Ⅰ 大数据都体现在哪些方面
在过去几年,大数据的建设主要集中在物联网、云计算、移动互联网等基础领域,一些大数据起步较早、积累较深的行业领域,开始基于大数据的基础建设,开启了行业数据应用与价值挖掘之路。从数据的抽取、清洗等预处理,到数据存储及管理,再到数据分析挖掘,以及最终的可视化呈现。行业用户开始把注意力转向大数据真正的价值点——发现规律,提升决策效率与能力。这一年,他们在收集数据上花费的时间很少,而在实际分析数据并回答各种问题上的时间则越来越多。
目前进入大数据应用相对较成熟的领域主要在公安、交通、电力、园区管理、网络安全、航天等。大数据价值被挖掘,帮助各行业从业务管理、事前预警、事中指挥调度、事后分析研判等多个方面提升智能化决策能力。
公安领域的大数据应用,可以实现从警综、警力、警情、人口、卡口/车辆、重点场所、摄像头管理等全方位进行公安日常监测与协调管理;实现突发事件下的可视化接处警、警情查询监控、辖区定位、应急指挥调度管理,满足公安行业平急结合的应用需求。
从而全面提升公安机关智能化决策能力,提升警务资源利用和服务价值,为预防打击违法犯罪、维护社会稳定提供有力支持。
交通领域的大数据应用,可以实现从公交车辆、司乘人员、运行线路、站点场站管理、乘客统计等多个维度进行日常路网运行监测与协调管理;支持突发事件下的值班接警、信息处理发布、应急指挥调度管理,发挥交通资源最大效益
电力领域的大数据应用,可以实现用户分布、节点负荷、电网拓扑、电能质量、窃电嫌疑、安全防御、能源消耗等智能电网多个环节进行日常运行监测与协调管理;满足常态下电网信息的实时监测监管、应急态下协同处置指挥调度的需要。全面提高电力行业管理的及时性和准确性,更好地实现电网安全、可靠、经济、高效运行。
园区管理的大数据应用,可以实现从园区建设规划、管网运行、能耗监测、园区交通、安防管理、园区资源管理等多个维度进行日常运行监测与协调管理;从而全面加强园区创新、服务和管理能力,促进园区产业升级、提升园区企业竞争力。
网络安全的大数据应用,能够实现对网络中的安全设备、网络设备、应用系统、操作系统等整体环境进行安全状态监测,帮助用户快速掌握网络状况,识别网络异常、入侵,把握网络安全事件发展趋势,全方位感知网络安全态势。
航天是大数据应用最早也最成熟,取得成果最多的领域,航天要对尺度远比地球大无数倍的广阔空间进行探索,其总量更多,要求更高。因此,航天大数据不仅具有一般大数据的特点,更要求高可靠性和高价值。能够实现对航天测发、测控设备控制;航天指挥作战体系模拟推演、作战评估;航天作战指挥显示控制航天器数据分析、状态监控
Ⅱ 大数据的七大核心应用价值
大数据的七大核心应用价值
随着移动互联网的飞速发展,信息的传输日益方便快捷,端到端的需求也日益突出,纵观整个移动互联网领域,数据已被认为是继云计算、物联网之后的又一大颠覆性的技术性革命,毋庸置疑,大数据市场是待挖掘的金矿,其价值不言而喻。可以说谁能掌握和合理运用用户大数据的核心资源,谁就能在接下来的技术变革中进一步发展壮大。
大数据可以说是史上第一次将各行各业的用户、方案提供商、服务商、运营商以及整个生态链上游厂商融入到一个大的环境中,无论是企业级市场还是消费级市场,亦或政府公共服务,都正或将要与大数据发生千丝万缕的联系。
近期有不少文章畅谈大数据的价值,以及其价值主要凸显在哪些方面,这里我们对大数据的核心具体价值进行了分门别类的梳理汇总,希望能帮助读者更好的获悉大数据的大价值。
核心价值究其用户到底是谁?
谈及价值,首先必须要弄清楚其用户到底是谁?有针对企业数据市场的,还有针对终端消费者的,还有针对政府公共服务的;其次要弄清楚大数据核心价值的表现形式、价值的体现过程以及最后呈现的结果。
商业的发展天生就依赖于大量的数据分析来做决策,对于企业用户,更关心的还是决策需求,其实早在BI时代这就被推上了日程,经过十余年的探索,如今已形成了数据管理、数据可视化等细分领域,来加强对决策者的影响,达到决策支持的效果。还有企业营销需求,从本质上来说,主要聚焦在针对消费者市场的精准营销。
对于消费者用户,他们对大数据的需求主要体现在信息能按需搜索,并能提供友好、可信的信息推荐,其次是提供高阶服务,例如智能信息的提供、用户体验更快捷等等。
还有,大数据也不断被应用到政府日常管理和为民服务中,并成为推动政府政务公开、完善服务、依法行政的重要力量。从户籍制度改革,到不动产登记制度改革,再到征信体系建设等等都对数据库建设提出了更高的目标要求,而此时的数据库更是以大数据为基础的,可见,大数据已成为政府改革和转型的技术支撑杠杆。
数据,除了它第一次被使用时提供的价值以外,那些积累下来的数据海洋并不是无用的废物,它还有着无穷无尽的“剩余价值”,关于这一点,人们已经有了越来越多的认识。事实上,大数据已经开始并将继续影响我们的生活,接下来让我们共同探索大数据的核心价值吧!当然这是需要借助于一些具体的应用模式和场景才能得到集中体现的。
《大数据时代》一书作者维克托认为大数据时代有三大转变:“第一,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不是依赖于随机采样。更高的精确性可使我们发现更多的细节。第二,研究数据如此之多,以至于我们不再热衷于追求精确度。适当忽略微观层面的精确度,将带来更好的洞察力和更大的商业利益。第三,不再热衷于寻找因果关系,而是事物之间的相关关系。例如,不去探究机票价格变动的原因,但是关注买机票的最佳时机。”大数据打破了企业传统数据的边界,改变了过去商业智能仅仅依靠企业内部业务数据的局面,而大数据则使数据来源更加多样化,不仅包括企业内部数据,也包括企业外部数据,尤其是和消费者相关的数据。
随着大数据的发展,企业也越来越重视数据相关的开发和应用,从而获取更多的市场机会。
一方面,大数据能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。
一、大数据助企业挖掘市场机会探寻细分市场
大数据能够帮助企业分析大量数据而进一步挖掘市场机会和细分市场,然后对每个群体量体裁衣般的采取独特的行动。获得好的产品概念和创意,关键在于我们到底如何去搜集消费者相关的信息,如何获得趋势,挖掘出人们头脑中未来会可能消费的产品概念。用创新的方法解构消费者的生活方式,剖析消费者的生活密码,才能让吻合消费者未来生活方式的产品研发不再成为问题,如果你了解了消费者的密码,就知道其潜藏在背后的真正需求。大数据分析是发现新客户群体、确定最优供应商、创新产品、理解销售季节性等问题的最好方法。
在数字革命的背景下,对企业营销者的挑战是从如何找到企业产品需求的人到如何找到这些人在不同时间和空间中的需求;从过去以单一或分散的方式去形成和这群人的沟通信息和沟通方式,到现在如何和这群人即时沟通、即时响应、即时解决他们的需求,同时在产品和消费者的买卖关系以外,建立更深层次的伙伴间的互信、双赢和可信赖的关系。
大数据进行高密度分析,能够明显提升企业数据的准确性和及时性;大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平。因此,大数据有利于企业发掘和开拓新的市场机会;有利于企业将各种资源合理利用到目标市场;有利于制定精准的经销策略;有利于调整市场的营销策略,大大降低企业经营的风险。
企业利用用户在互联网上的访问行为偏好能为每个用户勾勒出一副“数字剪影”,为具有相似特征的用户组提供精确服务满足用户需求,甚至为每个客户量身定制。这一变革将大大缩减企业产品与最终用户的沟通成本。例如:一家航空公司对从未乘过飞机的人很感兴趣(细分标准是顾客的体验)。而从未乘过飞机的人又可以细分为害怕飞机的人,对乘飞机无所谓的人以及对乘飞机持肯定态度的人(细分标准是态度)。在持肯定态度的人中,又包括高收入有能力乘飞机的人(细分标准是收入能力)。于是这家航空公司就把力量集中在开拓那些对乘飞机持肯定态度,只是还没有乘过飞机的高收入群体。通过对这些人进行量身定制、精准营销取得了很好的效果。
二、大数据提高决策能力
当前,企业管理者还是更多依赖个人经验和直觉做决策,而不是基于数据。在信息有限、获取成本高昂,而且没有被数字化的时代,让身居高位的人做决策是情有可原的,但是大数据时代,就必须要让数据说话。
大数据能够有效的帮助各个行业用户做出更为准确的商业决策,从而实现更大的商业价值,它从诞生开始就是站在决策的角度出发。虽然不同行业的业务不同,所产生的数据及其所支撑的管理形态也千差万别,但从数据的获取,数据的整合,数据的加工,数据的综合应用,数据的服务和推广,数据处理的生命线流程来分析,所有行业的模式是一致的。
这种基于大数据决策的特点是:一是量变到质变,由于数据被广泛挖掘,决策所依据的信息完整性越来越高,有信息的理性决策在迅速扩大,拍脑袋的盲目决策在急剧缩小。二是决策技术含量、知识含量大幅度提高。由于云计算出现,人类没有被海量数据所淹没,能够高效率驾御海量数据,生产有价值的决策信息。三是大数据决策催生了很多过去难以想象的重大解决方案。如某些药物的疗效和毒副作用,无法通过技术和简单样本验证,需要几十年海量病历数据分析得出结果;做宏观经济计量模型,需要获得所有企业、居民以及政府的决策和行为海量数据,才能得出减税政策最佳方案;反腐倡廉,人类几千年历史都没解决,最近通过微博和人肉搜索,贪官在大数据的海洋中无处可藏,人们看到根治的希望等等。
如果在不同行业的业务和管理层之间,增加数据资源体系,通过数据资源体系的数据加工,把今天的数据和历史数据对接,把现在的数据和领导和企业机构关心的指标关联起来,把面向业务的数据转换成面向管理的数据,辅助于领导层的决策,真正实现了从数据到知识的转变,这样的数据资源体系是非常适合管理和决策使用的。
在宏观层面,大数据使经济决策部门可以更敏锐地把握经济走向,制定并实施科学的经济政策;而在微观方面,大数据可以提高企业经营决策水平和效率,推动创新,给企业、行业领域带来价值。
三、大数据创新企业管理模式,挖掘管理潜力
当下,有多少企业还会要求员工像士兵一样无条件服从上级的指示?还在通过大量的中层管理者来承担管理下属和传递信息的职责?还在禁止员工之间谈论薪酬等信息?《华尔街日报》曾有一篇文章就说,NO。这一切已经过时了,严格控制,内部猜测和小道消息无疑更会降低企业效率。一个管理学者曾经将企业内部关系比喻为成本和消耗中心,如果内部都难以协作或者有效降低管理成本和消耗,你又如何指望在今天瞬息万变的市场和竞争环境下生存、创新和发展呢?
我们试着想想,当购物、教育、医疗都已经要求在大数据、移动网络支持下的个性化的时代,创新已经成为企业的生命之源,我们还有什么理由还要求企业员工遵循工业时代的规则,强调那种命令式集中管理、封闭的层级体系和决策体制吗?当个体的人都可以通过佩戴各种传感器,搜集各种来自身体的信号来判断健康状态,那样企业也同样需要配备这样的传感系统,来实时判断其健康状态的变化情况。
今天信息时代机器的性能,更多决定于芯片,大脑的存储和处理能力,程序的有效性。因而管理从注重系统大小、完善和配合,到注重人,或者脑力的运用,信息流程和创造性,以及职工个性满足、创造力的激发。
在企业管理的核心因素中,大数据技术与其高度契合。管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以标称大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。
大数据时代,数据在各行各业渗透着,并渐渐成为企业的战略资产。数据分析挖掘不仅本身能帮企业降低成本:比如库存或物流,改善产品和决策流程,寻找到并更好的维护客户,还可以通过挖掘业务流程各环节的中间数据和结果数据,发现流程中的瓶颈因素,找到改善流程效率,降低成本的关键点,从而优化流程,提高服务水平。大数据成果在各相关部门传递分享,还可以提高整个管理链条和产业链条的投入回报率。
四、大数据变革商业模式催生产品和服务的创新
在大数据时代,以利用数据价值为核心,新型商业模式正在不断涌现。能够把握市场机遇、迅速实现大数据商业模式创新的企业,将在IT发展史上书写出新的传奇。
大数据让企业能够创造新产品和服务,改善现有产品和服务,以及发明全新的业务模式。回顾IT历史,似乎每一轮IT概念和技术的变革,都伴随着新商业模式的产生。如个人电脑时代微软凭借操作系统获取了巨大财富,互联网时代谷歌抓住了互联网广告的机遇,移动互联网时代苹果则通过终端产品的销售和应用商店获取了高额利润。
纵观国内,以金融业务模式为例,阿里金融基于海量的客户信用数据和行为数据,建立了网络数据模型和一套信用体系,打破了传统的金融模式,使贷款不再需要抵押品和担保,而仅依赖于数据,使企业能够迅速获得所需要的资金。阿里金融的大数据应用和业务创新,变革了传统的商业模式,对传统银行业带来了挑战。
还有,大数据技术可以有效的帮助企业整合、挖掘、分析其所掌握的庞大数据信息,构建系统化的数据体系,从而完善企业自身的结构和管理机制;同时,伴随消费者个性化需求的增长,大数据在各个领域的应用开始逐步显现,已经开始并正在改变着大多数企业的发展途径及商业模式。如大数据可以完善基于柔性制造技术的个性化定制生产路径,推动制造业企业的升级改造;依托大数据技术可以建立现代物流体系,其效率远超传统物流企业;利用大数据技术可多维度评价企业信用,提高金融业资金使用率,改变传统金融企业的运营模式等。
过去,小企业想把商品卖到国外要经过国内出口商、国外进口商、批发商、商场,最终才能到达用户手中,而现在,通过大数据平台可以直接从工厂送达到用户手中,交易成本只是过去的十分之一。以我们熟悉的网购平台淘宝为例,每天有数以万计的交易在淘宝上进行,与此同时相应的交易时间、商品价格、购买数量会被记录,更重要的是,这些信息可以与买方和卖方的年龄、性别、地址、甚至兴趣爱好等个人特征信息相匹配。运用匹配的数据,淘宝可以进行更优化的店铺排名和用户推荐;商家可以根据以往的销售信息和淘宝指数进行指导产品供应、生产和设计,经营活动成本和收益实现了可视化,大大降低了风险,赚取更多的钱;而与此同时,更多的消费者也能以更优惠的价格买到了更心仪的产品。
维克托曾预言2020年,大数据时代就会真正来临。在那个时候,最经常会用到的应用就是个性化生活所需要的,尤其是智能手机的应用。
五、大数据让每个人更加有个性
对个体而言,大数据可以为个人提供个性化的医疗服务。比如,我们的身体功能可能会通过手机、移动网络进行监控,一旦有什么感染,或身体有什么不适,我们都可以通过手机得到警示,接着信息会和手机库进行对接或者咨询相关专家,从而获得正确的用药和其他治疗。
过去我们去看病,医生只能对我们的当下身体情况做出判断,而在大数据的帮助下,将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。还可以在患者发生疾病症状前,提供早期的检测和诊断。早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。
还有,在传统的教育模式下,分数就是一切,一个班上几十个人,使用同样的教材,同一个老师上课,课后布置同样的作业。然而,学生是千差万别的,在这个模式下,不可能真正做到“因材施教”。
如一个学生考了90分,这个分数仅仅是一个数字,它能代表什么呢?90分背后是家庭背景、努力程度、学习态度、智力水平等,把它们和90分联系在一起,这就成了数据。大数据因其数据来源的广度,有能力去关注每一个个体学生的微观表现:如他在什么时候开始看书,在什么样的讲课方式下效果最好,在什么时候学习什么科目效果最好,在不同类型的题目上停留多久等等。当然,这些数据对其他个体都没有意义,是高度个性化表现特征的体现。同时,这些数据的产生完全是过程性的:课堂的过程,作业的情况,师生或同学的互动情景……而最有价值的是,这些数据完全是在学生不自知的情况下被观察、收集的,只需要一定的观测技术与设备的辅助,而不影响学生任何的日常学习与生活,因此它的采集也非常的自然、真实。
在大数据的支持下,教育将呈现另外的特征:弹性学制、个性化辅导、社区和家庭学习、每个人的成功……大数据支撑下的教育,就是要根据每一个人的特点,释放每一个人本来就有的学习能力和天分。
此外,维克托还建议中国政府要进一步补录数据库。政府以前提供财政补贴,现在可以提供数据库,打造创意服务。在美国就有完全基于政府提供的数据库,如为企业提供机场、高速公路的数据,提供航班可能发生延误的概率,这种服务这可以帮助个人、消费者更好地预测行程,这种类型的创新,就得益于公共的大数据。
六、智慧驱动下的和谐社会
美国作为全球大数据领域的先行者,在运用大数据手段提升社会治理水平、维护社会和谐稳定方面已先行实践并取得显着成效。
近年来,在国内,“智慧城市”建设也在如火如荼的开展。截止去年底,我国的国家智慧城市试点已达193个,而公开宣布建设智慧城市的城市超过400个。智慧城市的概念包含了智能安防、智能电网、智慧交通、智慧医疗、智慧环保等多领域的应用,而这些都要依托于大数据,可以说大数据是“智慧”的源泉。
在治安领域,大数据已用于信息的监控管理与实时分析、犯罪模式分析与犯罪趋势预测,北京、临沂等市已经开始实践利用大数据技术进行研判分析,打击犯罪。
在交通领域,大数据可通过对公交地铁刷卡、停车收费站、视频摄像头等信息的收集,分析预测出行交通规律,指导公交线路的设计、调整车辆派遣密度,进行车流指挥控制,及时做到梳理拥堵,合理缓解城市交通负担。
在医疗领域,部分省市正在实施病历档案的数字化,配合临床医疗数据与病人体征数据的收集分析,可以用于远程诊疗、医疗研发,甚至可以结合保险数据分析用于商业及公共政策制定等等。
伴随着智慧城市建设的火热进行,政府大数据应用已进入实质性的建设阶段,有效拉动了大数据的市场需求,带动了当地大数据产业的发展,大数据在各个领域的应用价值已得到初显。
七、大数据如何预言未来?
著名的玛雅预言,尽管背后有着一定的天文知识基础,但除催生了一部很火的电影《2012》外,其实很多人的生活尚未受到太大的影响。现在基于人类地球上的各种能源存量,以及大气受污染、冰川融化的程度,我们获取真的可以推算出按照目前这种工业生产、生活的方式,人类在地球上可以存活的年数。《第三次工业革命》中对这方面有很深入的解释,基于精准预测,发现现有模式是死路一条后,人类就可以进行一些改变,这其实就是一种系统优化。
这种结合之前情景研究,不断进行系统优化的过程,将赋予系统生命力,而大数据就是其中的血液和神经系统。通过对大数据的深入挖掘,我们将会了解系统的不同机体是如何相互协调运作的,同样也可以通过对他们的了解去控制机体的下一个操作,甚至长远的维护和优化。从这个角度讲,基于网络的大数据可以看作是人类社会的神经中枢,因为有了网络和大数据人类社会才开始灵活起来,而不像以前那么死板。基于大数据,个体之间相互连接有了基础,相互的交互过程得到了简化,各种交易的成本减少很多。厂家等服务提供方可以基于大数据研发出更符合消费者需求的服务,机构内部的管理也更为细致,有了血液和神经系统的社会才真的拥有生命活力。
结语
透过以上这些行业典型的大数据应用案例和场景,不难悟出大数据的典型的核心价值。大数据是看待现实的新角度,不仅改变了市场营销、生产制造,同时也改变了商业模式。数据本身就是价值来源,这也就意味着新的商业机会,没有哪一个行业能对大数据产生免疫能力,适应大数据才能在这场变革中继续生存下去。
当下,正处于数据大爆发的时代,如何获取这些数据并对这些数据进行有效分析就显得尤为重要。各种企业机构之间的竞争非常残酷。如何基于以往的运行数据,对未来的运行模式进行预测,从而提前进行准备或者加以利用、调整,对很多企业机构其实是一种生死存亡的问题。这样一种情况同样适用于国家级别。正因为这一点,目前无论是在企业级别还是国家级别都开始研究、部署大数据。
可见,大数据应用已经凸显出了巨大的商业价值,触角已延伸到零售、金融、教育、医疗、体育、制造、影视、政府等各行各业。你可能会问这些具体价值实现的推动者有哪些呢?就是所谓的大数据综合服务提供商,从实践情况看,主要包括大数据解决方案提供商、大数据处理服务提供商和数据资源提供商三个角色,分别向大数据的应用者提供大数据服务、解决方案和数据资源。
未来大数据还将彻底改变人类的思考模式、生活习惯和商业法则,将引发社会发展的深刻变革,同时也是未来最重要的国家战略之一。
Ⅲ 深度解析大数据在公安领域的应用
深度解析大数据在公安领域的应用
近一两年,大数据开始在公安等行业领域得到普及应用,除了行业自身的特殊要求外,大数据也带动了相关行业的需求发展。未来,基于大数据的行业应用会变得更加深入,更多的相关厂商也会涉及其中,大数据在公安领域的商业模式架构逐渐清晰起来。
在安防的细分领域中,大数据在公安及智能交通探索应用得比较早,相关的解决方案和技术也比较成熟,在广西等地也已经有相关的项目落地,大数据应用系统已经上线运营,取得了预期的效果。
项目应用前景看好
以相关的案例来讲,在广西公安厅投入使用的大数据系统中,整个项目是以自治区的总数据为出发点,对每天在所有卡口过道产生的上千万条数据,每年大概三十亿条的数据进行分布式存储和快速检索。在此基础上,后续可以给公安用户提供进一步的解决方案和增值服务,比如已经推出的卡口过车大数据、视频图像大数据和公安情报大数据三方面的解决方案。这些方案提供多种功能的查询,以及基于测控的分析和基站行业的服务,目的就是让公安能快速科学地侦破案件。
在智能交通领域,目前主要应用于车辆的疏导,比如基于不同道路、路口车流量的统计(时、日、月统计等),根据这些统计可以分析不同时段某条道路实时的车流密度、发展方向和趋势等。这些项目的应用已经在很多大城市落地,比如平时大家在公交上看到的移动电视里播放的上下班高峰路段实时画面,就是基于大数据的技术分析所得。从应用上看,用户切实感到便捷好用,所以市场潜力很大,未来的应用会更加广泛。
大数据应用存在的难题
大数据本身是针对数据的存储、检索、关联、推导等有价值的挖掘,这些数据本身来说是通用的。但在安防领域,哪些数据是有用的,哪些是我们需要关心和提取的,这是目前在摸索的问题。也就是说,当前的困难在于如何让技术热点和相关业务进行结合,以提取更有价值的数据。
从技术上分析,有两个技术难点:
第一个难点是如何从非结构化的数据中提取结构化的数据出来。所谓非结构化数据是指在视频里面进行特征的提取,这些可能是人类不能理解和不能处理的;结构化数据则是人可以理解和处理的,比如在视频里有几个活动目标、是人还是车。如果是人,身上穿的是什么样的衣服;如果是车,车牌号是多少、什么样的品牌型号、颜色、行进速度、方向等数据,这些都是可以转化为结构化数据为人所用。目前,安防的数据很多涉及到视频数据,而视频数据本身是不能够被结构化的数据,也就不能被计算机直接所处理。所以未来摆在技术人员面前的课题是如何把视频数据转换成计算机能够处理的结构化或者半结构化数据。
第二个难点是寻找这些数据之间的关联和价值。数据是有关联没关联之分的,我们只能通过工具来找。所有这些存储的特征数据,包括公安行业、平安城市中每天产生的海量视频数据,可以为很多案件的侦查提供有价值的线索。现在技术需要攻克的难题就是能不能把这些数据通过相应的工具模块,通过大数据技术把原来被忽视的数据信息关联起来,找到或提取这些数据之间的相关性,为案件的侦破和方案决策提供科学的数据依据。
公安数据流动的单向性
公安行业每天获取的数据数以千万,如何确保这些数据信息的安全成为行业共同关注的热点。从传统意义上讲,数据产生之后,首先要确保数据本身的安全,目前行业内有非常成熟的技术和解决方案。在海量数据面前,如果你对数据不了解,就算把这些数据摆在面前,你也很难去提取有用的数据,但这并不能作为行业忽视其重要性的借口。因为对安防厂商而言,很多有价值的数据是需要提供保护的,也就是对数据应用模式采取高规格的保护措施,因为这些数据一旦被不法分子挖掘并关联起来,可能整个地区的安全漏洞就会被利用。
现在,公安的数据一般在局域网内运行,并有相关的保护措施来提供安全保障。如会把数据分成不同的网络和不同的层次,让数据在不同的网络安全系统之间,从低安全性网络向高安全性网络实行单向流动,最后在公安的核心网络里汇集所有的数据(这个安全等级是最高的,通过安全边界、物理隔离来保护)。同时在外围的视频网,主要以视频数据为主,辅以视频相关的业务,这些数据只有进入公安网后才与其他的数据发生关联,才能发掘出一些有价值的数据。比如办案民警在视频网络上,可以获取犯罪嫌疑人的照片,但这个人是谁,他的信息是什么,只有进入公安网以后才能获取,才能将相关信息匹配关联起来,然后通过其他数据库的关联,进一步挖掘出他在哪个网吧出现过,在哪个酒店居住过……以上信息都可以挖掘出来,但这种挖掘只能在高安全性网络中进行,这种信息流动都是单向的。
未来的商业模式
从传统的安防业务来讲,还是以公安客户投资建设系统为主,厂商提供产品和集成的解决方案,最终由集成商来做落地实施,最后交付给客户使用并进行相应的维护。同时,未来行业对大数据中数据的获取、存储、分析、处理会变得更加的专业,用户本身在处理和应用时可能会遇到各种困难,那么针对这类问题可能会有一些小型的服务公司出现,给终端用户提供各种各样专业的数据服务。比如专业的视频提取会有专业的公司切入,用专业的算法工具帮助你把视频里面的数据提取出来,或者有那些专业的通讯厂商对数据进行挖掘和处理,包括提供一些工具和服务的模式(未来会更倾向于服务的模式)。但限于公安行业的特点,这些公共服务在公安行业目前还比较难做,不过未来也可以由一些厂家对整个应用系统进行构建,以运营服务收费的方式与公安客户或者政府机构进行合作。
对于大型、特别大型的项目,比如涉及到一个城市、一个省乃至全国范围的项目,一般来说可能会找专业的IT厂商来做,特别是互联网公司(现在也有牵涉其中),他们更多是以技术提供商的角色参与,安防厂商侧重点放在业务上。这样大家分工比较明确,因为即使是技术比较领先的行业厂商,它也很难或者没有必要投大量的研发在大数据基础的研发上,而是应该将重点放在大数据的基础应用或业务解决方案上,然后底层的基础架构由IT厂商来分担完成。彼此互利共赢,持续发展。
以上是小编为大家分享的关于 深度解析大数据在公安领域的应用的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅳ 大数据应用价值发现的三大方法
大数据应用价值发现的三大方法
关于大数据的讨论,一方面人们需要厘清大数据的概念,开发适用的大数据系统和工具,探索大数据的应用模式等,另一方面人们更关心如何将大数据的价值变现。这对于一个企业来说尤其重要,否则,收集和存储了大量的数据,消耗了大量的钱财,如果大数据不能被很好地利用,从经济上讲就是不合算的,这样的事情也不会长远。
大数据价值的发现与其所处的应用场景密切相关。概括起来,大数据价值发现可以划分为三大类:数据服务、数据分析和数据探索。数据服务是面向大规模用户,提供高性能的数据查询、检索、预测等服务,通过直接满足用户需求而将数据价值变现的形式;数据分析是分析人员利用经验,通过对大规模数据使用特定的计算模型进行较为复杂的运算,从而发现易于人们理解的数据模式或规律所进行的数据价值变现的一种运算形式;数据探索是一种利用数据分析和人机交互的结合,通过不断揭示数据的规律和数据间的关联,引导分析人员发现并认识其所未知的数据模式或规律,其价值更多地体现在对未知途径的数据模式和规律的探索。
1. 数据服务
数据服务针对用户非常明确的数据查询和处理任务,以高性能和高吞吐量的方式实现大众化的服务,是数据价值最重要也是最直接的发现方式。由于要处理大众化的服务请求,每个服务任务必须能够被快速地处理掉,因此,数据服务的单个任务负载不能过于复杂,单任务直接处理的数据不能太大,任务对应的用户需求和采用的数据处理方法必须是明确的。一些典型的数据服务包括事务处理、数据查询、信息检索、数据预测。
事务处理是传统数据库范畴的价值发现形式,它针对的主要是任务关键型的数据服务,如银行记账、商业交易等; 数据查询主要是面向快速查找或修改数据的服务需求,它比事务处理更简单,对数据一致性要求没那么强,但对服务的吞吐量要求非常高;信息检索是指从大规模的数据集中快速查找满足用户需求的资料或数据片段的过程;数据预测和数据分类被很多人认为是一种数据分析任务,其实,很多针对个体的数据预测和分类任务实际上是一种数据服务,它使用数据分析得来的预测模型,对个体数据实例进行预测,从而能够高并发地为大规模用户提供分类和预测服务,进而更好地体现出数据的价值。
2. 数据分析
数据分析是指用适当的统计分析方法对大量数据进行分析或建模,提取有用信息并形成结论,进而辅助人们决策的过程。在这个过程中,用户会有一个明确的目标,通过“数据清理、转换、建模、统计”等一系列复杂的操作,获得对数据的洞察,从而协助用户进行决策。常见的数据分析任务又可以被进一步划分为描述型分析、诊断型分析、预测型分析、策略型分析。
描述型分析的主要特点是对数据代表的含义进行描述性的揭示,通过数据统计分析揭示数据隐含的现象,从而帮助人们更好地进行决策。
诊断型分析主要用来揭示一些现象背后的成因,因此,它比描述型分析更深入。很多数据挖掘方法与诊断型分析密切相关。比如相关性分析和因果关系的分析等,都是想通过对数据的深度分析揭示描述型分析所发现的某些现象背后的成因。
预测型分析主要是使用机器学习技术,对现有的大数据进行深度分析,构建数据预测和分类的模型,从而更好地支持数据预测和分类服务。
策略型分析也称指导型分析,是在分析过程中减少甚至排除人的参与,在给定目标的驱动下,直接帮助人们找到好的策略,作用于大数据应用,使得未来数据指标能够按照设想的某些趋势发展。它是数据分析的高级阶段,更能发挥出大数据的价值。
总之,数据分析一般基于大量数据和较为复杂的运算模型,其结果信息量通常很大,适用于宏观决策。而对于细节层面信息的获取,数据分析缺乏如索引和访问控制等方面的技术支持。如何在一个平台上,既支持宏观的分析,也支持细节的分析,是当今一个挑战的技术难题。
3. 数据探索
数据探索是指针对目标可变、持续、多角度的搜索或分析任务,其搜索过程是有选择、有策略和反复进行的。它将以找到信息为目的的传统信息检索模式变为以发现、学习和决策为目的的信息搜寻模式。这样的搜索模式结合了大量的数据分析与人机交互过程,适合于人们从数据中发现和学习更多的内容和价值。
对于数据探索,用户可以在微观层面(数据搜索)和宏观层面(数据分析)之间进行自由切换,用交互式的方式探索并发现数据的价值。
目前,随着大数据研究的兴起,探索式搜索这种交互式分析和探索数据价值的方式,逐渐引起人们的重视,还有很多问题等待研究者们进行深入的研究。
数据服务强调从微观层面获取满足用户需求的精准信息,数据分析强调从宏观层面为用户提供数据洞察,进而提供决策支持,而数据探索则需要在宏观和微观两个层面进行自由切换。大数据蕴含大价值,数据服务、数据分析和数据探索是3个层次的数据价值发现方法。在很多应用下,这3类方法需要混合使用,才能更好地发现大数据的价值。
Ⅳ 大数据在公安领域的应用有哪些
大数据在公安领域的应用方式,可以分为以下3个方面:
1、统计查询:这是对大数据最基本的应用方式,主要面向历史与现状,回答已经发生了什么事情,如流动人口分区域统计、实有车辆归属地统计、各类案件的数量分布和趋势。
2、数据挖掘:是目前大数据的核心应用方式,其重点不在于发现因果,而是发现数据之间的关联关系。这种关系可能可以直观解释,也可能不能马上发现其中的深层次原因,但对工作具有一定指导意义,比如季节气候与某些类型案件的关联关系、车辆活动范围、活动习惯与黑车的关联关系。
3、预测预判:是大数据应用未来的发展方向,在数据统计、分析、挖掘的基础上,建立起合适的数据模型,从数据的关联关系入手,推导出因果关系,能够对一定时期内的趋势走向做出预测,对危险信号做出预警,指导预防工作的走向。
大数据结构介绍:
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
Ⅵ 大数据主要应用于哪些行业,有什么价值
大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹,下面详细介绍一下大数据在各行各业的具体应用。
制造业, 利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程
金融行业 ,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业, 利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业, 借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
餐饮行业, 利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式
电信行业 ,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施
能源行业, 随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业, 利用大数据优化物流网络,提高物流效率,降低物流成本
城市管理, 可以利用大数据实现智能交通、环保监测、城市规划和智能安防
生物医学, 大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘
体育娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种题财的影视作品,以及预测比赛结果
安全领域, 政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。
个人生活 ,大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响,对大数据感兴趣的可以到科多大数据进行更深入的了解咨询~
Ⅶ 大数据应用价值发现的三大方法
1. 数据服务
数据服务针对用户非常明确的数据查询和处理任务,以高性能和高吞吐量的方式实现大众化的服务,是数据价值最重要也是最直接的发现方式。由于要处理大众化的服务请求,每个服务任务必须能够被快速地处理掉,因此,数据服务的单个任务负载不能过于复杂,单任务直接处理的数据不能太大,任务对应的用户需求和采用的数据处理方法必须是明确的。一些典型的数据服务包括事务处理、数据查询、信息检索、数据预测。
2. 数据分析
数据分析是指用适当的统计分析方法对大量数据进行分析或建模,提取有用信息并形成结论,进而辅助人们决策的过程。在这个过程中,用户会有一个明确的目标,通过“数据清理、转换、建模、统计”等一系列复杂的操作,获得对数据的洞察,从而协助用户进行决策。常见的数据分析任务又可以被进一步划分为描述型分析、诊断型分析、预测型分析、策略型分析。
3. 数据探索
数据探索是指针对目标可变、持续、多角度的搜索或分析任务,其搜索过程是有选择、有策略和反复进行的。它将以找到信息为目的的传统信息检索模式变为以发现、学习和决策为目的的信息搜寻模式。这样的搜索模式结合了大量的数据分析与人机交互过程,适合于人们从数据中发现和学习更多的内容和价值。
关于大数据应用价值发现的三大方法,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据应用价值发现的三大方法的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅷ 大数据的应用价值前景
大数据的应用价值前景
数据中心的建设,为的是后期对数据的挖掘应用。大数据应专用在全球各属国发酵之际,伴随而来的是各国普遍缺乏数据科学家问题。应大数据处理的需求,无论企业决定采用哪一种解决方案,最终需要有数据科学家来运用这些大数据,才能激活大数据的价值,重新构建数据之间的关系,并赋予新的意义,进而转换成企业的竞争武器。
在大数据处理环节中,数据科学家是能否点燃大数据价值的关键。然而,数据科学家的培养并不容易,因为数据科学家必须同时具备3个条件,包括深入了解企业内的业务与组织、具备数据探勘等统计应用知识、熟悉数据分析工具操作。目前,国内的数据分析师较擅长的是处理已经发生的问题,找出问题源头,并且尽速排除问题,但是,相对缺乏发掘未知问题的能力。
根据市场调查机构Gartner的数据,有高达72%的企业认为,大数据的应用价值,在于预测未来。然而,这样的应用需求与国内数据科学家不匹配,预计将成为国内发展大数据应用的最大挑战。 因此,无论是从政府还是企业角度,都应未雨绸缪,提前做好大数据人才培养,不要等到大数据中心建好之后再来找人,必将造成大数据中心资源的极大浪费。
Ⅸ 公安破案时,常说的运用了大数据,大数据是什么意思呀
大数据现在已抄经成为一个代名词了,其实公安说的大数据跟我们平常网络上说的大数据还是有些差别的,网络大数据更多还是建立在用户喜好方面,采集数据经过电脑分析处理后的信息,偏人工智能方向。而公安说的大数据,那是真正的大数据,包括指纹库、血液库、DNA数据库以及各个摄像探头数据等,这些项目中很多还在建库阶段,可能你不清楚,但你的数据已经通过一些渠道被采集了