导航:首页 > 网络数据 > 大数据引擎向公众

大数据引擎向公众

发布时间:2023-03-06 05:48:42

⑴ 理解大数据时代的数字鸿沟

理解大数据时代的数字鸿沟
大数据是近几年来炙手可热的话题,大数据的优势以及大数据所带来的新思潮形成研究热潮。从随机抽样到全体样本,从要求精确到应对混杂,从追求因果到发现关联,大数据时代改变着我们的信息环境与信息处理思维模式。但是,并非所有的人都能同时走入大数据时代,如同媒介技术的每一次创新与扩散一样,敏感的企业和组织是大数据的先行者和实践者,也是最早的大数据受益者;而普通的个体则在面对大数据时呈现差异,有的在时间上跟进迟缓,有的在数据分析能力上存在欠缺,有的不知道如何寻找开放数据,有的在数据噪音前不知所措。传统互联网时代的数字鸿沟尚未完全填平,而在大数据时代新的数字鸿沟又在形成并不断影响与改变着人们的政治经济地位。
讨论大数据时代的数字鸿沟,需要明确区分“数字差异”与“数字鸿沟”.从词源上看,两者意义接近,都是由“Digital Divide”翻译而来。但从传播效果或情感色彩上看,数字鸿沟比数字差异更能引起人们的警示。在大数据时代,人们创造数据并被数据所包围,囿于人的视野及精力,人们在面向数据并做出选择时必然会出现差异。比如,互联网提供的个性化的搜索引擎,个性化藏夹等都会导致信息浏览的个人化,大数据时代的数字差异不可避免。数字鸿沟比数字差异更能引起人们的警惕,数字鸿沟更强调在认识和机会上的差异。数字差异是知道有机会而不为,数字鸿沟则是想为而没有能力或机会。同在大数据背景之下,数字鸿沟可能会在拥有数据、分析数据和数据思维三个层面存在数字鸿沟。
三个不同的分析维度
(一)拥有数据的数字鸿沟
大数据时代,“全新”“、革命”“、颠覆性”等术语频繁出现,但“大数据”这一标签下所指涉的问题却由来已久。伴随着互联网的勃兴,数据的指数增长、信息超载和数据处理问题等一直是人们不得不面对的问题。在大数据时代,数据的掘取、存储、处理与应用方面的技术有了快速的发展,但是在谁拥有数据这个造成数字鸿沟最基本的问题上,当下关于大数据的讨论并未给出让人满意的答案。
1.数据开放
对于企业和政府来讲,大数据是一笔宝贵的财富,“对大数据的掌握可以转化为经济价值的来源”也可以从更为准确的角度了解社会,并进行管理。因此,企业和政府需要从普通公众那里搜集数据,数据的传播是一种自下而上的过程,最先拥有和掌控大数据的也是来自企业和政府的“数字先锋”.但是,消弭数字鸿沟恰恰需要另一种形式的数据流动,即开放数据---让数据从企业和政府所有而变成被公众所共享,这是一个自上而下的过程。在现实生活中,这种自上而下的信息流动处处面临着阻力:一方面企业把数据当做核心竞争力或者核心机密,并且花费了大量的人力、物力、财力去做数据分析,因此很难实现数据的共享;另一方面政府的数据公开步伐还比较缓慢,公众获得有价值的信息依然有难度。
数据开放所形成的数字差异需要开放数据来解决。哪些数据能够开放,以何种形式向公众开放,具体的实施者是谁,谁又能为数据开放过程中的“搭便车”行为买单都是需要思考的问题。大数据既可以产生商业价值,同时又兼具公共性的特质,在此过程中,和公众利益密切相关的数据需要开放,我国早在 2007 年 1 月 17 日就通过了《中华人民共和国信息公开条例》,明确规定原则、范围、方式、程序和监督保障制度。在大数据时代,政府开放数据的力度应该进一步加大,同时对公众进行获取数据的素养教育,实现数据的民有和民享。作为一种公共资源,数据分配的公平性和财富分配的公平性一样,都会对社会结构产生非常大的影响,政府和企业可以依靠数据存储与分析技术的发展做“数据银行”业务,让每个公民都有机会在“数据银行”存储和提取自己想要的数据。国内学者涂子沛在《大数据》一书中,把开放数据放在数据民主的角度去思考,指出开放数据运动会推动“开放政治、开放政府、开放媒体、开放城市等等一系列的运动和口号”.这对消除数据所有权所形成的数字鸿沟,建设一个数据公平的美丽新世界提供了一条可行之路。
2.数据搜集
大数据时代的基础在于海量数据,究竟多大才是大数据呢?“麦肯锡全球研究所”的最新报告对大数据下了一个定义:“大数据是指大小超出了传统数据库软件工具的抓取、存储、管理和分析能力的数据群”而且,大数据的标准随着数据的指数增长也在不断发生变化。今天,我们在谈论大数据时往往以 pb 为单位,海量数据提供了更为详细的信息,但是也存在一些隐忧,即数据的价值密度太小,因而搜集数据以及在海量数据中寻找有价值信息的成本太高。舍恩伯格在接受《中国经济周刊》记者谢玮专访时说:“在许多方面,我们仍然生活在一个‘小数据’时代,在这个时代收集数据非常耗时、昂贵和困难。”大数据时代的数据搜集是一项庞大的工程,而且,大数据还远远未达到普通人能够支付得起的阶段。
搜集数据的数字鸿沟在大数据时代似乎没有减少,反而随着大数据处理技术的发展而在逐步扩大。对于媒体和企业来讲,搜集数据和处理数据都并非易事,着名的《哈佛商业评论》杂志对全球财富1000强的企业应用大数据的情况做了一项科学调研,发现“大多数企业还处于大数据的入门阶段,还小具备真正挖掘大数据的能力”,而且,“只有巧%的受访者认为所在企业的数据可访问性够好或者达到世界级水平,只有21%的受访者认为所在企业的分析能力够好或者达到世界水平”.显然,对于普通公众来说,搜集数据、挖掘数据的难度更大,差异也更大。在搜索引擎主宰信息流向的时代,公众就因为使用不同的搜索引擎而产生数字鸿沟,使用普通的搜索引擎与使用较为专业的搜索引擎和数据库之间存在着差异。在大数据时代,公众不仅要知道如何利用专业的搜索引擎,还需要在海量的信息中迅速寻找最有价值的信息,囿于公众能力的差异,在搜集阶段产生的数字鸿沟将难以避免。而且,互联网下的数据处于不断更新的状态,时效性是非常重要和关键的。在对“知识鸿沟”的研究中,西方学者 J.S.艾蒂玛和 F.G.克莱因曾经提到“上限效果”,指的是随着时间的推移,知识鸿沟会逐渐减少。但是在互联网时代,信息的价值和及时性有密切的关系,即使随着时间的推移公众在搜集数据上的“鸿沟”逐渐缩小,但是后来者所拥有的数据价值也会大打折扣。媒介环境学派的代表性人物莱文森对信息超载的论述可能会对缓解大数据时代数据搜集所产生的差异提供帮助,他认为建立信息分类法则可以解决信息超载的困扰,比如在图书上建立图书分类法则并依据这一法则运作,就能够解决图书馆的信息超载问题,这一思想对解决长期困扰人类的信息超载具有普遍的启示意义。
(二)分析数据的数字鸿沟
谁拥有数据会产生差异,而在同等拥有数据的情况下,公众利用数据的能力不同,也会产生差异。大数据既包含以数量关系为基础的结构化数据,也包含以定性描述为主的非结构化数据,而且,非结构化数据往往占有很大的比例。因此,在大数据时代,同样拥有数据并不代表着同样能够利用数据,分析数据和掘取价值上的数字鸿沟依然需要引起我们的警惕。
1.数据删除
大数据时代是一个信息高度碎片化的时代,信息中的重复、噪音、冗余和信息中的人为因素(网络水军)等,都影响到人们对数据的分析与利用,此时,删除数据与收集数据同样重要。除《大数据时代:生活工作与思维的大变革》之外,舍恩伯格还有一部影响深刻的着作-《删除:大数据取舍之道》。在这部着作中,舍恩伯格提醒人们在大数据时代“记忆成为常态,而遗忘成为例外”,因此要注意信息取舍之道;在这个“没有遗忘的世界里”,遗忘恰恰成为一种宝贵的信息处理方式与权利数据删除是一个人性化的问题,随着“电脑原生代”的成
长,每个人都有着青涩的、尴尬的、甚至小堪回首的过去,互联网之前人们会尝试遗忘这些小愉快的过去,但是互联网的记忆让每个人小得小而对这样一个现实:人们可能会为若十年前犯过的错误买单。
删除同样是一个技术性的问题,在互联网时代,历史悠久的数据会逐渐成为“数据垃圾”,不但占用大量的存储资源,而且也会影响对当下数据的分析,评估数据与删除数据成为大数据时代必不可少的数据处理方式。但是具体到个人就会产生一个问题,人不可能像机器一样去评估和处理,只能按照过往的经验来处理信息。另一位国外学者蒂奇诺在分析“知识鸿沟”所形成的原因时提到,个人的信息储备也会产生“知识鸿沟”,即“正规教育和从大众媒体中获得的信息会帮助受教育程度较高的人提供理解知识的背景”.大数据时代并未改变人们接受信息的习惯,因此,在大数据时代依然是受教育程度较高的人先学会接受和删除信息。删除还有一个颇具哲学意味的意义,在大数据时代,选择即删除。人对数据的接受具有零和效果“,朝向一组数据的同时意味着放弃另外的数据,这也是另外一种意义上的删除,处理掉低质量的过时数据是发现大数据意义的前提。知名学者马修·E·梅所着的《精简:大数据时代的商业致胜法则》,同样也提到大数据时代的信息删除与精简问题。在大数据时代,能够快速在第一时间获得最有价值数据的企业会逐渐发展起来,而不懂大数据或沉迷于大数据的企业会逐渐落伍。
2.数据可用
大数据时代提供了一个多元、详细且复杂的数据环境,在大数据时代,一切现实都可以量化为数据。但是如果用大数据来创造价值就需要从海量数据中找出有价值的数据,并把数据还原为现实。因为”,拥有一个数据集,无论它们多大或者多小,其自身都不会带来任何价值。“大数据的最终价值还是体现在数据的”可用“之上。与此同时,关于数字鸿沟的问题也出现在数据的”可用“上,大数据如同提供了一个美味的坚果,不借助工具很难打开它,而大数据所使用的”云存储、云计算“又不是任何公众都能轻易掌握的。少部分人掌握了分析数据与应用数据的能力,还有相当多的大众面对浩如烟海的大数据不知所措,最终陷入信息超载的焦虑之中。
弥补数据可用的”数字鸿沟“需要让数据变得直观而可视,这仍然是一个涉及公共性的话题。把数据还原为现实既需要数据分析的人工智能技术,也需要人的敏锐的分析与判断能力,更为关键的是,需要把对数据所提示的环境真实地传达给公众。政府和媒体要做的依然很多,首先需要数据处理技术的普及,把解读关于公共事务的大数据当做一个公共事业,如在 20世纪 60 年代,被称为”人工智能之父“的约翰·麦卡锡曾预言”有朝一日,计算可能变成公共设施“.其次,媒体要做好数据与现实之间”摆渡人“的角色,不仅要用大数据来分析受众获得收益,更要体现媒体的公共性,让受众能够读懂大数据并受用于大数据。比如,美国记者在报道龙卷风时”将龙卷风破坏房屋的损毁数据,与地图相重叠,制成大数据地图。“这样,受众既能够比较精确地了解龙卷风带来灾害的大体区域,又能够精确理解某个区域龙卷风造成损失的具体情况。
(三)数据思维的数字鸿沟
大数据热所带来的重要变化是关于数据思维的变化,关于大数据的讨论有很多,但并非有了”大数据“这样一个概念我们的信息环境就自然而然发生了质的变化,而是在互联网逐渐走向海量数据的今天,从”数字化生存“转向”数据化生存“的大数据思维让人们多了一个认识世界的视角。在大数据技术之外的数字鸿沟来自于人们的思维层面,即人们对待数据的思维存在差异。
1.超越大数据
大数据时代的思维之一是要超越”数据迷思“,把数据当成一种工具而不是一种数据霸权。舍恩伯格在《大数据时代》一书中指出大数据带来的三种变化:不是随机样本,而是全体数据;不是精确性,而是混杂性;不是因果关系,而是相关关系。这些变化对于传统的定量研究方法有极大的影响,可是定量方法的改进并不能取代定性的研究,必须超越数据才能发现数据背后的意义与价值。于是,大数据思维包含了三个层次。第一个层次是发现海量数据,了解海量数据的潜在价值,但并不能很好的利用数据;第二个层次是能够较好的利用数据,但是往往陷入数据崇拜,解决不了关于意义的问题;第三个层次是能够利用数据,但是也能够同时超越数据,发现价值。这三个层次在大数据的发展过程中既是一个历时的过程,也是一个共识的过程。大数据概念的兴起与扩散还需时日,因此在数据思维上三个层次的”数字鸿沟“仍将长期存在。
2.大数据素养
数字鸿沟的减小也需要在硬件与软件两个方向上作出努力,在大数据时代仍然如此。从最近几年的中国互联网络统计报告来看,硬件的数字鸿沟在逐渐缩小,而软件的数字鸿沟仍在扩大。消弭数字鸿沟需要政府、企业等开放公共数据并提供利用公共数据的方法,还需要提升全体公民的大数据素养,实现大数据的民有与民享。数据素养也被称为数据信息素养,主要指人们在科学数据的采集、组织和管理、处理和分析、共享与协同创新利用等方面的能力,以及在数据的生产、管理和发布过程中的道德与行为规范。全面提高全民的数据素养,我们才能自信地迎接大数据时代的到来,并利用大数据为人类创造新的福祉。

⑵ 大数据时代发展历程是什么

可按照时间点划分大数据的发展历程。

⑶ 大数据是把双刃剑

今天,计算机功能发展到前所未有的强大,海量数据——包括个人信息——被其搜集形成大数据库。这些数据被正常合法利用的同时也存在着被滥用的危险。

大数据的预测功能赋予了其变革我们生活的巨大潜能。在它的支持下,未来两天内天气预报的准确率将会达到95%。然而大数据一旦被滥用,用户的隐私安全就会受到威胁,经常使用互联网的人尤甚。

这些威胁是怎样产生的?我们又应该如何在保证大数据造福社会的同时应对这些日益加剧的威胁呢?

潜在问题的影响范围

首先,单纯从大数据安全事件涉及的人数来分析,其影响范围在不断扩大。2014年阿肯色大学专业发展系统被攻破,导致50,000人身份信息泄露。这个数据已经不小了,但相比同年ebay公司数据外泄事件中145,000,000人的生日、住址、邮箱及其他信息被窃取,就是小巫见大巫了。

从安全维护的专业领域来说,要保护大数据库中信息不被窃取,更是不容乐观。一定程度上,这和储存和处理信息所使用的基础技术的本质缺陷有关。

像亚马逊这样的大数据公司,对分布式计算的依赖性极大,他们往往在世界各地都分散设有数据处理中心。亚马逊公司将全球业务分为十二个区进行经营,每个区大量的数据中心都不断遭受着物理攻击和网络袭击,这些威胁主要是来自成百上千隐匿的独立服务器。

访问控制的难题

控制对信息或网页访问的最好策略就是只设置单一的访问接口,这比控制当前的成百上千个接口要简单的多。然而事实确是:大数据广泛地储存在各个区域。其容量之巨、分布之广、获取渠道之多,也让它在面对威胁时更加脆弱。

除此之外,很多公司对其尖端的软件组件以及大数据基础设备的安全性并没有给予足够的重视。这更是给潜在攻击大开了方便之门。

一个典型的例子,Hadoop(译者注:由Apache基金会开发的分布式系统基础架构,可以让用户在不了解分布式底层细节的情况下,开发分布式程序)中大量的软件组件使得编程人员可以在分布式计算系统获取大量数据信息。刚推出时,Hadoop的安全性能较低,不能同时供很多人使用。很多大公司却不顾这一缺陷,依旧采纳Hadoop成为其整个公司的数据平台。

用户需求推动数据安全发展

从用户角度来说,通过多种方式来提高大数据产品的安全性至关重要,例如同大数据的收集和使用组织签订条件和协议、服务水平协议、安全密封等。

大数据公司方面又应该怎样保护用户的个人信息不外泄呢?为防止信息外泄落入不法使用者手中,我们可以采取包括信息加密、访问控制、入侵侦测、数据备份、使用过程审查等策略。这样数据的安全性提高了,我们个人信息的隐私性也就等到了加强。

然而,过分强调安全性也许会侵害你的隐私:执法机构可以借口安全原因来搜集更多的个人信息,比如员工计算机的浏览历史。

执法机构打着增强安全性的旗号,将每个人都当成是潜在的犯罪分子或是恐怖分子,搜集其信息,用于某一天证明其罪行。政府通过这种方式掌握了我们大量的信息,不仅如此,苹果、谷歌、亚马逊等公司也会被要求提供其他情报,包括我们的网购记录、网页浏览历史以及解密后的各项数据。

这种监视所遵循的基本原则就是:每个人都是不可信的(大数据技术让这种监视的成本大大降低,可行性也随之提高)。然而这些搜集起来的信息很有可能泄露并被滥用,美国国安局员工滥用职权监听他人电话事件就是一例。

其实如果能被适当利用,大数据可以帮助我们获取更多的信息,提高有关潜在计算机攻击和攻击者的情报的质量(特别是准确性)。这样一来,你的隐私就得到了更好的保护。

举个例子,理想的状况是:如果大数据分析引擎能在海量的邮件中精确地辨别出哪些是欺诈邮件的话,我们也就再也不用担心碰到钓鱼邮件了。

大数据是怎样使用的—对你有利还是有害

其他有关大数据使用的问题还有,一些公司为了要针对你的习惯和爱好给你发送特定的广告,他们会记录你所有的浏览历史。大数据为他们这种行为提供了便利——成本更低,分析更简单。

IBM公司的“性格洞察”服务,能够根据你的上网习惯,对你的形象进行“素描”。这已经远远不止身份信息被泄露这么简单。你的性格特点,比如是否外向、是否具有环境意识、政治上是保守还是革新,甚至连是否有去非洲旅游的意愿,都会在其调查结果中表现出来。

这些公司对外宣称,这项技术可以极大地提高上网体验。听起来是在为用户考虑,但是反过来,我们也不难想到,同样的信息也很容易用来损害我们的利益。比如现在已经有保险公司通过大数据分析出的用户素描来实行差别收费。

想要解决这个问题,禁止大规模数据搜集显然是不现实的。不管我们喜欢与否,大数据时代已经来到。找出方法在允许合法使用大数据的前提下保护隐私,才会让我们的生活更加安全、富足、高效

例如,在合法安全地使用时,大数据科技就能极大地提高反侦察的效率,这反过来也会让我们避免身份信息盗用和潜在的经济损失。

想要在享受大数据带来的便利的同时解决保障安全性、隐私性的难题,关键在于信息使用的公开透明。大数据的操作者必须公开所搜集数据的内容及用途。

除此之外,用户必须有权了解数据是如何储存的,谁可以使用这些数据以及数据的授权过程。最后,大数据公司也要对其为保障用户安全对数据所采取的安全管控措施作具体的阐释以此来赢得公众的信任。


注:所有文章均由中国数字科技馆合作单位或个人授权发布,转载请注明出处。

⑷ 大数据时代呼唤公共服务创新

大数据时代呼唤公共服务创新_数据分析师考试

最近,上海有个政府网站比较火。这个网站不发布新闻,但这个网站的开通本身就是新闻。这个网站只提供数据信息,它的名字叫“上海政府数据服务网”。

由上海市政府办公厅和上海市经济信息化委牵头,市公安局、市工商局、市交通委等9家试点单位参与,建设了国内首个政府数据服务网,启动了政府数据资源向社会开放试点工作。市民可以通过该网站下载212项数据产品、30项数据应用。在试点的基础上,上海要求当地所有政府部门都要在年内向公众提供数据产品浏览、查询和下载等服务。

上海市把全市政府资源数据集中存储和统一管理,并向社会公开,这种做法看似简单实则复杂,需要莫大的智慧和足够的勇气,无疑是公共服务拥抱大数据时代的有益探索,其经验可复制、可推广。

当我们还在被云计算弄得云里雾里、想象物联网的美好生活时,一个大规模生产、分享和利用大数据的时代已经降临。正如哈佛大学社会学教授加里金所言:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”

大数据不仅是一种海量的数据状态及相应的数据处理技术,更是一种思维方式,一项重要的基础设施,一场由技术变革推动的社会变革,而这种社会变革又伴随并呼唤着公共服务创新。大数据时代给公共服务提出了新挑战,倒逼公共服务的理念和实践创新。

公共服务部门要适应大数据时代,首先就得对大数据的认识、理解和应用要有一个正确的态度。公共服务部门每天都要处理大量数据,或许觉得枯燥无味,但这些数据对于公众或公司而言却是非常有价值的信息。像上海政府数据服务网公布的房地产开发企业信息就有助于公众购房决策,医院床位、候诊人数等信息方便公众就医。比如,某导航公司将上海公开的2万多条地理位置信息用于地图编制与更新,在服务社会之时收获了商业利益。

其次,要有“大数据思维”。“大数据思维”至少有“海量、开放、共享、实时”这么几个重要特征。这就要求公共服务部门改变传统思维模式,激活那些束之高阁的沉睡数据,打破各个部门数据分割状态,打造数据资源聚合平台,尽可能多、尽可能快地通过互联网、手机APP等多种方式向公众公开各类数据资源。

思想的“总闸门”一旦打开,行动的落脚点就得提升。公共服务部门应用“大数据”,说到底是为了方便决策、解决问题,进而更好地服务“大民生”。公共服务部门要善于运用大数据技术从大量个体的行动轨迹之中挖掘共性规律、实时发现问题。如美国西雅图市运用大数据实时监控华盛顿、纽约、芝加哥等多个城市的停车位,有效缓解了上班高峰的停车难题。今年春运期间,网络研发的关于人口迁徙的大数据可视化应用受到广泛关注。该应用为公共服务部门科学决策和合理调配资源提供了可靠依据,为利用大数据进行公共服务和社会管理找到了新的实践方向。

以上是小编为大家分享的关于大数据时代呼唤公共服务创新的相关内容,更多信息可以关注环球青藤分享更多干货

⑸ 大数据引擎下如何精准营销

1.零售企业数据管理数据收集是零售企业实现精准营销的基础。通过POS机、观测设备、移动终端、互联网、智能终端等收集企业与顾客的交互数据,同时在企业运营过程中重视对商品数据、销售数据、会员关系数据等交易数据的收集。另外,企业外部的数据如市场调查数据、专家意见、第三方机构数据等也可收集,并对数据进行清洗、重构、填补,保证数据质量,补充到数据库。根据企业的商业目标,对2.消费者分群及理解消费者的消费行为,利用收集到的数据进行消费者分群,分析不同消费群体的特征、消费偏好,进行消费需求预测。对得到的消费者类别进行描述性分析,根据帕累托的二八原则,企业80%的利润是由20%的重要消费者创造的。零售企业只要把握住这部分消费者,针对不同价值的消费者群体投入相应的营销资源,优先满足重要消费者的需求。
2. 营销方案设计零售企业首先设立营销目标,如增加销售10%、提升消费者忠诚度、提升消费者价值、扩大企业知名度等。总的来说,可描述为优化消费者价值、获取新消费者、实现消费者保持、实现交叉销售和增量销售,最终提升企业利润。通过营销活动,将以前低价值消费者转换为重要消费者,并保持其忠诚度。
3. 营销方案实施利用数据分析选择最合适的营销方案实施渠道,并对营销活动进行活动效果跟踪。既需不断保证方案实施的灵活性,也要对实施过程中出现的意外情况保持警惕,才能在竞争对手发现其市场份额被抢占之后再发起反击之前,将营销活动的影响开展到尽可能大的局面。
4. 营销结果反馈通过对营销方案实施过程中的数据进行分析并总结经验,用于指导下一阶段的营销方案制定。对整个营销过程效果的评估可从营销成本、销售收入、企业知名度、消费者满意度等方面进行综合分析。在当今大数据时代,信息技术不断发展和完善,为零售企业带来了海量数据,同时数据挖掘技术使得零售企业能够有效应用数据,数据被提升到前所未有的高度。零售企业应重视数据的力量,深层次挖掘隐藏在海量数据中有价值的市场信息,指导企业制定各项决策,建立符合自身实际情况的精确营销体系,有针对性地实施营销计划,比以往靠管理者个人经验和判断作决策更科学有效。

⑹ 请分析大数据在公共交通可以为公众提供哪些新智能服务

大数据放在交通领域能干这些事:智能公交、辅助交通规划决策、对驾驶员评估、预测群体出行行为
智能公交,这是交通部早已实现的事情,也是交通部最早利用大数据决策的成功案例之一。交通部根据GPS定位技术、3G通信技术、GIS地理信息系统技术等等结合对车辆的监控,实施的公交车智能调度策略,提高了公交车的利用率,同时也在不断减轻城市道路的拥堵负担。
用大数据辅助交通规划辅助决策,就公交网络而言,传统的方式需要在投入大量人力进行OD调查和数据收集。而目前的一卡通,则让数据更为全面的展现在决策人员面前,流量数据全部可以精确掌握,同时再利用上车辆拥堵时间,拥堵路段的大数据分析后,公交车的线路调整,增加与减少换乘站的决策就会更加有依据。
预测群体出行行为,目前网络地图已经做到了可以提前两周预测某个城市的人数大概规模,而将这一成熟的预测算法用于交通后,结合交通部的其他大数据,便可以预测出群体出行的态势,对其可能出行的时间,出行路线,出行方式等等进行预测,从而为城市车辆调度提供决策帮助。

⑺ 大数据引擎的涉及领域

网络将基础设施能力、软件系统能力以及智能算法技术打包在一起,通过大数据引擎开放出来之后,拥有大数据的行业可以将自己的数据接入到这个引擎进行处理。同时,一些企业在没有大数据的情况下,还可以使用网络的数据以及大数据成果。
从架构来看,企业或组织也可以只选择三件套中的一样使用,例如数据存放在自己的云,但要运用网络大脑的一些智能算法应该也是支持的。举几个例子可能你更加清楚网络大数据引擎究竟是什么。
许多政府部门拥有海量大数据——大数据经典之作《大数据》也是在讲美国政府的大数据。但政府部门几乎都没有大数据处理和挖掘技术。交通部门有车联网、物联网、路网监控、船联网、码头车站监控等地方的大数据,卫生部门拥有流感法定报告数据、全国流感样病例哨点监测和病原学监测数据,公安部门有大量的视频监控数据。如果这些数据与网络的搜索记录、全网数据、LBS数据结合,在利用网络大数据引擎的大数据能力,则可以实现智能路径规划、运力管理、流感预测、疫苗接种指导、安防追逃等等。
许多企业也拥有海量大数据——通信、金融、物流、制造、农业等行业。不过,它们几乎都没有大数据能力,坐拥海量数据却一筹莫展。这时候如果能够应用网络大数据引擎,则可以对海量数据进行可靠低成本的存储,进行智能化的由浅入深的价值挖掘。在网络技术开放日上,中国平安便介绍了如何利用网络的大数据能力加强消费者理解和预测,细分客户群制定个性化产品和营销方案。
可以看出,大数据引擎的输入实际上是网络拥有的大数据以及行业已有的大数据,而输出则是各种行业应用成果,也就是大数据的“价值”。

⑻ 大数据分析引擎是什么

这是一个统称,大数据分析,顾名思义,就是通过众多的数据来分析得出有专用的结论,而这些数属据哪里来的呢?通过一种技术手段做成一个系统来收集的,这个系统,就叫做大数据引擎!
我这么说会不会太抽象,举个例子:米多大数据引擎系统,他们家的技术手段就是通过一物一码获得数据,一物一码,就是一件商品贴一个二维码,二维码里有商品的全部信息。每个消费者买了商品后,扫描二维码可以知道商品的真伪、商品生产的历程(溯源)。这时,大数据引擎系统就会收集扫描二维码的用户的信息。而商家也会通过消费者在哪里扫描的二维码可以分析出商品在哪个地点卖的好,哪个地点卖的少,或者这个编号的商品不应该出现在那里(商品防窜)。等等……这些就是大数据分析!而这个系统就成为大数据引擎系统。还是不懂的话可以搜湖北米多科技看看,应该就懂了,望采纳^_^

⑼ 中国实施大数据战略有五大行动支点

中国实施大数据战略有五大行动支点
大数据引擎业已成为组织创新、产业升级、经济社会发展、国家治理能力现代化的核心驱动力。在借鉴欧美发达国家大数据战略实施的先进经验基础上,中国中国实施大数据战略有五大行动支点。
变革时代的大数据革命
自“智慧地球”概念于2008年11月提出以来,整个地球都沉浸在如何变得更加智慧这个庞大的课题里。联合国秘书长执行办公室于2009年正式启动了“全球脉动”倡议项目,旨在推动数字数据与快速数据收集和分析方式创新。联合国2012年5月对外发布了《大数据促发展:挑战与机遇》白皮书,探讨如何利用互联网数据推动全球发展。随着大数据发展战略得到全球各国的高度重视,世界主要国家的“智慧国家”建设发展战略和行动计划风起云涌。由于大数据是数字化生存时代的新型战略资源,对国家治理和社会发展作用巨大,各国科技界、产业界和政府部门极为关注,于是“智慧企业”“智慧校园”“智慧医院”“智慧政府”“智慧城市”被不同类型组织列为发展目标。
科学技术是第一生产力,产业的每一次革命性跃迁都离不开科技革命的推动,往往只有那些抓住技术革命的战略机遇并迅速作出适应性调整的国家或民族才能不断生存发展。毫无疑问,大数据是当前一个事关经济社会发展全局的战略性产业,已经成为全球高科技产业竞争的前沿领域,以美、日、欧为代表的全球发达国家已经展开以大数据为核心的新一轮信息战略以及新一轮的人才竞争、技术竞争、产业竞争、企业竞争和国家竞争。报告显示,2014年,全球大数据市场增长速度达53%,总体规模为285亿美元。到2017年,全球大数据市场收入将达500亿美元,这意味着从2011年起连续6年年复合增长率达38%。中国市场情报中心有关统计显示,2012年中国大数据市场规模为4.5亿元,同比增长40.6%,到2018年,中国大数据市场规模将达到463.4亿元。2012—2013年度,在欧美国家1217家营业额收入超过10亿美元的企业中,643家企业制定了大数据战略,其中7%的企业至少投入了5亿美元,15%的企业至少投入了1亿美元发展大数据。
显然,随着经济社会的发展,大数据带来的深刻影响和巨大价值逐渐被认识,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为我们提供了一种全新的看待世界的方法,大数据带来的信息风暴正在全方位地改变着我们的生活、工作和思维。
大数据战略实施的国际经验
欧美发达国家相继制定了大数据发展战略,并制订了具体的实施政策和行动计划,已经取得初步成效。总体而言,这些战略具有以下几个方面典型特征:
开放性。自2009年美国政府开放数据门户网站data.gov上线以来,各国政府掀起开放数据运动。通过开放政府数据,提高政府透明度,提升政府治理能力和效率,更好地满足公众需求,促进社会创新,带动经济增长。据统计,截至2014年1月12日,开放数据运动已覆盖全球44个国家(地区)。2013年6月,八国集团首脑在北爱尔兰峰会上签署《开放数据宪章》,各国表示愿意进一步向公众开放可机读的政府数据,并在2013年末制定相应的行动计划。英国承诺2015年前开放有关交通运输、天气和健康方面的核心公共数据库,并将投资1000万英镑建立世界上首个“开放数据研究所”。2013年11月,法国政府出台《八国集团开放数据宪章行动计划》,作出“朝着默认公开发布数据的目标前进”“建立一个开放平台以鼓励创新和提高透明度”等几项承诺。
智能性。2010年11月,德国联邦政府启动“数字德国2015”战略,推动互联网服务、云计算、物联网、3D技术以及电动汽车信息通信技术等信息通讯产业的发展,推动实施基于传统制造业智能化和数据化的“工业制造4.0战略”,将物联网引入制造业,打造智能工厂,工厂通过CPS(网络物理系统)实现在全球互联。2011年,韩国就提出“智慧首尔2015”计划,目标是到2015年成为世界上最方便使用智能技术的城市,建立与市民沟通的智能行政服务,建成适应未来生活的基础设施和成为有创造力的智慧经济都市。2013年6月,日本安倍内阁公布《面向2020年的ICT综合战略》,全面阐述2013-2020年期间以发展开放公共数据和大数据为核心的日本新IT国家战略,提出要把日本建设成为一个具有“世界最高水准的广泛运用信息产业技术的社会”的目标。
价值性。2012年4月,英国经济与商业研究中心的一份研究报告预计了2012-2017年大数据产生的经济利益:2011年英国私企和公共部门企业的数据资产价值为251亿英镑,2017年将达到407亿英镑。大数据增加的创新与就业机会,将贡献价值240亿英镑,同时为小企业创造预计价值为420亿英镑的发展前景。该报告还预测大数据将创造新业务市场,即创造58000个就业机会。大数据可以更有效地改进客户需求分析,预计此项优化将产生738亿英镑的效益。大数据可以优化产品存量和资源分配,大大降低成本,预计产生460亿英镑的效益。同时,政府部门通过大数据可对医疗保健系统进行防欺诈检测和分析,预计节省不必要的支出达20亿英镑。显然,如果有意识地在更大的合理范围内开放大数据,大数据将带来更多的价值增殖。
应用性。2012年9月,IBM公司启动在加拿大安大略省巴里市兴建智能数据中心,即IBM加拿大领导数据中心,旨在推进节能化数据中心管理方面的研究和为企业提供能使其连续性经营的服务以及灾备数据服务。为响应公民对数据的需求,加拿大逐步开放地理空间数据,并将大数据研究列为政府科研基金重点资助对象。2013年8月,英国政府发布的《英国农业技术战略》指出,英国今后对农业技术的投资将集中在大数据上,目标是将英国的农业科技商业化。
保障性。2012年5月,美国政府宣布投资2亿美元提高大数据技术(包括数据的储存、分析、收集),以加快科学研究、加强国家安全、改革教学和培训体系以及促进专业人才发展。2013年1月,英国商业、创新和技能部宣布注资6亿英镑发展8类高新技术,其中,1.89亿英镑用来发展大数据技术。“欧盟开放数据战略”将重点加强在数据处理技术、数据门户网站和科研数据基础设施三方面的投入,旨在欧洲企业与市民能自由获取欧盟公共管理部门的所有信息,建立一个汇集不同成员国以及欧洲机构数据的“泛欧门户”。
中国实施大数据战略的行动支点
为了应对大数据战略带来的机遇和挑战,借鉴欧美发达国家大数据战略实施的先进经验,我国需要在如下几个方面下功夫:
完善制度。完善知识产权保护体系,促进数据共享和整合,推动数据价值创造。加快制定相关标准和指南,制定大数据发展战略。出台法律,为涉及企业运营数据、客户信息、个人隐私和各种行为的详细记录数据提供法律保障。完善信息资源市场,界定信息产权,明确信息的所有权、使用权和收益权的规定,发挥市场在信息资源方面的优化配置作用。
构筑平台。成立大数据管理局,建立信息资源共享平台,开放政府信息资源。以部门业务信息为基础,从标准、流程、数据三个方面进行设计,建设“物理分散、逻辑集中”的公共数据中心,通过数据集中挖掘,提高数据利用率,提高各级政府行政管理效率和公共服务水平。
突破技术。在明确大数据关键技术的基础上,确定重点支持领域,加大研发支持力度,整合云计算、物联网等专项项目,支持大数据技术的开发、研究和应用示范,引导企业加大大数据研发力度,实现关键技术突破,特别需要优先支持大数据技术在舆情研判、疾病防治、灾害控制、交通安全、城市管理、公共服务、社会治理等民生领域的应用。在公共服务和公用事业管理中采购大数据技术,以政府采购引导国内大数据发展。
培养人才。加大高水平大数据人才的引进和培养力度,重点培育数据挖掘、机器学习等方面的专业人才。制定激励措施对企业管理者进行数据分析技术培训,提高大型企业管理人员的数据分析能力。同时,在大学相应阶段有针对性地增加相关大数据技术与分析课程,增加学生在感知技术、数据仓库、数据搜索、数据挖掘与可视化等领域的知识积累,扩大人才储备规模。
提供保障。设立大数据研发基金,加大大数据平台建设的投入力度,加强智慧企业、智慧医院、智慧政府、智慧城市建设。设立奖惩制度,强化大数据国家安全建设。建立预算制度,控制各部门经费流向,推动数据共享,防止“信息孤岛”现象的出现。

阅读全文

与大数据引擎向公众相关的资料

热点内容
炒股app有哪个 浏览:108
汽车钥匙编程器哪个好 浏览:688
误删除文件怎么恢复 浏览:885
360wifi扩展器版本升级 浏览:336
word批量删除某个同一图片logo 浏览:637
苹果5应用需要证书 浏览:531
触摸屏编程有哪些优势 浏览:550
ps文件存储环境 浏览:74
文件名怎么改不了大小写 浏览:613
眼睛验光数据什么样算假近视 浏览:269
1在编程里代表什么 浏览:193
密码文件柜哪里便宜 浏览:949
box文件怎么打开 浏览:114
线切割编程哪个好用 浏览:70
反诈app官方已下载怎么注册 浏览:496
安卓5flash游戏 浏览:895
什么卡有免费微信提示 浏览:511
iphone看不了文件管理 浏览:783
数据包如何上传宝贝 浏览:885
java获得url参数 浏览:753

友情链接