表格制作、数据透视表、VBA等等功能,保证人们能够按照需求进行分析。

2、BI工具

BI也就是商业智能,BI工具的产品设计,几乎是按照数据分析的流程来设计的。先是数据处理、整理清洗,再到数据建模,最后数据可视化,全程围绕数据指导运营决策的思想。由于功能聚焦,产品操作起来也非常简洁,依靠拖拉拽就能完成大部分的需求,没有编程基础的业务人员也能很快上手。

3、Python

python在数据分析领域,确实称得上是一个强大的语言工具。尽管入门的学习难度要高于Excel和BI,但是作为数据科学家的必备工具,从职业高度上讲,它肯定是高于Excel、BI工具的。尤其是在统计分析和预测分析等方面,Python等编程语言更有着其他工具无可比拟的优势。

4、思迈特软件Smartbi

融合传统BI、自助BI、智能BI,满足BI定义所有阶段的需求;提供数据连接、数据准备、数据分析、数据应用等全流程功能;提供复杂报表、数据可视化、自助探索分析、机器学习建模、预测分析、自然语言分析等全场景需求;满足数据角色、分析角色、管理角色等所有用户的需求。

5、Bokeh

这套可视化框架的主要目标在于提供精致且简洁的图形处理结果,用以强化大规模数据流的交互能力。其专门供Python语言使用。

6、Storm

Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。

7、 Plotly

这是一款数据可视化工具,可兼容JavaScript、MATLAB、Python以及R等语言。Plotly甚至能够帮助不具备代码编写技能或者时间的用户完成动态可视化处理。这款工具常由新一代数据科学家使用,因为其属于一款业务开发平台且能够快速完成大规模数据的理解与分析。

❽ 国内真正的大数据分析产品有哪些

国内的大数据公司还是做前端可视化展现的偏多,BAT算是真正做了大数据的,行业有硬性需求,别的行业跟不上也没办法,需求决定市场。
说说更通用的数据分析吧。
大数据分析也属于数据分析的一块,在实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层——数据报表层——数据分析层——数据展现层
第二维度:用户级——部门级——企业级——BI级

1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。

Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。

SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。

DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台。

BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现!BI级别的数据仓库结合BI产品也是近几年的大趋势。

2、报表层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。传统报表解决的是展现问题,目前国内的帆软报表FineReport已经算在业内做到顶尖,是带着数据分析思想的报表,因其优异的接口开放功能、填报、表单功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。

Tableau、FineBI之类,可分在报表层也可分为数据展现层。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,我常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份——商业智能,所以在大数据处理方面的能力更胜一筹。

3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完成大部分SPSS统计分析功能

4、表现层
表现层也叫数据可视化,以上每种工具都几乎提供了一点展现功能。FineBI和Tableau的可视化功能上文有提过。其实,近年来Excel的可视化越来越棒,配上一些插件,使用感更佳。
PPT:办公常用,用来写数据分析报告;
Xmind&网络脑图:梳理流程,帮助思考分析,展现数据分析的层次;
Xcelsius软件:Dashboard制作和数据可视化报表工具,可以直接读取数据库,在Excel里建模,互联网展现,最大特色还是可以在PPT中实现动态报表

❾ 大数据产品有哪些

问题一:目前大数据产品有哪些? 大数据产品的分类在狭义的范畴里,从使用用户来看,可以是企业内部用户,外部企业客户,外部个人客户等。从产品发展形态来看,从最初的报表型(如静态报表、DashBoard、即席查询),到多维分析型(OLAP等工具型数据产品),到定制服务型数据产品,再到智能型数据产品等。
普通报表型数据产品过于苍白、可视化能力有限,而多维分析型数据产品更适合于专业的数据分析师而不是业务或运营人员,使用局限性也越来越大,所为未来的趋势可能是定制服务式和智能式的数据产品。举个例子,像企业级的大数据产品商业智能正是此趋势下的衍生品,发展数年,像国外的SAP,IBM,Oracle厂商,国内的FineBI等都是代表。

问题二:国内真正的大数据分析产品有哪些 大数据产品是有很多的,例如微信的大数据平台,DD打车的平台。
基于数据挖掘技术的舆情监测系统为另外一个十分重要的产品。
很多 *** ,企业会采用。它的作用,简单来说,就是发现负面信息,收集情报,有价值信息。
实施后好处: 1. 可实时监测微博,论坛,博客,新闻,搜索引擎中相关信息2. 可对重点QQ群的聊天内容进行监测3. 可对重点首页进行定时截屏监测及特别页面证据保存4. 对于新闻页面可以找出其所有转载页面5. 系统可自动对信息进行分类6. 系统可追踪某个专题或某个作者的所有相关信息 7. 监测人员可对信息进行挑选,再分类8. 监测人员可以基于自己的工作结果轻松导出制作含有图表的舆情日报周报

问题三:国内真正的大数据分析产品有哪些 国内的大数据公司还是做前端可视化展现的偏多,BAT算是真正做了大数据的,行业有硬性需求,别的行业跟不上也没办法,需求决定市场。
说说更通用的数据分析吧。
大数据分析也属于数据分析的一块,在实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层――数据报表层――数据分析层――数据展现层
第二维度:用户级――部门级――企业级――BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力。
SQL Server2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了。
DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台。
BI级别,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现!BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。传统报表解决的是展现问题,目前国内的帆软报表FineReport已经算在业内做到顶尖,是带着数据分析思想的报表,因其优异的接口开放功能、填报、表单功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、FineBI之类,可分在报表层也可分为数据展现层。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,我常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份――商业智能,所以在大数据处理方面的能力更胜一筹。
3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完......>>

问题四:国内真正的大数据分析产品有哪些 目前,大数据分析工具在金融服务、零售、医疗卫生/生命科学、执法、电信、能源与公共事业、数字媒体/精准营销、交通运输等行业都有着广泛的应用。

问题五:目前大数据在哪些行业有案例或者说应用? 1、体育行业预测
世界杯期间,谷歌、网络、微软和高盛等公司都推出了比赛结果预测平台。其中,网络在小组赛阶段的表现最为亮眼,而进入淘汰赛阶段,网络与微软则以16场比赛15场准确预测的成
绩让人们见识到大数据在预测领域的魅力。从互联网公司的经验来看,只要有体育赛事相关的历史数据,并且与指数公司进行多方合作,就可以在赛事预测领域取得不错的成绩。
2、经济、金融行业预测
2013年,英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以把脉金融市场的走向,相应的投资战略收益高达326%。而此前,也有专家尝试
通过Twitter博文情绪来预测股市波动。从预测的原理上来看,稳定发展的美国股市是比较适合大数据预测发挥其作用的。
对国内而言,网络推出的中小企业景气指数预测,应用网络海量的搜索数据来刻画我国中小企业运行发展的景气状态,以期能够及时、有效地反映中小企业运行状况,提高经济监测的
全面性和及时性。目前该功能已经上线投入应用。
3、市场物价预测
CPI表征已经发生的物价浮动情况,但统计局数据并不权威。但大数据则可能帮助人们了解未来物价走向,提前预知通货膨胀或经济危机。单个商品的价格预测更加容易,尤其是机票
这样的标准化产品,去哪儿提供的“机票日历”就是价格预测,可以告知你几个月后机票的大概价位。商品的生产、渠道成本和大概毛利在充分竞争的市场中是相对稳定的,与价格相
关的变量相对固定,商品的供需关系在电子商务平台可实时监控,因此价格可以预测,基于预测结果可提供购买时间建议,或者指导商家进行动态价格调整和营销活动以利益最大化。
后面还有用户行为预测、个人健康预测、交通行为预测等领域都有涉及,你可以自己好好看看,希望对你有帮助。ruanyun/news/ryyc/n152.aspx

问题六:国内大数据公司有哪些? 大数据包涵很广泛,涉及到很多方方面面,技术难度也很大,国内能做的公司不太多,我知道的有网络、华为、联想、浪潮、电科华云、腾讯、阿里巴巴、中科曙光等。

问题七:国内比较好的大数据 公司有哪些 你好,说的是什么领域?数据挖掘、数据研发、数据应用方面都有佼佼者。像商业智能领域的话,国内我比较了解的帆软,一开始做报表软件,做得很好,有比较深的行业基础,后来出的FineBI商业智能软件也延续了FineReport的精华,在行业内比较有代表性,具体的,有官网,可以去了解一下。

问题八:大数据产品主要是用来做什么的 大数据产品有很多,宽泛来讲,大数据产品的作用是对已有数据源中的数据进行收集和存储,在这基础上,进行分析和应用,形成我们的产品和服务,而产品和服务也会产生新的数据,这些新数据会循环进入我们的流程中。当这整个循环体系成为一个智能化的体系,通过机器实现自动化就是一种新的模式,不管是商业的,或者是其他。
而大数据能够实现的应用,可以概括为两个方向,一是精准化定制,二是预测。
精准化定制可以是一些个性化的产品,精准营销,比如互联网推广。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。可分为决策支持类的,比如典型的商业智能产品FineBI;风险预警类的,主要用于证券、银行、投资;实时优化类的,比如实时定价。

问题九:国内真正的大数据采集产品有哪些 大数据的应用分为两类
第一类:基于自身平台的数据采集,现在的三大互联网巨头等拥有大量用户数据,通过自身数据挖掘可以完成。
第二类:基于爬虫或者类爬虫技术,帮助企业, *** 采集网络 *** 息,也就是网络信息采集系统,乐趣的“乐”,思维的“思”
其主要应用在于:舆情监测,品牌监测,价格监测,门户网站新闻采集,行业资讯采集,竞争情报获取,商业数据整合,市场研究,数据库营销等领域。

问题十:大数据分析领域有哪些分析模型 IT监控类或者IT运维流程类的产品工具上线运行一段时间之后,一年会产生十几万、甚至几十万的海量数据,包括告警数据、工单数据等IT运维大数据,需要从这些海量数据中获取更有效、更直接、更有价值的分析数据,更快速、有效的提取有意义的决策依据同样需要工具系统来满足运维大数据的IT数据挖掘、IT数据钻取需求。 RIIL Insight目前是国内首款定位于IT管理领域的大数据决策分析系统产品,通过建立多维数据分析模型进行信息提取、统计分析并提出决策依据,是IT运维管理领域的BI。系统通过IT运营管理、IT部门绩效管理、可视化项目管理、资产管理、业务关系管理、供应商软件管理等自定义维度的运行数据进行分析,可快速获取运维管理各方面的直观准确数据,诊断分析问题根源,预判数据走势,洞察全局运维动态。

阅读全文

与与大数据相关的产品相关的资料

热点内容
apache访问需要密码 浏览:473
网站怎么查房子已经出售了 浏览:80
ios密码解锁 浏览:927
顺丰app里面哪里缴费 浏览:176
高数如何提高编程 浏览:971
dnf90版本红眼改动 浏览:461
win10flash蓝屏 浏览:811
文件管理软件怎么用手机登录 浏览:883
苹果手机拉文件怎么进去 浏览:456
android创建excel文件 浏览:401
抖音下载过app在哪里找到 浏览:880
网站头文件 浏览:757
战术小队找不到文件 浏览:115
国产电脑字体库在哪个文件夹 浏览:322
AQQ网络语是什么意思 浏览:715
苹果版本虎虎直播下载 浏览:348
电脑日期和时间找不到文件 浏览:204
360手机自动同步文件夹 浏览:12
找不到c盘某某文件弹窗 浏览:256
苹果手机文件存储icloud 浏览:503

友情链接