『壹』 在现代互联网时代,隐私泄露已成为常态,你怎么看待大数据下的隐私透明呢
随着互联网技术的不断发展,大数据的应用也越来越灵活,个人信息也逐渐透明化。并且现在随着互联网时代的不断渗透,人们的工作以及生活都与互联网产生了密切的联系,很多用户的个人数据也保存在网络当中。然而这些数据都是个人隐私非常重要的一部分,不仅关系到人身安全,还关系到个人的财产信息。
信息泄露往往会引发公众们的惶恐,而这也会成为大数据发展的重要阻力,因此保护隐私问题势在必行。只有将隐私问题完美的解决,才能够极高公众的隐私保护意识以及解决网络安全问题。在日常生活中公众需要做的就是需要减少自己的隐私泄露,比如在发朋友圈的时候尽量不使用定位功能,在使用相机的时候也不要打开定位系统,更不要为了自己一些小的利益而出卖自己的隐私。
『贰』 现代大数据技术存在什么弊端
1、现如今,大数据技术存在最大的两个弊端就是隐私和限制。
2、大数据技术的利也建立在两个弊端之中,大数据技术的利大多时候体现出“便利”这两个字,而“便利”的前提就需要贡献我们的数据;而很多时候看似大数据非常方便,但它也有诸多的限制,比如你搜索了什么类型的词条各类应用接收到这一数据后也只会推送与这个词条相关的东西,就局限在了这一个范围内。
3、比起限制,很多人更担心隐私这一问题。现代人的消遣方式更多的是使用电子设备连接网络来娱乐,比如看剧、看小说、玩游戏、逛某宝、刷某音等等,无论是前面哪一种,我们使用过这些应用的数据都会被接收到后台,从而通过计算又给我们推荐相关的我们可能感兴趣的东西。
『叁』 制约大数据发展的三大因素
1. 优质可用数据缺乏
在具体的领域或行业内,我国普遍未形成成型的数据采集、加工、分析和应用链条,大量数据源未被激活,大多数数据拥有者没有数据价值外化的路径。比如,各医疗健康类应用收集了大量的数据,但没有像Sermo.com那样面向医药公司售卖数据。与国外相比我国的政府、公共服务、农业应用基本缺位,电信和银行业更缺少与外部数据的碰撞。
2.技术与业务的鸿沟
大数据行业发展至今,技术与业务之间依然存在巨大着鸿沟。首先,就是数据分析技术本身。数据源企业为实现数据价值变现,尝试多种方法,甚至自己组建数据分析团队,可是数据分析是个技术活,1%的误差都会极大地影响市场份额,术业有专攻,数据变现还是需要专业的数据分析人才来实现。
3.人才难觅
我们国家大数据发展最大的优势就是市场大,最大的劣势恰巧就是缺乏相应人才,人才缺乏的程度非常严重。首先在国际市场方面,我们要跟国外公司争人才,然而国外大数据行业同样十分火热。而不论在国内还是国外,跟企业竞争人才都是一项艰巨的事业,比如在世界上最好的大学之一的美国普林斯顿大学,想找数学家也是非常困难,人才很容易被大公司挖走,每年都有非常好的数据分析人才被企业挖走。所以人才难觅不只是口头说说,更是一个亟待解决的问题。
关于制约大数据发展的三大因素,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于制约大数据发展的三大因素的相关内容,更多信息可以关注环球青藤分享更多干货
『肆』 盘点困扰企业关于大数据的五个误解
盘点困扰企业关于大数据的五个误解
在这有着轻微寒意的秋天,我们都知道万圣节马上就要到了,但有什么能比幽灵或者鬼屋更恐怖呢?对于很多IT经理来说,大数据就是一场噩梦。其实,只要部署了正确的工具和策略,大数据能够为企业带来很多机会,下面让我们来看看困扰着企业的5个大数据误解:
误解1:“我们是一家小公司,我们还不需要担心大数据问题。”
从新闻报道中我们了解到很多大型企业的大数据项目,但企业不应该他们的做法吓到了。各种规模的企业都可以并且应该像大型企业一样捕捉数据。毕竟,无论你是财富500强企业还是小公司,你都想要了解你的客户。
误解2:“我已经部署了大数据系统,所有数据问题都解决了。”
对于那些有这种想法的企业,要注意了,你不会希望看到最终酿成一场网络灾难。传统大数据系统并不能解决所有问题,它们需要确保提供给它们的数据是好数据,而不是烂数据。挖掘大数据的更准确和有见地的方法是利用网络,即所有数据流经的地方。随着越来越多的应用程序移动到云计算中,企业如果想要全面了解客户体验,他们必须部署一个这样的解决方案,即可以跨私有网络、混合网络和公共网络来捕捉用户体验。
误解3:“我们必须捕捉所有信息来进行大数据分析。”
这听起来好像是正确的做法,但其实根本不是这么回事。对于大数据分析,重点是捕捉正确的数据,并过滤掉你不需要的东西。当你在捕捉数据进行分析时,你需要注意盲点,因为这可能导致产生不全面的客户体验和行为分析结果。你需要这样的解决方案,它允许你捕捉所有信息,但只将正确的数据传输给分析解决方案来帮助你了解真正的客户体验。
误解4:“大数据系统的部署和维护费用高昂。”
就像万圣节的装饰,并不一定是昂贵的,现在也有解决方案能够为你提供全面的客户体验信息,同时不会让你超出预算。事实上,最有效的解决方案通过网络来捕捉数据,并允许过滤掉不完整的、相关的或者实时数据,为你提供符合成本效益和宝贵的大数据解决方案。
误解5:“大数据系统太复杂了。”
不要认为大数据系统很复杂。现在的解决方案提供非常强大的功能,能够为那些负责客户体验的人员提供有价值的、可访问的和可用的信息。通过向分析系统提供最高质量的数据,你能够更好地从数据中获得价值。此外,你可以远程对过滤进行更改,让你的分析师和营销专家更“自助地”进行分析。你不需要更改应用程序代码。只要你部署了合适的工具和正确的团队,大数据将为你带来前所未有的机会,不要被这五个误解吓到了。
『伍』 大数据爆发性增长 存储技术面临难题
大数据爆发性增长 存储技术面临难题
随着大数据应用的爆发性增长,大数据已经衍生出了自己独特的架构,而且也直接推动了存储、网络以及计算技术的发展。毕竟处理大数据这种特殊的需求是一个新的挑战。硬件的发展最终还是由软件需求推动的。大数据本身意味着非常多需要使用标准存储技术来处理的数据。大数据可能由TB级(或者甚至PB级)信息组成,既包括结构化数据(数据库、日志、SQL等)以及非结构化数据(社交媒体帖子、传感器、多媒体数据)。此外,大部分这些数据缺乏索引或者其他组织结构,可能由很多不同文件类型组成。从目前技术发展的情况来看,大数据存储技术的发展正面临着以下几个难题:
1、容量问题
这里所说的“大容量”通常可达到PB级的数据规模,因此,海量数据存储系统也一定要有相应等级的扩展能力。与此同时,存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。
“大数据”应用除了数据规模巨大之外,还意味着拥有庞大的文件数量。因此如何管理文件系统层累积的元数据是一个难题,处理不当的话会影响到系统的扩展能力和性能,而传统的NAS系统就存在这一瓶颈。所幸的是,基于对象的存储架构就不存在这个问题,它可以在一个系统中管理十亿级别的文件数量,而且还不会像传统存储一样遭遇元数据管理的困扰。基于对象的存储系统还具有广域扩展能力,可以在多个不同的地点部署并组成一个跨区域的大型存储基础架构。
2、延迟问题
“大数据”应用还存在实时性的问题。有很多“大数据”应用环境需要较高的IOPS性能,比如HPC高性能计算。此外,服务器虚拟化的普及也导致了对高IOPS的需求,正如它改变了传统IT环境一样。为了迎接这些挑战,各种模式的固态存储设备应运而生,小到简单的在服务器内部做高速缓存,大到全固态介质的可扩展存储系统等等都在蓬勃发展。
3、并发访问
一旦企业认识到大数据分析应用的潜在价值,他们就会将更多的数据集纳入系统进行比较,同时让更多的人分享并使用这些数据。为了创造更多的商业价值,企业往往会综合分析那些来自不同平台下的多种数据对象。包括全局文件系统在内的存储基础设施就能够帮助用户解决数据访问的问题,全局文件系统允许多个主机上的多个用户并发访问文件数据,而这些数据则可能存储在多个地点的多种不同类型的存储设备上。
4、安全问题
某些特殊行业的应用,比如金融数据、医疗信息以及政府情报等都有自己的安全标准和保密性需求。虽然对于IT管理者来说这些并没有什么不同,而且都是必须遵从的,但是,大数据分析往往需要多类数据相互参考,而在过去并不会有这种数据混合访问的情况,因此大数据应用也催生出一些新的、需要考虑的安全性问题。
5、成本问题
成本问题“大”,也可能意味着代价不菲。而对于那些正在使用大数据环境的企业来说,成本控制是关键的问题。想控制成本,就意味着我们要让每一台设备都实现更高的“效率”,同时还要减少那些昂贵的部件。
对成本控制影响最大的因素是那些商业化的硬件设备。因此,很多初次进入这一领域的用户以及那些应用规模最大的用户都会定制他们自己的“硬件平台”而不是用现成的商业产品,这一举措可以用来平衡他们在业务扩展过程中的成本控制战略。为了适应这一需求,现在越来越多的存储产品都提供纯软件的形式,可以直接安装在用户已有的、通用的或者现成的硬件设备上。此外,很多存储软件公司还在销售以软件产品为核心的软硬一体化装置,或者与硬件厂商结盟,推出合作型产品。
6、数据的积累
许多大数据应用都会涉及到法规遵从问题,这些法规通常要求数据要保存几年或者几十年。比如医疗信息通常是为了保证患者的生命安全,而财务信息通常要保存7年。而有些使用大数据存储的用户却希望数据能够保存更长的时间,因为任何数据都是历史记录的一部分,而且数据的分析大都是基于时间段进行的。要实现长期的数据保存,就要求存储厂商开发出能够持续进行数据一致性检测的功能以及其他保证长期高可用的特性。同时还要实现数据直接在原位更新的功能需求。
7、数据的灵活性
大数据存储系统的基础设施规模通常都很大,因此必须经过仔细设计,才能保证存储系统的灵活性,使其能够随着应用分析软件一起扩容及扩展。在大数据存储环境中,已经没有必要再做数据迁移了,因为数据会同时保存在多个部署站点。一个大型的数据存储基础设施一旦开始投入使用,就很难再调整了,因此它必须能够适应各种不同的应用类型和数据场景。
存储介质正在改变,云计算倍受青睐
存储之于安防的地位,其已经不仅是一个设备而已,而是已经升华到了一个解决方案平台的地步。作为图像数据和报警事件记录的载体,存储的重要性是不言而喻的。
安防监控应用对存储的需求是什么?首先,海量存储的需求。其次,性能的要求。第三,价格的敏感度。第四,集中管理的要求。第五,网络化要求。安防监控技术发展到今天经历了三个阶段,即:模拟化、数字化、网络化。与之相适应,监控数据存储也经历了多个阶段,即:VCR模拟数据存储、DVR数字数据存储,到现在的集中网络存储,以及发展到云存储阶段,正是在一步步迎合这种市场需求。在未来,安防监控随着高清化,网络化,智能化的不断发展,将对现有存储方案带来不断挑战,包括容量、带宽的扩展问题和管理问题。那么,基于大数据战略的海量存储系统--云存储就倍受青睐了。
基于大数据战略的安防存储优势明显
当前社会对于数据的依赖是前所未有的,数据已变成与硬资产和人同等重要的重要资料。如何存好、保护好、使用好这些海量的大数据,是安防行业面临的重要问题之一。那么基于大数据战略的安防存储其优势何在?
目前的存储市场上,原有的视频监控方案容量、带宽难以扩展。客户往往需要采购更多更高端的设备来扩充容量,提高性能,随之带来的是成本的急剧增长以及系统复杂性的激增。同时,传统的存储模式很难在完全没有业务停顿的情况下进行升级,扩容会对业务带来巨大影响。其次,传统的视频监控方案难于管理。由于视频监控系统一般规模较大,分布特征明显,大多独立管理,这样就把整个系统分割成了多个管理孤岛,相互之间通信困难,难以协调工作,以提高整体性能。除此之外,绿色、安全等也是传统视频监控方案所面临的突出问题。
基于大数据战略的云存储技术与生俱来的高扩展、易管理、高安全等特性为传统存储面临的问题带来了解决的契机。利用云存储,用户可以方便的进行容量、带宽扩展,而不必停止业务,或改变系统架构。同时,云存储还具有高安全、低成本、绿色节能等特点。基于云存储的视频监控解决方案是客户应对挑战很好的选择。王宇说,进入二十一世纪,云存储作为一种新的存储架构,已逐步走入应用阶段,云存储不仅轻松突破了SAN的性能瓶颈,而且可以实现性能与容量的线性扩展,这对于拥有大量数据的安防监控用户来说是一个新选择。
以英特尔推出的Hadoop分布式文件系统(HDFS)为例,其提供了一个高度容错性和高吞吐量的海量数据存储解决方案。目前已经在各种大型在线服务和大型存储系统中得到广泛应用,已经成为海量数据存储的事实标准。
随着信息系统的快速发展,海量的信息需要可靠存储的同时,还能被大量的使用者快速地访问。传统的存储方案已经从构架上越来越难以适应近几年来的信息系统业务的飞速发展,成为了业务发展的瓶颈和障碍。HDFS通过一个高效的分布式算法,将数据的访问和存储分布在大量服务器之中,在可靠地多备份存储的同时还能将访问分布在集群中的各个服务器之上,是传统存储构架的一个颠覆性的发展。最重要的是,其可以满足以下特性:可自我修复的分布式文件存储系统,高可扩展性,无需停机动态扩容,高可靠性,数据自动检测和复制,高吞吐量访问,消除访问瓶颈,使用低成本存储和服务器构建。
以上是小编为大家分享的关于大数据爆发性增长 存储技术面临难题的相关内容,更多信息可以关注环球青藤分享更多干货
『陆』 大数据存在的安全问题有哪些
【导读】互联网时代,数据已成为公司的重要资产,许多公司会使用大数据等现代技术来收集和处理数据。大数据的应用,有助于公司改善业务运营并预测行业趋势。那么,大数据存在的安全问题有哪些呢?今天就跟随小编一起来了解下吧!
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
以上就是小编今天给大家整理分享关于“大数据存在的安全问题有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
『柒』 如何应对“大数据时代”的挑战
大数据行业面临的五大挑战如下:
挑战一:数据来源错综复杂
丰富的数据源是大数据产业发展的前提。而我国数字化的数据资源总量远远低于美欧,每年新增数据量仅为美国的7%,欧洲的12%,其中政府和制造业的数据资源积累远远落后于国外。就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这大大降低了数据的价值。
现如今,几乎任何规模企业,每时每刻也都在产生大量的数据,但这些数据如何归集、提炼始终是一个困扰。而大数据技术的意义确实不在于掌握规模庞大的数据信息,而在于对这些数据进行智能处理,从中分析和挖掘出有价值的信息,但前提是如何获取大量有价值的数据。
挑战二:数据挖掘分析模型建立
步入大数据时代,人们纷纷在谈论大数据,似乎这已经演化为新的潮流趋势。数据比以往任何时候都更加根植于我们生活中的每个角落。我们试图用数据去解决问题、改善福利,并且促成新的经济繁荣。人们纷纷流露出去大数据的高期待以及对大数据分析技术的格外看好。然而,关于大数据分析,人们鼓吹其神奇价值的喧嚣声浪很高,却鲜见其实际运用得法的模式和方法。造成这种窘境的原因主要有以下两点:一是对于大数据分析的价值逻辑尚缺乏足够深刻的洞察;其次便是大数据分析中的某些重大要件或技术还不成熟。大数据时代下数据的海量增长以及缺乏这种大数据分析逻辑以及大数据技术的待发展,正是大数据时代下我们面临的挑战。
挑战三:数据开放与隐私的权衡
数据应用的前提是数据开放,这已经是共识。有专业人士指出,中国人口居世界首位,但2010年中国新存储的数据为250PB,仅为日本的60%和北美的7%。目前我国一些部门和机构拥有大量数据但宁愿自己不用也不愿提供给有关部门共享,导致信息不完整或重复投资。2012年中国的数据存储量达到64EB,其中55%的数据需要一定程度的保护,然而目前只有不到一半的数据得到保护。
挑战四:大数据管理与决策
大数据的技术挑战显而易见,但其带来的决策挑战更为艰巨。大数据至关重要的方面,就是它会直接影响组织怎样作决策、谁来作决策。在信息有限、获取成本高昂且没有被数字化的时代,组织内作重大决策的人,都是典型的位高权重的人,要不然就是高价请来的拥有专业技能和显赫履历的外部智囊。但是,在今时今日的商业世界中,高管的决策仍然更多地依赖个人经验和直觉,而不是基于数据。
挑战五:大数据人才缺口
如果说,以Hadoop为代表的大数据是一头小象,那么企业必须有能够驯服它的驯兽师。在很多企业热烈拥抱这类大数据技术时,精通大数据技术的相关人才也成为一个大缺口。
『捌』 大数据在开发中遇到的困难怎么解决方案
大数据时代下的信息技术日存在的问题:
第一:运营商带宽能力与对数据洪流的适应能力面临前所未有的挑战;
第二:大数据处理和分析的能力远远不及理想中水平,数据量的快速增长,对存储技术提出了挑战;同时,需要高速信息传输能力支持,与低密度有价值数据的快速分析、处理能力。
第三:部分早期的Hadoop项目将面临挑战;
第四:大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,乃至企业用户的商业机密,对个人隐私问题必须引起充分重视;
第五:大数据时代的基本特征,决定其在技术与商业模式上有巨大的创新空间,如何创新已成为大数据时代的一个首要问题;
第六:大数据时代对政府制订规则与监管部门发挥作用提出了新的挑战 大数据时代面临挑战的应对策略:
1、合理获取数据
在大数据时代,数据的产生速度飞快而且体量庞大,往往以TB或YB甚至是ZB来衡量。各种机构、个人都在不断地向外产生和发布结构化与非结构化的复杂数据,并进行数据交换,如人们当前最常用的数据来源渠道——互联网,每天的数据交换量已极为惊人。
2、存储随需而变
美国一家知名的 DVD 租赁企业每年都会邀请一些协同处理算法的专家对其用户数据进行分析,从而了解租赁客户的需求。
3、筛选与分析大数据
充分利用数据“洞察”自己身边的人或物,在诸多供给方当中精准地匹配自身需求,从而最大限度地满足自身吁求也是大数据价值的应有之义。
4、理性面对大数据的价值诱惑
毫无疑问,大数据时代将是商业智能“大显身手”的时代。企业利用发达的数据挖掘技术正日益精准地揣摩着消费者心态,并运用各种手段对其“循循善诱” 。
5、云计算和大数据相辅相成
为了满足大数据的需求,商务智能软件必须改变。