导航:首页 > 网络数据 > 大数据下的用户分析

大数据下的用户分析

发布时间:2023-03-08 17:31:22

㈠ 了解用户的十个大数据分析途径

1.将网络传输中的数据看做“金矿”并进行挖掘。你的网络中包含了大量其它公司无法从中获益的数据,收割这些数据中的价值是你真正理解用户体验的第一步。


2.不要总是用假设去了解你的用户,并且知道他们需要什么。拥抱用户,并且切实的了解用户行为,要比去假设要好的多。保持客观,从实际数据中获得见解。


3.尽可能的收集数据,从而减少盲点。盲点可能导致丢失关键信息,从而得到一个歪曲的用户体验观。确认你收集了一切可以影响到用户体验和行为分析的数据。


4.对比数据的体积,我们该更看重数量。收集好数据之后,专注于重要的数据来做分析方案。


5.迅速。用户需求优先级总是在变化的,技术需要迅速的做出分析并做调整。这样才能保证你分析出的不是过时结果,对于随时都在改变的需求,你需要迅速的收集数据并做出响应的处理。


6.实时的业务运作。这就需求对数据的实时分析并获取见解,从而在情况发生后可以实时的做出调整,从而保证最佳的用户体验及经营结果。


7.分析不应该给产品系统带来风险,也就是分析永远都不应该给用户体验带来负面的影响。所以尽可能多的捕捉数据,避免盲点才能让分析出的见解不会对业务有负效应。


8.利用好你数据的每一个字节,聚合数据可能会暗藏关键见解。这些信息片段可能会反应最有价值的见解,可以帮助持续的提升用户体验及经营效果。


9.着眼大局。捕捉与你站点或者网络应用程序交互的所有数据,不管是来自智能手机、平板或者是电脑。丰富数据,将不同储存形式之间的数据关联起来,确信这些点都被连接了起来。在处理中关联的越早,获得的见解就越完整、精准、及时和有效。


10.和平台无关,确保你的大数据分析能力不会受到设备的类型限制(笔记本、台式机、智能手机、平板等)。


关于了解用户的十个大数据分析途径,青藤小编今天就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。


以上是小编为大家分享的关于了解用户的十个大数据分析途径的相关内容,更多信息可以关注环球青藤分享更多干货

㈡ 大数据下的用户分析,用户分析的基础数据有哪些

用户的购抄买量,购袭买频率,购买的时间空间差异等,这些为内部数据,可以通过自身或者第三方系统获得。
用户的评价, 用户的喜好,这些为外部数据。这些数据就需要借助大数据了。即为网络数据采集。
用户画像基础数据:网络行为数据

活跃人数
访问/启动次数
页面浏览量
访问时长
装机量
激活率
渗透率
外部触点

用户画像基础数据:网站内行为数据

唯一页面浏览次数
页面停留时间
直接跳出访问数
访问深度
进入或离开页面
浏览路径
评论次数与内容

用户画像基础数据:用户内容偏好数据

使用APP/登陆网站
时间/频次
浏览/收藏内容
评论内容
互动内容
用户生活形态偏好
用户品牌偏好
用户地理位置

用户画像基础数据:用户交易数据

贡献率
客单件/客单价
连带率
回头率
流失率
促销活动转化率
唤醒率

㈢ 大数据之如何进行“用户行为分析”

而消费者们作为这场游戏中的弱者,不断地被这些真假价格战挑逗着和引导着。然而,在当今的商场上,还有另外一类企业不是通过简单粗暴的价格战,而是通过对数据的充分使用和挖掘而在商战中获胜的。 最典型的当属全球电子商务的创始者亚马逊(Amazon.com)了,从 1995 年首创网上售书开始,亚马逊以迅雷不及掩耳之势,彻底颠覆了从图书行业开始的很多行业的市场规则及竞争关系,10 年之内把很多像 Borders 以及 Barnes and Noble 这样的百年老店被逼到破产或濒临破产。亚马逊在利润并不丰厚的图书行业竞争中取胜的根本原因在于对数据的战略性认识和使用,在大家还都不太明白什么是电子商务时,亚马逊已经通过传统门店无法比拟的互联网手段,空前地获取了极其丰富的用户行为信息,并且进行深度分析与挖掘。 何为“用户行为信息”(User Behavior Information)呢?简单地说,就是用户在网站上发生的所有行为,如搜索、浏览、打分、点评、加入购物筐、取出购物筐、加入期待列表(Wish List)、购买、使用减价券和退货等;甚至包括在第三方网站上的相关行为,如比价、看相关评测、参与讨论、社交媒体上的交流、与好友互动等。 和门店通常能收集到的购买、退货、折扣、返券等和最终交易相关的信息相比,电子商务的突出特点就是可以收集到大量客户在购买前的行为信息,而不是像门店收集到的是交易信息。 在电商领域中,用户行为信息量之大令人难以想象,据专注于电商行业用户行为分析的公司的不完全统计,一个用户在选择一个产品之前,平均要浏览 5 个网站、36 个页面,在社会化媒体和搜索引擎上的交互行为也多达数十次。如果把所有可以采集的数据整合并进行衍生,一个用户的购买可能会受数千个行为维度的影响。对于一个一天 PU 近百万的中型电商上,这代表着一天近 1TB 的活跃数据。而放到整个中国电商的角度来看,更意味着每天高达数千 TB 的活跃数据。 正是这些购买前的行为信息,可以深度地反映出潜在客户的购买心理和购买意向。例如,客户 A 连续浏览了 5 款电视机,其中 4 款来自国内品牌 S,1 款来自国外品牌 T;4 款为 LED 技术,1 款为 LCD 技术;5 款的价格分别为 4599 元、5199 元、5499 元、5999 元、7999 元;这些行为某种程度上反映了客户 A 对品牌认可度及倾向性,如偏向国产品牌、中等价位的 LED 电视。而客户 B 连续浏览了 6 款电视机,其中 2 款是国外品牌 T,2 款是另一国外品牌 V,2 款是国产品牌 S;4 款为 LED 技术,2 款为 LCD 技术;6 款的价格分别为 5999 元、7999 元、8300 元、9200 元、9999 元、11050 元;类似地,这些行为某种程度上反映了客户 B 对品牌认可度及倾向性,如偏向进口品牌、高价位的 LED 电视等。 亚马逊通过对这些行为信息的分析和理解,制定对客户的贴心服务及个性化推荐。例如:当客户浏览了多款电视机而没有做购买的行为时,在一定的周期内,把适合客户的品牌、价位和类型的另一款电视机促销的信息通过电子邮件主动发送给客户;再例如,当客户再一次回到网站,对电冰箱进行浏览行为时,可以在网页上给客户 A 推荐国产中等价位的冰箱,而对客户 B 推荐进口高档价位的商品。 这样的个性化推荐服务往往会起到非常好的效果,不仅可以提高客户购买的意愿,缩短购买的路径和时间,通常还可以在比较恰当的时机捕获客户的最佳购买冲动,也降低了传统的营销方式对客户的无端骚扰,还能提高用户体验,是一个一举多得的好手段。 纵观国内外成功的电商企业,对用户行为信息的分析和使用,无不在这个兵家必争之地做大量投入。他们对数据战略性的高度认识和使用,非常值得国内的电商学习和借鉴。

㈣ 大数据技术中,关于用户行为分析方面的有哪些技术

做用户行为分析的基础是获得用户行为数据,例如用户页面停留时间、跳转来源等等。这些信息有些能直接拿到,有些是需要做一些计算才能拿到的。一般来说用户访问时的一些信息都是以日志的形式打到web容器的日志空间中去,这其中包含了最通用的一些访问信息以及一些自定义的日志打点。

题主提到了大数据技术中对用户行为进行分析,那么可以假定网站或者App的访问量是比较傲多的。由于系统流量比较大,计算维度又比较多,后续数据消费者的需求增长比较快,所以对计算分析平台有了一定的要求。具体表现为:
1.负载能力。流量增大以后带来的压力是多方面的,比如网络带宽的压力、计算复杂度带来的压力、存储上的压力等等。一般来说这些都是比较显而易见的,会对产生比较直接的影响,比如计算实时性下降、消息出现了堆积、OOM等等。为了解决这一现象,一般来说会选择一些分布式的框架来解决这个问题,比如引入分布式计算框架storm、spark,分布式文件系统hdfs等。
2.实时性。在系统资源捉襟见肘时消息的实时性会立即受到严重影响,这使得部分算法失效(例如对计算和收集上来的数据进行行为分析后,反馈到推荐系统上,当整体响应时间过场时会严重影响推荐效果和准确度)。对于这个情况来说可能会选择storm这种具有高实时性的分布式流式计算框架来完成任务。
3.系统管理和平台化相关技术手段。在大数据情景下,企业内数据环境和应用环境都是比较复杂的,用户行为分析应用不是一成不变的,那么就要求用户行为分析这种多变的应用在复杂环境中能有效生存,这包括算法数据材料的获得、系统运维、系统任务调度、系统资源调度等等,相关的技术很多时候要求团队自研,但也有ganglia、yarn、mesos这类开源系统可以参考或者直接使用。
4.数据链路。企业技术环境一般来说是非常复杂的,一层一层交错在一起,远不是一句MVC三层架构能够概括得了的,为了避免消息流通呈复杂的网状结构,一般会考虑应用服务化、企业服务总线(ESB)及消息总线来做传输,有兴趣的话题主可以网络一下这几个方向的技术和开源工具
5.应用快速生成工具。我个人认为在大数据环境下应用都摆脱不了一个快速开发的要求,用户行为分析也是如此,这时候要考虑对接一些开源的分布式数据分析算法库而不是通过自己去实现,比如像spark ml,mahout这类的库用得好能减少很多工作量。

㈤ 神策大数据用户行为分析-1-入门知识

神策大数据用户行为分析入门,主要涉及的知识点:

神策分析是针对 企业级客户 推出的 深度用户行为分析产品 ,有以下特点:

产品角色作为产品规划者,重点关注产品

数据驱动产品优化

运营角色重点关注

渠道角色重点关注

技术角色重点关注

电商用户通常会经历以下 核心行为流程

产品核心流程可描述为

查看新客总数,同时按照日期、渠道等维度拆分下钻

查看各渠道新客的核心流程总转化率及各步骤间的转化率,寻找总转化率提升空间

神策支持查看特定用户群的历史行为序列,找到提交订单行为,对此之后的行为进行人工标注,以推测后续未进行支付环节的原因

解各渠道来源用户的活跃程度,以及目标行为——支付订单行为发生的频率

针对特定人群实现精准营销,支持将特定用户设备 List 同步到极光/小米,向流失用户进行 App 内的精准推送,以期重新激活挽回流失。

神策支持将分析结果添加到概览,使业务分析人员无需配置快速获得所关注的指标现状

神策分析中的所有数据均来自于客户的自有数据接入

神策分析主要支持采集客户的自有数据有三类,分别是 前端操作、后端日志及业务数据(包括历史数据) ,接入的方式主要是有3种:

日常工作中,我们遇到的实际问题:

为了回答以上问题,需要对产品上的各种行为进行分析和统计。

对上述的行为进行统计,得到的如下指标:

神策分析使用事件模型来描述(Event 模型)用户行为,描述用户行为的关键要素: 是谁、什么时间、什么地点、以什么方式、干了什么

主要是涉及到两个核心事件:

一个完成的事件包含几个关键要素:

每个 User 实体对应一个真实的用户

每个用户有各种属性,常见的属性例如: 年龄、性别 ,和业务相关的属性则可能有: 会员等级、当前积分、好友数 等。这些描述用户的字段,就是用户属性。

简单来说,在用户 未登录 的情况下,神策会 选取设备 ID 作为唯一标识

登录状态 下选取 登录 ID 或者 userid ,一个用户既有设备ID(亦称作“匿名ID”)又有登录ID

通过 用户关联 将同一个用户的设备ID 和登录 ID 关联到一起,这样不管用户是匿名和登录的状态发生的行为,我们都能准确识别到是同一个用户。

神策分析使用 神策 ID (即 events 表里的 user_id 和 users 表里的 id )来对每个产品的用户进行唯一的标识。

神策 ID 是基于 distinct_id 按照一定规则生成的,两种典型的 distinct_id :

users表中的fisrts_id指的是设备ID,second_id指的是登陆ID

1.特点

只要设备不变,那么设备ID不变,神策ID不变

2.案例说明

案例解释说明

关联设备 ID 和登录 ID 的方法虽然实现了更准确的用户追踪,但是也会增加埋点接入的复杂度。

1.适用场景

2. 局限性 *

3.案例说明

案例具体解释

1.使用场景

一个登陆ID绑定多个设备,比如 Web 端和 App 端可能都需要进行登录。

支持一个登录 ID 下关联多设备 ID 之后,用户在多设备下的行为就会贯通,被认为是一个神策 ID 发生的。

2.局限性

3.案例说明

操作同上面的流程,重点关注第七条记录

由于设备 Y 被关联到登录 ID A 下,修复设备 Y 上登录之前的数据:神策 ID 3 ->神策 ID 1

㈥ 如何利用大数据思维来进行用户调研

如何利用大数据思维来进行用户调研

传统的产品调研,通常需要先行选定用户样本,之后耗费大量人力物力采用不同的调研方法,进行用户调研。如果把大数据应用到用户调研当中,凭借着海量的历史数据样本,对于调研问题,可以借助大数据进行预分析处理,之后再进行人工选择性介入处理,不仅可以提高用户调研的效率,以最快的速度响应用户需求,而且可以极大的降低用户调研的成本。基于此,本文试图利用大数据思维,来解读大数据时代下用户调研的新变化。

说明:本文提供的仅仅是大数据时代下,用户调研的思路。如果有具体的用户调研需求,欢迎向笔者提出,笔者将在下篇推文中,进行具体案例的探讨。

大数据作为一种生产资料,正在越来越深入的影响着人类社会。现在,大数据在电商领域,通过根据相似消费者的商品偏好,向顾客推荐更符合其个人喜好的商品,这一推荐方式不仅仅省去了消费者寻找商品的时间,更是提高了电商平台的收入。

同理,在音乐、电视剧、电影,广告投放、用户调研等领域,大数据的可用武之地也越来越广。那么,大数据时代给用户调研方式带来了哪些改变呢?

大数据被广泛应用以前,传统的用户调研方式,通常需要经过界定调研问题、制定调研计划、综合调研方法、设计调研问卷、总结调研结果这5个步骤。

但是,大数据被广泛应用以后,凭借着海量的历史数据样本,对于调研问题,可以借助多种公开的大数据工具进行预分析处理,之后再进行人工选择性介入处理,将二者进行比对,进行多轮TEST,帮助产品人员发现问题的真相。

一、设置出优秀的调研问题,调研便成功了一半

设置调研问题,处于整个调研的第一个环节,其重要性自然不言而喻。比如某些产品经理可能会提出“用户为什么不接受视频付费”,或者“是否有足够的用户愿意支付15元/月来观看正版高清视频,如果是更低或者更高的价格呢?”前一个调研问题过于宽泛,而后一个调研问题却又界定的过于单一。

如果将调研问题界定为:

哪一类用户最有可能使用视频网站的付费服务?视频网站不同档位的价格,分别会有多少用户愿意支付?所有视频网站中,会有多少用户会因为这项服务而选择该视频网站?相对于视频付费,如广告主赞助,这一方式的价值何在?

当然,并非所有调研的调研内容都能如此具体明了:

有些属于探索性研究,这类调研的目的在于找出问题的真相,提出可能的答案,或新的创意;

有些属于描述性研究,这类调研重在描述项目内容的某些数量特征;

还有一些是因果性研究,这种调研的目的是检测现象之间是否存在因果关系。

二、根据调研问题,进行大数据预分析处理

大数据的魅力在于采集的不是样本数据,而是全部数据。例如滴滴推出滴滴外卖服务、美团推出美团打车业务,得益于现代社交网络的发达程度,滴滴和美团几乎可以对微博、微信等社交媒体上的对于新推出服务的议论进行统计分析,从而提供更好的服务。

例如,可以通过网络指数了解网友对于此项服务的搜索行为,同时进行跟踪分析:

当然并不是所有的网友都会使用网络搜索,他们也有可能使用360搜索,这时就要借助360指数:

又或者用户采取其他方式来表达情绪和想法,比如社交媒体微博、微信,可能就会用到微博指数,第三方舆情监测和口碑分析工具,借助新浪微舆情进行口碑分析和文本挖掘:

说明:以上的大数据工具,仅列举了常用的3种。在实际操作中,大数据工具的选择,还需要根据用户具体的调研问题来确定。

三、人工介入,对调研问题进行针对性处理

可以根据大数据分析结果,人工介入到调研问题上来,进行有针对性的调研处理,这时候可以采用传统的调研方法。但是与以往不同的是,在采用这些调研方法时,不需再耗费大量成本进行种种调研。选择人工介入的目的,是为了更真实的感受调研过程,参与调研问题的处理上来。

传统的调研方法,通常有以下4种方式:

1.观察法

这种方法是采取不引人注目的方式,来观察消费者使用产品的情形,以收集最新数据资料。某些战略咨询公司在做调研时,十分信奉观察法。

下面是国内知名的营销咨询公司,华与华在《超级符号就是超级创意》里关于这一方法运用的片段,了解一下:

“比如你在超市里观察牙膏的消费,观察走到牙膏货架前的人,你会看到这样的一个过程:一个顾客推着购物车走过来,一边走一边浏览货架上的牙膏;停下来,注目于一盒牙膏片刻,继续往前走;停下来,拿起一盒牙膏,看后放下;又拿起一盒看看,再翻过来,仔细看包装,背后的文案放回货架;往前走两步,掉头回到最开始注目的那盒牙膏,仔细看看,包装背后的文案,放回货架;快步走回,第四步看的那盒牙膏仍进购物车里,选择结束。”

“不,没结束,他可能过一会儿会折回来,把刚才放进购物车里的牙膏放回货架,换成第二步注目的那盒,也可能两盒都要。这样你就观察到他买牙膏的整个过程,竟然有七个动作。”

2.焦点小组访谈法

这是一种基于人口统计特征、心理统计特征和其他因素的考虑,仔细的招募六到十个人,然后将他们召集在一起,在规定时间内与这些参与者进行讨论的一种调研方式,参与者通常可以得到一些报酬。

调研人员通常坐在座谈是隔壁的,装有单面镜的房间内,对座谈会的讨论过程进行观察。必须要注意的是:实时焦点小组访谈时,必须让参与者尽可能的感受到气氛轻松,力求让他们说真话。

3.行为资料分析法

用户在使用产品时所产生的种种行为都可以用来观察用户的心理,调研人员通过分析这些数据,可以了解用户的许多情况。

用户的浏览时长和浏览内容可以反映用户的实际偏好,它比用户口头提供给调研人员的一些陈述更为可靠。

4.实验法

通过排除所有可能影响观测结果的因素,来获得现象间真正的因果关系。

比如视频网站,向用户提供高清视频服务,第一季度只收费25元每月,第二季度收费15元每月。如果两次不同价格的收费,使用该服务的用户没有差异,那么视频网站就得不出如下结论:较高的服务费用会显著影响用户观看收费视频的意愿。

四、调研方法确定以后,就可以着手调研问卷的设计了

设置调查问卷,是为了收集一手资料。不过,由于问卷中问句的格式、次序和问句的顺序都影响问卷的填答效果,所以对问卷中的问句进行测试和调整是非常必要的。

问卷设计的注意事项:

五、总结调研结果

将大数据统计预分析得到的结果,同产品调研人员实际调研得出的结果,进行比对,从而将数据和信息转换成发现和建议。

最后,大功告成,根据市场调研所得的结果,就可以制定具体的营销决策。

说明:由于在这个过程中,运用传统调研方式,无需耗费大量人力物力,对于可疑结果,可以通过控制变量的方式,进行多轮TEST,帮助产品人员真正发现调研问题的真相。

㈦ 如何利用大数据进行用户需求分析

1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统

学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。

据处理: 自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机地理解地自然语言,所以自然语言处理又叫做自然语言理
解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

据挖掘: 分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。

大数据的处理
1. 大数据处理之一:采集

数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时
有可能会有成千上万的用户
来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些
海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析

计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘

前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于

统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

㈧ HIVE大数据实战项目---用户行为分析

相关精彩专题链接: 数据成就更好的你

一、项目需求
本案例的数据为小程序运营数据,以行业常见指标对用户行为进行分析,包括UV、PV、新增用户分析、留存分析、复购分析等内容。

项目需求如下:
1.日访问量分析,并观察其走势
2.不同行为类型的访问量分析
3.一天中不同时间段的访问量分析(时间段按小时划分)
4.每日新增用户情况分析
5.用户留存分析
6.复购分析
7.商品排行榜分析
8.利用sqoop将数据分析结果导入mysql存储

二、数据介绍
1.用户行为信息表

2.查看具体的数据格式
a.用户信息:head -n 3 behavior.txt

b.去除首行,首行为标题行,hive导入数据时不需要此行:
sed -i "1d" behavior.txt

三、创建表
创建用户行为表(需结合数据格式)

四、用户行为分析:pv/uv
1.日访问量分析,并观察其走势

2.不同行为类型的访问量分析

3.一天中不同时间段的访问量分析(时间段按小时划分)

五、获客分析
获客分析:观察每日新增用户情况。新用户的定义:第一次访问网站

六、用户留存分析
留存定义:
1月1日,新增用户200人;
次日留存:第2天,1月2日,这200人里面有100人活跃,则次日留存率为:100 / 200 = 50%
2日留存:第3天,1月3日,这200名新增用户里面有80人活跃, 第3日新增留存率为:80/200 = 40%; 以此类推

留存分析结果如下:
例:2019-11-28日的新增7610个用户,次日这些新增用户有6026个再次访问网页,留存率为79.19%,第4天,有5980个用户再次访问,留存率为78.58%

七、复购分析
指在单位时间段内,重复购买率=再次购买人数/总购买人数。
例如在一个月内,有100个客户成交,其中有20个是回头客,则重复购买率为20%。
此处的回头客定义为:按天去重,即一个客户一天产生多笔交易付款,则算一次购买,除非在统计周期内另外一天也有购买的客户才是回头客。

1.用户的购买次数统计

2.复购率计算

八、商品排行榜信息
1.商品的销售数量top10,排名需考虑并列排名的情况

2.商品的浏览次数top10,排名需考虑并列排名的情况

3.商品的收藏次数top10,排名需考虑并列排名的情况

4.城市购买力排名

九、利用sqoop将数据分析结果导入mysql存储

1.在mysql创建一张表,字段类型、顺序都和hive中的表一样

2.测试sqoop连接mysql是否成功

3.利用sqoop将数据分析结果导入mysql存储

4.mysql中查询导入结果,看结果是否正确

阅读全文

与大数据下的用户分析相关的资料

热点内容
自学编程哪个机构好学 浏览:308
ps文件里哪一个是卸载 浏览:312
linux怎么知道被黑 浏览:161
diy需要什么工具 浏览:941
java比较器的工作原理 浏览:490
文件上传服务器工具哪个好用 浏览:170
yy怎么升级更快 浏览:846
人际沟通的工具是什么 浏览:817
HTC手机s510可安装微信吗 浏览:650
联想win10无法更新 浏览:825
在编程中验证结果的目的是什么 浏览:774
中兴隐藏文件在哪里 浏览:330
网络推广简历个人获奖情况怎么写 浏览:800
win10易升失败 浏览:941
网络无法接收到服务器怎么办 浏览:617
pic编程中tmp什么意思 浏览:460
农业种植微信号 浏览:322
js如何插入数据 浏览:145
java访问网站地址 浏览:680
微鲸电视文件在哪里 浏览:558

友情链接