① 千方科技是如何利用大数据“问诊”畅通道路堵点的
千方科技为了打通城市交通“毛细血管”、大力缓解城市交通拥堵。所以,针对超大、特大城市科学治堵,打造了“大数据+全域交通综合治理”的解决方案。千方科技通过梳理交通大数据,分析问题成因,“诊断”出区域内的交通痛点问题,然后再以大数据作为支撑,形成对不同场景的治理方法。
② 盘点政府推动大数据应用及发展的举措
盘点政府推动大数据应用及发展的举措
一、政府:推动大数据应用的最关键力量
(一)政府掌握大量最具应用价值的核心数据,是推动大数据应用的最关键力量
根据麦肯锡大数据研究报告指出, 各个行业利用大数据价值的难易度以及发展潜力 对比下,政府利用大数据难度最低而潜力最大。
大数据
另一方面政府开放大数据运用已经是大势所趋:
1、 政府掌握了大量最具应用价值的核心数据。 过去十多年来政府投资进行了大量电子政务或者称为政府信息化的工作,后台积累了大量的数据,而这些数据和公众的生产生活息息相关。有研究表明政府所掌握的数据使政府成为了一个国家最重要的信息保有者,有百分之七十到八十的核心数据存在于政府的后台 。
2、 开放数据本身就是政府在大数据时代提供的一项公共服务。 政府数据本质上是国家机关在履行职责时所获取的数据,采集这些数据的经费来自于公共财政,因而这些数据是公共产品,归全社会所有,应取之于民,用之于民。
3、 政府开放数据供社会进行增值开放和创新应用,推动经济增长乃至整个经济增长方式的转型。 数据是互联网创新的重要基础,如果政府不开放这一部分数据,很多创新应用没有数据作为支持,数据开发者能利用政府开放的数据,提供更好的服务,创造更多的价值, 这个过程能够提高整个国家在大数据时代的竞争力。
4、 政府开放数据推动经济增长获得的税收高于单纯卖数据获得的收入。 201 年世界经合组织在关于开放政府数据的报告中提到政府通过开放数据推动经济增长,从而获得的税收收入远高于单卖数据所能获得收入。开放数据激发经济活力从而得到税收提升,这是一个良 性循环,更是一个能创造巨大公共价值的全局性的战略。
(二) 国内外政府开放数据的情况
在 2009 年奥巴马签署开放政府数据的行政命令后,这些年来开放政府数据已成为了世界性的一个趋势。美国联邦数据平台 Data.gov 上线后,在美洲、欧洲、亚洲等地,开放政府数据已成为了政府的一项重要工作。美国联邦政府的开放政府数据平台开放了来自多个领 域的 13 万个数据集的数据。这些领域包括图中所列的农业、商业、气候、生态、教育、能源、金融、卫生、科研等十多个主题。这些主题下的数据都是美国联邦政府的各个部委所开放的。英国、加拿大、新西兰等国在 2009 年之后都建立起了政府数据开放平台,成为 了国际信息化和大数据领域的一个重要趋势。
大数据
在我国, 2011 年香港特区政府上线了 data.gov.hk,称为香港政府资料一线通。上海在 2012年 6 月推出了中国大陆第一个数据开放平台。之后,北京、武汉、无锡、佛山南海等城市也都上线了自己的数据平台。
大数据
(三)、 大数据对于政府治理具有极大的价值
大数据其实对政府的治理带来了全新的价值,无论是对宏观经济的决策能力、产业聚集能力、协同治理能力、社会管理能力、公众服务能力、快速响应能力的提升,大数据都可以在有很大层面上帮助政府治理。
大数据大数据
(四)、大数据上升至国家战略成为共识。
大数据时代,对大数据的开发、利用与保护的争夺日趋激烈,制信权成为继制陆权、制海权、制空权之后的新制权,大数据处理能力成为强国弱国区分的又一重要指标。国际上以美国为代表的发达国家纷纷布局大数据产业,相继推出大数据相关政策,大力支持大数据产 业在本国的发展。以美国为例,美国从开展关键技术研究、推动大数据应用和开放政府数据三方面布局大数据产业,尤其在开放政府数据方面非常积极,通过 Data.gov开放 37 万个数据集,并开放网站的 API 和源代码,提供上千个数据应用。我们认为,大数据未来将 引发新一轮大国竞争,大数据对整个世界的影响力会呈现爆发性增长趋势,因此包括我国在内的国家会在政策支持力度上不断提升,大数据战略将上升至国家战略已毋庸臵疑。
大数据
(五)、 我国 高度重视大数据未来发展
自去年 3 月“大数据”首次出现在《政府工作报告》中以来,国务院常务会议一年内 6次提及大数据运用。近期在 6 月 17 日的国务院常务会议上,李克强总理再次强调“我们正在推进简政放权,放管结合、优化服务,而大数据手段的运用十分重要。” 7 月 1 日, 国务院办公厅印发了《关于运用大数据加强对市场主体服务和监管的若干意见》。
大数据
大数据大数据
(六). 各部委行动时间表已经确,我国大数据发展面临历史性机遇
值得注意的是,近期国务院出台文件对各个部委推进大数据任务制定了明确的时间表,很多推进工作任务要求在 2015 年 12 月底前出台政策并实施,近期将是我国大数据发展政策出台的密集期。
表 3: 各部委推进大数据应用时间表
序号工作任务负责单位时间进度1加快建立公民、法人和其他组织统一社会信用代码制度。发展改革委、中央编办、公安部、民政部、人民银行、税务总局、工商总局、质检总局2015 年 12 月底前出台并实施2全面实行工商营业执照、组织机构代码证和税务登记证“三证合一”、 “一照一码”登记制度改革。工商总局、中央编办、发展改革委、质检总局、税务总局2015 年 12 月底前实施3建立多部门网上项目并联审批平台,实现跨部门、跨层级项目审批、核准、备案的“统一受理、同步审查、信息共享、透明公开”。发展改革委会同有关部门2015 年 12 月底前完成4推动政府部门整合相关信息,紧密结合企业需求,利用网站和微博、微信等新兴媒体为企业提供服务。网信办、工业和信息化部持续实施5研究制定在财政资金补助、政府采购、政府购买服务、政府投资工程建设招投标过程中使用信用信息和信用报告的政策措施。财政部、发展改革委2015 年 12 月底前出台并实施6充分运用大数据技术,改进经济运行监测预测和风险预警,并及时向社会发布相关信息,合理引导市场预期。发展改革委、统计局持续实施7支持银行、证券、信托、融资租赁、担保、保险等专业服务机构和行业协会、商会运用大数据为企业提供服务。人民银行、银监会、证监会、保监会、民政部持续实施8健全事中事后监管机制,汇总整合和关联分析有关数据,构建大数据监管模型,提升政府科学决策和风险预判能力。各市场监管部门2015 年 12 月底前取得阶段性成果9在办理行政许可等环节全面建立市场主体准入前信用承诺制度。 信用承诺向社会公开,并纳入市场主体信用记录。各行业主管部门2015 年广泛开展试点, 2017 年 12 月底前完成10加快建设地方信用信息共享交换平台、部门和行业信用信息系统,通过国家统一的信用信息共享交换平台实现互联共享。各省级人民政府,各有关部门2016 年 12 月底前完成11建立健全失信联合惩戒机制,将使用信用信息和信用报告嵌入行政管理和公共服务的各领域、各环节,作为必要条件或重要参考依据。在各领域建立跨部门联动响应和失信约束机制。建立各行业“黑名单”制度和市场退出机制。推动将申请人良好的信用状况作为各类行政许可的必备条件。各有关部门,各省级人民政府2015 年 12 月底前取得阶段性成果12建立产品信息溯源制度,加强对食品、药品、农产品、日用消费品、特种设备、地理标志保护产品等重要产品的监督管理,利用物联网、射频识别等信息技术,建立产品质量追溯体系,形成来源可查、去向可追、责任可究的信息链条。商务部、网信办会同食品药品监管总局、农业部、质检总局、工业和信息化部2015 年 12 月底前出台并实施13加强对电子商务平台的监督管理,加强电子商务信息采集和分析,指导开展电子商务网站可信认证服务,推广应用网站可信标识,推进电子商务可信交易环境建设。健全权益保护和争议调处机制。工商总局、商务部、网信办、工业和信息化部持续实施14进一步加大政府信息公开和数据开放力度。除法律法规另有规定外,将行政许可、行政处罚等信息自作出行政决定之日起 7 个工作日内上网公开。各有关部门,各省级人民政府持续实施15加快实施经营异常名录制度和严重违法失信企业名单制度。建设国家企业信用信息公示系统,依法对企业注册登记、行政许可、行政处罚等基本信用信息以及企业年度报告、经营异常名录和严重违法失信企业名单进行公示,并与国家统一的信用信息共享交换平台实现有机对接和信息共享。工商总局、其他有关部门,各省级人民政府持续实施16支持探索开展社会化的信用信息公示服务。建设“信用中国 ”网站,归集整合各地区、各部门掌握的应向社会公开的信用信息,实现信用信息一站式查询,方便社会了解市场主体信用状况。各级政府及其部门网站要与 “信用中国 ”网站连接,并将本单位政务公开信息和相关市场主体违法违规信息在“信用中国 ”网站公开。发展改革委、人民银行、其他有关部门,地方各级人民政府2015 年 12 月底前完成17推动各地区、各部门已建、在建信息系统互联互通和信息交换共享。在部门信息系统项目审批和验收环节,进一步强化对信息共享的要求。发展改革委、其他有关部门持续实施18健全国家电子政务网络,加快推进国家政务信息化工程建设,统筹建立人口、法人单位、自然资源和空间地理、宏观经济等国家信息资源库,加快建设完善国家重要信息系统。发展改革委、其他有关部门分年度推进实施, 2020 年前基本建成19加强对市场主体相关信息的记录,形成信用档案。对严重违法失信的市场主体,按照有关规定列入“黑名单”,并将相关信息纳入企业信用信息公示系统和国家统一的信用信息共享交换平台。各有关部门2015 年 12 月底前实施20探索建立政府信息资源目录。各有关部门2016 年 12 月底前出台目录编制指南21引导征信机构根据市场需求,大力加强信用服务产品创新,进一步扩大信用报告在行政管理和公共服务及银行、证券、保险等领域的应用。发展改革委、人民银行、银监会、证监会、保监会2017 年 12 月底前取得阶段性成果22落实和完善支持大数据产业发展的财税、金融、产业、人才等政策,推动大数据产业加快发展。发展改革委、工业和信息化部、财政部、人力资源社会保障部、人民银行、网信办、银监会、证监会、保监会2017 年 12 月底前取得阶段性成果23加快研究完善规范电子政务,监管信息跨境流动,保护国家经济安全、信息安全,以及保护企业商业秘密、个人隐私方面的管理制度,加快制定出台相关法律法规。网信办、公安部、工商总局、工业和信息化部、发展改革委等部门会同法制办2017 年 12 月底前出台(涉及法律、行政法规的,按照立法程序推进)24推动出台相关法规,对政府部门在行政管理、公共服务中使用信用信息和信用报告作出规定,为联合惩戒市场主体违法失信行为提供依据。发展改革委、人民银行、法制办2017 年 12 月底前出台(涉及法律、行政法规的,按照立法程序推进)25建立大数据标准体系,研究制定有关大数据的基础标准、技术标准、应用标准和管理标准等。加快建立政府信息采集、存储、公开、共享、使用、质量保障和安全管理的技术标准。引导建立企业间信息共享交换的标准规范。工业和信息化部、国家标准委、发展改革委、质检总局、网信办、统计局2020 年前分步出台并实施26推动实施大数据示范应用工程,在工商登记、统计调查、质量监管、竞争执法、消费维权等领域率先开展示范应用工程,实现大数据汇聚整合。在宏观管理、税收征缴、资源利用与环境保护、食品药品安全、安全生产、信用体系建设、健康医疗、劳动保障、教育文化、交通旅游、金融服务、中小企业服务、工业制造、现代农业、商贸物流、社会综合治理、收入分配调节等领域实施大数据示范应用工程。
③ 大数据将社会综合治理方式从联合共享推向单兵作战 对吗
错误
大数据将社会综合治理方式
从单兵作战推向联合共享
④ 算法综合治理剑指“大数据杀熟”
4月8日,中央网信办网站披露,中央网信办牵头开展“清朗·2022年算法综合治理”专项行动。深入排查整改互联网企业平台算法安全问题,评估算法安全能力,重点检查具有较强舆论属性或 社会 动员能力的大型网站、平台及产品,推动算法综合治理工作常态化和规范化,营造风清气正的网络空间。业内人士指出,随着监管行动的陆续开展,算法推荐服务将得到 健康 发展。
开展算法综合治理
此次专项行动开展时间为即日起至2022年12月初,主要围绕组织自查自纠、开展现场检查、督促算法备案、压实主体责任、限期问题整改五个方面开展工作。
组织自查自纠方面,中央网信办指导互联网企业对照管理规定有关要求,全面梳理算法应用情况,深入开展算法安全能力评估,积极采取有效措施,整改算法应用问题,消除算法安全隐患,维护网民合法权益。
开展现场检查层面,中央网信办牵头会同有关部门和各地网信部门组成联合检查组,对部分互联网企业开展现场检查。各地网信部门可结合当地实际自行对属地其他企业开展检查,重点检查企业算法合规情况和算法安全能力。
中央网信办强调,对检查中发现的措施不健全、执行不到位、效果不理想等问题,向企业及时反馈并督促限期整改,对存在违法违规行为的企业,将依据管理规定严肃问责处罚、责令改正。
3月17日,国新办就2022年“清朗”系列专项行动有关情况举行发布会,指出十个方面的重点任务,算法综合治理便是其中的一项。
规范算法推荐服务
算法推荐技术快速发展,但也隐藏诸多风险隐患。
近年来,算法应用在给政治、经济、 社会 发展注入新动能的同时,算法歧视、“大数据杀熟”、诱导沉迷等算法不合理应用导致的问题也深刻影响着正常的传播秩序、市场秩序和 社会 秩序。在互联网信息服务领域出台具有针对性的算法推荐规章制度,是防范化解安全风险的需要,也是促进算法推荐服务 健康 发展、提升监管能力水平的需要。
对于这一问题,相关部门给予高度重视。2021年12月31日,国家互联网信息办公室、工业和信息化部、公安部、国家市场监管总局联合发布《互联网信息服务算法推荐管理规定》,该管理规定自2022年3月1日起施行。
《规定》明确了算法推荐服务提供者的用户权益保护要求,包括保障算法知情权,要求告知用户其提供算法推荐服务的情况,并公示服务的基本原理、目的意图和主要运行机制等;保障算法选择权,应当向用户提供不针对其个人特征的选项,或者便捷地关闭算法推荐服务的选项。监管机构诸多举措从不同角度推动互联网环境的 健康 有序发展,更好地保护互联网用户的使用权益。
业内人士指出,互联网企业积极配合《规定》要求,陆续允许用户关闭个性化推荐。
对于算法推荐监管对互联网平台的影响,根据国海证券研报,“整体看并非否定算法推荐,重点是引导算法推荐宣扬正能量、避免利用算法实施‘大数据杀熟’等。”针对市场担忧的对短视频平台影响,该研报认为,算法和内容层面的监管不会对短视频用户规模和时长造成较大影响。短视频平台内容丰富,过去几年主流平台根据相关要求建立了较为严格的内容审核制度,对相关内容进行严格把关。
⑤ 大数据风险管理不容忽视
大数据风险管理不容忽视
当前,我国信息化快速发展,人工智能正以前所未有的速度、广度和深度融入经济社会各个方面,大数据风险管理的重要性和紧迫性日益凸显。对此,我们必须与时俱进,切实重视数据安全问题,从组织管理、规程标准、技术手段等多角度着手进行风险防范,围绕大数据市场准入的风险屏障与防范、生产使用过程中的风险监控和管制,以及风险预警和化解等关键环节,采取组织控制、制度控制与技术控制的综合治理机制,形成数据安全防护“三位一体”的闭环管理链条。
信息和数据是进行国家公共治理的基础,在经济社会发展中的基础性、战略性、先导性地位日益突出。随着信息和数据容量、复杂性和战略意义的提升,如何更为有效地化解数据治理中战略导向缺失、数据权属体系不完善、分级分类机制缺失等难题,是当前需要研究的课题。要实现数据安全防护总体目标,就必须更好实施全面风险管理体制改革,有效统筹数据资源和风险管理,切实提升我国数据治理能力。
完善组织管理
应着力打造“集中式”风险管理组织架构,围绕大数据市场准入的风险屏障与防范、生产使用过程中的风险监控和管制,以及风险预警和化解等关键环节,成立统一的大数据管理部门,负责组织领导、统筹协调全国大数据发展和具体的风险防范管控,以及发生重大事故时的危机管理。
具体来看,大数据管理部门应做好数据采集、数据维护、数据分析和风险管理以及数据政策的主导者,将主要开展跨区域、跨部门、跨层级的大数据交换共享,以及数据关联、比对、清洗、安全防护等治理工作,需要具备包括数据收集能力、数据解读能力、判断能力和辅导能力等方面的专业能力,通过加强数据资源的建设、管理和开发,满足监管、隐私保护和安全等方面的要求,保证数据安全管理方针、策略、制度的统一制定和有效实施。
同时,推进国家公共治理数字化基础设施的建设,构建一个扩展性强、高度可靠的,以互联网为基础的数字平台,负责管理基础数据资源安全。搭建“数据资源服务施政平台”,充分发挥平台组织协调和快速部署数据安全措施的作用。构建“安全即服务”的新模式,推进数据资源的整合共享、统一管理、主动防护,力争将原本分散存储在不同部门、行业的数据信息孤岛连接成一个互联互通的新价值网络,形成传统以控制为核心的安全模式和新型的主动性数据安全模式相互支撑、协同发挥作用的数据风险防范体系。
强化制度规范
为确保数据风险管理工作有规可依,建议构建与现代化经济体系和国家治理能力现代化相适应的风险管理制度环境,努力将保护数据信息资产的措施融入现代化经济体系建设、国家治理体系建设,探索出一条以控制功能和主动保护双管齐下、共同落实数据安全管理责任的发展模式和路径。
一是强化顶层设计,打造全方位的安全保障体系。应在国家法律法规层面,进一步完善包括数据权属、数据管理、关键基础设施、稳定性保障、数据安全等在内的相关专门性法律。同时,在生产使用过程中的风险监控和管制方面,应聚焦大数据领域的技术研究与应用,推进大数据采集、管理、共享、交易等标准规范的制定和实施,研究制定一批基础共性、重点应用和关键技术标准;在风险预警和化解方面,应在确保大数据法律性开放的基础上,加强风险管理流程、授权管理制度、风险限额管理、风险评价考核、风险奖惩处罚、风险责任约束、风险决策报告等方面的建设,构建全面数据风险管理的体系架构。
二是明确相关部门和人员责任,完善风险管理体制机制。在大数据市场准入的风险屏障与防范方面,明确数据系统权限和数据管理相关责任部门,制定数据系统权限及数据管理办法,规范政府部门数据系统权限申请及数据管理流程,形成数据安全实践工作的制度保障。建立完善数据服务、网络安全防护和信息安全等级保护等相关制度。在生产使用过程中的风险监控和管制方面,有必要针对大数据安全可能引发的负面影响,编制数据管理制度和规程文件。在风险预警和化解方面,相关部门必须适应风险管理从静态数据向动态数据的转化、从人为判断向模型分析的转化、从零散管理向体系管理的转化,加强数据安全事件监测和事态发展信息搜集工作,积极开展应急处置、风险评估和安全控制的能力建设,提升基于持续检测、态势感知和及时响应处置的数据安全保障能力,释放数据活力。
三是加快建立数据信息资源目录体系,满足技术性开放的数据安全要求。立足实际情况,根据数据应用的差异化需求和不同场景,明确数据信息资源目录的管理者、提供者和使用者的不同角色和职责,按照管理范围和职责权限,落实数据资源的编目、注册、发布和维护。在生产使用过程中也要加快建立统一的数据标准体系并制定数据安全策略,通过数据链的标准化和主动性数据安全模式,确保数据的清晰可溯,确保相关机构和个人最大程度地自由安全获取和利用数据。
加强技术保障
有效的技术保障,是保障大数据安全、提升数据治理能力的关键。
一是加强政策引导,不断提升技术能力。推动大数据领域产学研协同创新合作,加强大数据风险管理核心技术的联合攻关,增强防范和处置数据安全事件的技术支撑能力。重点支持网络安全监测预警、处置救援、应急服务等,以核心技术的突破和发展,有效降低大数据的安全风险。
二是建立数据安全防范数据库,加强数据共享。鼓励以大数据产业联盟、相关行业协会等组织为依托,在大数据生产使用过程中的风险监控和管制,以及风险预警和化解方面,建立一个共享的数据安全防范数据库,促进数据安全防范信息和修复举措的收集和共享,低成本、高质量、高频度地生产、使用数据安全防范相关知识。
⑥ 在千方科技全面参与下,滨江区“大数据+全域交通综合治理”解决方案实施后取得哪些效果
要说在千方科技全面参与下,滨江区“大数据+全域交通综合治理”解决方案实施后取得的效果也是大家有目共睹的,通过大数据,得出了很多结论,比如物联网小镇、白马湖产业园区等地,人员出行量很大,但公交线路不够,早晚高峰太拥堵,进园的车太多,出园的路却空闲着,然后调整公交线路,将儿康路打造成高峰期潮汐可变车道等,提高了行人过街效率,降低了拥堵率。