『壹』 大数据安全的挑战是什么
当前,随着互联网+、大数据、云计算、移动互联网等新技术兴起,特别是大数据技术创新应用,使我们具备了对海量数据的处理和分析能力,数据驱动的时代已经来临。与此同时,数据汇聚、数据分析等带来的安全问题也给我们带来前所未有的挑战。
基于目前我国大数据安全保护现状,以及大数据面临的安全风险挑战,笔者提出以下几方面建议对策:
一是进一步加强顶层设计。在《网络安全法》的基础上,完善数据安全保护的规章制度,明确数据在收集、使用、处理、交易、出境等各环节的安全要求。完善数据安全保护的网络安全国家标准,充分发挥标准的指导和引领作用,提升数据保护能力和水平。
二是加强重要数据基础设施保护。建立大数据分类分级安全保护机制,结合各行业数据的敏感程度、数据脱敏与否、数据可用性要求等对大数据资产进行分类分级,采取不同级别的安全防护策略。
三是落实网络安全责任制。明确大数据管理者和运营者的法律责任与义务。加强监督管理和风险评估,提升数据保护能力。对掌控大数据资源的单位进行大数据业务上线前安全评估,对重点产品进行在线安全监测,开展定期的检查和不定期的抽查,发现问题及时督促整改。
四是加强网络安全宣传。通过国家网络安全宣传周等活动,普及网络安全知识,加强网络安全教育,提升广大网民网络安全意识和防护技能,推动形成全社会重视数据安全的良好氛围。
『贰』 大数据安防应用 三种技术及五大挑战
大数据安防应用 三种技术及五大挑战
1大数据安防应用的几种关键技术
在安防行业,随着前端设备分辨率的不断提高、安防系统建设规模的不断扩大以及视频、图片数据存储的时间越来越长,安防大数据问题日益凸显。如何有效对数据进行存储、共享以及应用变得愈加重要。要应用安防大数据,首先要了解安防大数据有何特点。
安防大数据涉及的类型比较多,主要包含结构化、半结构化和非结构化的数据信息。其中结构化数据主要包括报警记录、系统日志、运维数据、摘要分析结构化描述记录以及各种相关的信息数据库,如人口库、六合一系统信息等;半结构化数据如人脸建模数据、指纹记录等;而非结构化数据主要包括视频录像和图片记录,如监控、报警、视频摘要等录像信息和卡口、人脸等图片信息。区别于其他行业大数据特点,安防大数据以非结构化的视频和图片为主,如何对非结构化的数据进行分析、提取、挖掘及处理,对安防行业提出了更多挑战。
大数据
对于安防视频图像数据,传统的处理方式主要靠事后人工查阅来完成,效率极低。面对海量的安防数据,如果继续采用传统方式,不仅效率低下,而且不能达到实战应用目的,偏离了安防系统建设目的。为充分利用安防系统价值,提升对安防大数据的应用能力,大华股份从多层次、全方位考虑产品和方案规划,不断提升对于安防有效信息的快速挖掘能力。
要提升安防大数据的处理效率,首先要从智能分析做起,快速过滤无效信息。大华智能分析从多维度、多产品形态来实现。如对于事件检测、行为分析、异常情况报警等,大华前端、存储以及平台系统产品都能够快速实现智能检测,并通知系统对事件进行快速响应,这些产品从某种层面上将安防有效数据的分析分散化,大大加快了整个系统的大数据处理应用速度。此外,大华还推出了基于云存储系统的大数据应用系统,如视频编解码系统、车辆研判系统、以图搜图系统、视频浓缩摘要系统、人脸识别系统以及车型识别系统等等。
大数据安防应用的几种关键技术
1)大数据融合技术
经过十几年的发展,国内安防系统建设基本形成了是以平安城市、智能交通系统为主体,其他行业系统有效完善的发展态势。而“重建设、轻应用”的现况给安防应用提出了更高要求,如何解决这些问题成为当务之急。
为实现数据融合、数据共享,首先要解决存储“分散”问题,大华云存储系统不仅能够实现数据的有效融合与共享,解决系统在硬件设备故障条件下视频数据的正常存储和数据恢复问题,为安防大数据应用分析提供可靠基础。
2)大数据处理技术
安防大数据以半结构化和非结构化数据居多,要实现对安防大数据的分析和信息挖掘,首先要解决数据结构化问题。所谓的数据结构化就是通过某种方式将半结构化和非结构化数据转换为结构化数据。大华通过采用先进的云计算系统对安防非结构化数据进行结构化处理,为大数据的进一步分析和应用提供进一步支持。
3)大数据分析和挖掘技术
国内平安城市历经十几年的建设,在解决了稳定性、规模化之后,当下面临的问题是如何深化应用的问题,即如何实现公安部的要求,建为用、用为战的目标,实现对安防系统的深层次应用。
对安防大数据而言,要实现业务的深层次应用,首先需要对安防数据进行分析和挖掘,以云存储和云计算系统为基础,通过云计算系统实现对“大数据”的快速分析,如基于云的车牌识别,可通过对海量视频的分析,快速提取海量车牌信息,并通过应用系统对相关数据进行深一步挖掘、关联,形成有效“档案”。最后利用这些分析和挖掘的数据实现对事件的预测预防、报警,最终实现安防系统建设的实战应用目的。
2大数据成熟行业应用大数据成熟行业应用
安防视频监控行业是伴随着平安城市、智能交通而发展起来了,新一轮的智慧城市建设也为安防行业的再次发展注入了“**”。随着各地安防系统建设规模不断增大,安防数据迅速膨胀。由于缺乏适当的手段去利用这些海量数据,导致了“重建设、轻应用”现象,下面就安防大数据在公安和交通行业的应用进行简单介绍。
1)公安执法
在公安行业,大数据应用无处不存,下面简单介绍一下大数据应用在公安行业几个业务体现。
第一是稽查布控业务。当案件发生后,需要对嫌疑车辆进行稽查布控,一般采用布控车牌号,通过系统比对卡口车辆信息进行识别,但这种方式存在问题。当布控车辆从某个卡口经过时,拦截人员通常不在现场,等到拦截人员赶到现场时,嫌疑车辆早已逃之夭夭,从而失去布控的意义。对于这种情况,可实现移动警务、GIS系统有效关联,通过在GIS系统中绘制嫌疑车辆逃跑路线和防控识别圈,可大大提高拦截效率;
第二是车辆落脚点分析业务。随着城市的快速发展,城市越来越大,路网也越来越复杂,为迅速逃脱公安机关的抓捕,很多犯罪分子避开城区主干道(一般来说,城区主干道都装有电子卡口),逃窜到人员比较多的小区或偏僻区域。大华股份通过建设云卡口,通过视频实现卡口相机功能,对海量数据进行云卡口识别,结合GIS系统,将嫌疑车辆轨迹描绘出来,大大提高公安办案效率。
第三是伴随车辆分析。由于公众安全防范意识的不断提高,犯罪分子独立实施犯罪行为的成功率大大降低,因此,新时期的犯罪行为,开始表现为团伙作案。在踩点和作案时,犯罪团伙通常会使用多辆汽车,以提高成功率。从卡口系统的角度看,团伙作案具体表现为多辆车同时出没于特定卡口覆盖范围,利用该特征,我们可以从海量的卡口车辆数据中,提取满足特定条件(如车辆行进路线、车辆通行间隔时间、跟车数量以及分析起止时间范围等)的车辆,提高案件侦破效率。此外,在公安行业还有基于人脸识别的人脸卡口、视频摘要等安防大数据应用。
2)智能交通
第一是旅行时间计算。由于电子狗的大量使用,不少驾驶员在通过卡口时,会主动降低速度,一旦离开卡口覆盖范围,又会迅速提高速度,超速行驶。传统的单点测度无法发现这种超速行为,利用区间测速便可快速检测违章行为,且可减少区域卡口数量,节省建设成本。而当发现相同车牌在相距较远卡口同时出现时,还可检测出套牌车辆,并可通知相关人员进行拦截追捕。
第二是交通流量分析。对于交通流量的检测,传统方式是通过地磁、微波检测完成的,但这种检测只能检测车辆数量,却无法检测相关车牌号,这就限制了传统流量分析的应用场景,智能对单一路段进行分析,无法形成全局的流量分析。而卡口系统记录了车辆号码、车身颜色、车型等更多详细信息,基于卡口系统的流量分析,不仅可计算出城市各小区机动车数量分布,指导出行目的地分析、出行路线分析等应用,而且能够根据车辆流量信息找出城市热点区域,为交管部门提供参考,更好地优化路网机制,规划更为合理的路网参数。
此外,还可通过智能分析系统,对卡口数据进行深层次分析与挖掘,不仅识别车辆车牌号,而且实现对车辆品牌、车辆型号、是否粘贴年检标识、驾驶员是否系安全带、是否驾驶时拨打电话等一些行为状态识别,从而进一步规范车辆达标和安全驾驶行为。
3大数据安防面临的挑战大数据安防面临的挑战
(1)海量非结构化数据存储
相较于其他行业,安防非结构化的数据存储压力不断增大,一方面源于视频、图片等非结构化数据本身容量,另一方面源于安防数据规模的不断扩大,安防大数据存储对系统设备提出了更高挑战,如何在满足需求的前提下,删除重复数据、降低存储硬件成本投资成为海量数据存储的一个难题
(2)数据共享
大数据需要通过快速的采集、发现和分析,从大量化、多类别的数据中提取价值。安防大数据时代最显著的特征就是海量和非结构化数据共享,用以提高数据处理能力。而海量数据存储在不同系统、不同区域、不同节点、不同设备中,这给数据的传输和共享带来极大的挑战:
(3)数据安全
视频监控数据具有私密性高、保密性强等特点,不仅是事后追查的依据,而且更是后续数据分析挖掘的基础。因此,数据安全一方面体现在数据不受外界入侵或非法获取,另一方面体现在庞大数据系统的鲁棒性、体系容错机制,确保硬件在发生故障时数据可以恢复,可以继续保存。面对海量数据的存储、共享、硬件和软件设备承载的极大风险,如何构建大型、海量视频监控存储系统、数据分析系统以及容错冗余机制是安防行业面临的重大考验;
(4)数据利用
安防监控虽然数据量很大,但真正有用的信息并不多。安防数据的有效性分为两个方面,一方面有效信息可能只分布在一个较短的时间段内,根据统计学原理,信息呈现幂率分布,往往越高密度的信息对客户价值越大;另一方面,数据的有效性体现在深层次挖掘庞大的海量数据,关联得出有效信息。视频监控业务网络化、大联网后,网内的设备越来越多,利用网内的闲置资源,实现资源的最大化利用,关乎运算的效率。在视频监控领域,往往视频分析的效率决定价值,更低的延迟、更准确的分析往往是客户的普遍需求。如何对海量的视频数据进行分析检索业对行业提出更大的挑战。
(5)缺乏统一标准
国内安防行业经历十几年的快速发展,在此发展过程中,平安城市建设表现卓越,在安防应用中也一直走在前列,国内平安城市系统的建设也不断推动着国内安防技术和安防厂商的发展。在平安城市项目的建设过程中,由于参与的安防厂家众多,不同项目、不同系统甚至同一系统采用的设备厂商也不尽相同,为了更好的兼容各厂商产品,整个安防行业和政府也制定了一些标准,如ONVIF协议、GB28181协议以及各个地方省市发布的一些标准。
新一轮的智慧城市正在紧锣密鼓地进行着,相对平安城市相对“简单”的治安监控,智慧城市要求数据共享,跨区域视频联网监控、监控资源整合与共享以及政府各部门之间的视频监控资源共享等等。但是不同的地方城市,不同的行业类别,不同的管理方式都会有不同的监控系统方案,数据融合或者共享兼容性问题更多,对整个系统建设是重大考验。
平安城市系统面向的是安防行业设备与系统的兼容问题,随着各种行标、地标的制定,各种问题基本得以解决;而智慧城市系统不仅仅是安防系统的整合,而是多个行业系统的集成应用,因缺乏统一标准带来的复杂性可想而知。庆幸的是国家目前已经开始起草智慧城市建设的各种标准,而相关企业也在不断规范自身系统的兼容性和开放性。
以上是小编为大家分享的关于大数据安防应用 三种技术及五大挑战的相关内容,更多信息可以关注环球青藤分享更多干货
『叁』 大数据时代给信息安全带来的挑战
大数据时代给信息安全带来的挑战
在大数据时代,商业生态环境在不经意间发生了巨大变化:无处不在的智能终端、随时在线的网络传输、互动频繁的社交网络,让以往只是网页浏览者的网民的面孔从模糊变得清晰,企业也有机会进行大规模的精准化的消费者行为研究。大数据蓝海将成为未来竞争的制高点。
大数据在成为竞争新焦点的同时,不仅带来了更多安全风险,同时也带来了新机遇。
一、大数据成为网络攻击的显著目标。
在网络空间,大数据是更容易被“发现”的大目标。一方面,大数据意味着海量的数据,也意味着更复杂、更敏感的数据,这些数据会吸引更多的潜在攻击者。另一方面,数据的大量汇集,使得黑客成功攻击一次就能获得更多数据,无形中降低了黑客的进攻成本,增加了“收益率”。
二、大数据加大隐私泄露风险。
大量数据的汇集不可避免地加大了用户隐私泄露的风险。一方面,数据集中存储增加了泄露风险,而这些数据不被滥用,也成为人身安全的一部分。另一方面,一些敏感数据的所有权和使用权并没有明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题。
三、大数据威胁现有的存储和安防措施。
大数据存储带来新的安全问题。数据大集中的后果是复杂多样的数据存储在一起,很可能会出现将某些生产数据放在经营数据存储位置的情况,致使企业安全管理不合规。大数据的大小也影响到安全控制措施能否正确运行。安全防护手段的更新升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
四、大数据技术成为黑客的攻击手段。
在企业用数据挖掘和数据分析等大数据技术获取商业价值的同时,黑客也在利用这些大数据技术向企业发起攻击。黑客会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使黑客的攻击更加精准。此外,大数据也为黑客发起攻击提供了更多机会。黑客利用大数据发起僵尸网络攻击,可能会同时控制上百万台傀儡机并发起攻击。
五、大数据成为高级可持续攻击的载体。
传统的检测是基于单个时间点进行的基于威胁特征的实时匹配检测,而高级可持续攻击(APT)是一个实施过程,无法被实时检测。此外,由于大数据的价值低密度特性,使得安全分析工具很难聚焦在价值点上,黑客可以将攻击隐藏在大数据中,给安全服务提供商的分析制造很大困难。黑客设置的任何一个会误导安全厂商目标信息提取和检索的攻击,都会导致安全监测偏离应有方向。
六、大数据技术为信息安全提供新支撑。
当然,大数据也为信息安全的发展提供了新机遇。大数据正在为安全分析提供新的可能性,对于海量数据的分析有助于信息安全服务提供商更好地刻画网络异常行为,从而找出数据中的风险点。对实时安全和商务数据结合在一起的数据进行预防性分析,可识别钓鱼攻击,防止诈骗和阻止黑客入侵。网络攻击行为总会留下蛛丝马迹,这些痕迹都以数据的形式隐藏在大数据中,利用大数据技术整合计算和处理资源有助于更有针对性地应对信息安全威胁,有助于找到攻击的源头。
『肆』 大数据带来哪些安全的挑战
挑战来一:大数据的巨大自体量使得信息管理成本显著增加
挑战二:大数据的繁多类型使得信息有效性验证工作大大增加
挑战二:大数据的繁多类型使得信息有效性验证工作大大增加
挑战四:大数据的快速处理要求使得独立决策的比例显著降低
挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低
挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低
『伍』 大数据需留意的六个安全问题
1、使数据易受攻击
如今,所有数据都是数字化的,并且数量巨大,黑客始终可以在恶意内部人员的帮助下找到进入入侵的方式。如果他们以某种方式可以访问你的关键数据,他们可以根据自己的目的进行修改,甚至删除其中的一些数据。这就是为什么完全依赖物联网、大数据和实时数据分析的公司限制访问并采取某些步骤来检测假数据形成的原因。这是其数据保护协议的关键部分。
2、使访问变得困难
使大数据生态系统有效的另一个重要因素是粒度访问控制。根据等级、权限可以授予不同人员不同级别的主数据访问权限。名义上,访问控制使大数据更加安全。但是,随着组织使用大量数据,增加复杂的控制面板可能变得更加微妙,并可能为更多潜在漏洞打开门户。
3、需要某些安全审核
在每个系统开发中,几乎都是需要安全审核的地方,特别是在大数据不安全的地方。但是,考虑到使用大数据已经带来了广泛的挑战,这些安全审核通常被忽略,这些审核只是添加到列表中的另一件事。这种态度与以下事实结合在一起:许多公司仍需要能够设计和实施此类安全审核的合格人员。
4、分散的框架
使用大数据的公司可能需要在不同系统之间分布数据分析。例如,Hadoop是一种开放源代码软件,旨在在大数据生态系统中进行灵活和分散的计算。但是,该软件初根本没有安全性,因此在分散的框架中有效的安全性仍然是要实现的挑战。
5、数据来源
找到我们的数据来源确实有助于确定违规的来源。你可以使用元数据来跟踪数据流。无论如何,即使对于大型公司,元数据管理也是一个自我战略问题。如果没有正确的框架,实时跟踪此类非结构化数据将是一个挑战。尽管这是一个持续存在的问题,但它并不是大数据问题。
6、实时合规
实时大数据分析在公司的竞争中越来越受欢迎。但是,实时实施这种工具更加复杂,并且还会产生大量的数据。
此类工具的开发方式应使它们在现实中不存在威胁时能够规避对违规行为的错误警告。因此,发现此类错误警告可能很耗时。他们分散了白帽黑客的注意力,使其免受真正的故障和攻击并浪费资源。
关于大数据需留意的六个安全问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
『陆』 大数据的发展所面临的挑战有哪些
挑战一:业务来部门没有清晰的大自数据需求。
挑战二:企业内部数据孤岛严重。
挑战三:数据可用性低,数据质量差。
挑战四:数据相关管理技术和架构。
挑战五:数据安全。
『柒』 大数据安全的六大挑战
大数据安全的六大挑战_数据分析师考试
大数据的价值为大家公认。业界通常以4个“V”来概括大数据的基本特征——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。当你准备对大数据所带来的各种光鲜机遇大加利用的同时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代“潘多拉魔盒”中的魔鬼可能会随时出现。
挑战一:大数据的巨大体量使得信息管理成本显著增加
4个“V”中的第一个“V”(Volume),描述了大数据之大,这些巨大、海量数据的管理问题是对每一个大数据运营者的最大挑战。在网络空间,大数据是更容易被“发现”的显著目标,大数据成为网络攻击的第一演兵场所。一方面,大量数据的集中存储增加了泄露风险,黑客的一次成功攻击能获得比以往更多的数据量,无形中降低了黑客的进攻成本,增加了“攻击收益”;另一方面,大数据意味着海量数据的汇集,这里面蕴藏着更复杂、更敏感、价值巨大的数据,这些数据会引来更多的潜在攻击者。
在大数据的消费者方面,公司在未来几年将处理更多的内部生成的数据。然而在许多组织中,不同的部门像财务、工程、生产、市场、IT等之间的信息仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏壁垒和部门现实优势的前提下更透明地沟通的公司将更具竞争优势。
【解决方案】 首先要找到有安全管理经验并受过大数据管理所需要技能培训的人员,尤其是在今天人力成本和培训成本不断上升的节奏中,这一定足以让许多CEO肝颤,但这些针对大数据管理人员的巨额教育和培训成本,是一种非常必要的开销。
与此同时,在流程的设计上,一定要将数据分散存储,任何一个存储单元被“黑客”攻破,都不可能拿到全集,同时对于不同安全域要进行准确的评估,像关键信息索引的保护一定要加强,“好钢用在刀刃上”,作为数据保全,能够应对部分设施的灾难性损毁。
挑战二:大数据的繁多类型使得信息有效性验证工作大大增加
4个“V”中的第二个“V”(Variety),描述了数据类型之多,大数据时代,由于不再拘泥于特定的数据收集模式,使得数据来自于多维空间,各种非结构化的数据与结构化的数据混杂在一起。
未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不接受的现实是,太多无用的信息造成的信息不足或信息不匹配。我们可以考虑这样的逻辑:依托于大数据进行算法处理得出预测,但是如果这些收集上来的数据本身有问题又该如何呢?也许大数据的数据规模可以使得我们无视一些偶然非人为的错误,但是如果有个敌手故意放出干扰数据呢?现在非常需要研究相关的算法来确保数据来源的有效性,尤其是比较强调数据有效性的大数据领域。
正是因为这个原因,对于正在收集和储存大量客户数据的公司来说,最显而易见的威胁就是在过去的几年里,存放于企业数据库中数以TB计,不断增加的客户数据是否真实可靠,依然有效。
众所周知,海量数据本身就蕴藏着价值,但是如何将有用的数据与没有价值的数据进行区分看起来是一个棘手的问题,甚至引发越来越多的安全问题。
【解决方案】 尝试尽可能使数据类型具体化,增加对数据更细粒度的了解,使数据本身更加细化,缩小数据的聚焦范围,定义数据的相关参数,数据的筛选要做得更加精致。与此同时,进一步健全特征库,加强数据的交叉验证,通过逻辑冲突去伪存真。
挑战三:大数据的低密度价值分布使得安全防御边界有所扩展
4个“V”中的第三个“V”(Value),描述了大数据单位数据的低价值。这种广种薄收似的价值量度,使得信息效能被摊薄了,大数据的安全预防与攻击事件的分析过程更加复杂,相当于安全管理范围被放大了。
大数据时代的安全与传统信息安全相比,变得更加复杂,具体体现在三个方面:一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人的隐私和各种行为的细节记录,这些数据的集中存储增加了数据泄露风险;另一方面,因为一些敏感数据的所有权和使用权并没有被明确界定,很多基于大数据的分析都未考虑到其中涉及的个体隐私问题;再一方面,大数据对数据完整性、可用性和秘密性带来挑战,在防止数据丢失、被盗取、被滥用和被破坏上存在一定的技术难度,传统的安全工具不再像以前那么有用。
【解决方案】 确立有限管理边界,依据保护要求,加强重点保护,构建一体化的数据安全管理体系,遵循网络防护和数据自主预防并重的原则,并不是实施了全面的网络安全护理就能彻底解决大数据的安全问题,数据不丢失只是传统的边界网络安全的一个必要补充,我们还需要对大数据安全管理的盲区进行监控,只有将二者结合在一起,才是一个全面的一体化安全管理的解决方案
挑战四:大数据的快速处理要求使得独立决策的比例显著降低
“4个“V”中最后一个“V”(Velocity),决定了利用海量数据快速得出有用信息的属性。
大数据时代,对事物因果关系的关注,转变为对事物相关关系的关注。如果大数据系统只是一种辅助决策系统,这还不是最可怕的。事实上,今天大数据分析日益成为一项重要的业务决策流程,越来越多的决策结果来自于大数据的分析建议,对于领导者最艰难的事情之一,是让我的逻辑思考来做决定,还是由机器的数据分析做决定,可怕的是,今天看来,机器往往是正确的,这不得不让我们产生依赖。试想一下,如果收集的数据已经被修正过,或是系统逻辑已经被控制了呢!但是面对海量的数据收集、存储、管理、分析和共享,传统意义上的对错分析和奇偶较验已失去作用。
【解决方案】 在依靠大数据进行分析、决策的同时,还应辅助其他的传统决策支持系统,尽可能明智地使用数据所告诉我们的结果,让大数据为我们所用。但绝对不要片面地依赖于大数据系统。
挑战五:大数据独特的导入方式使得攻防双方地位的不对等性大大降低
在大数据时代,数据加工和存储链条上的时空先后顺序已被模糊,可扩展的数据联系使得隐私的保护更加困难。过去传统的安全防护工作,是先扎好篱笆、筑好墙,等待“黑客”的攻击,我们虽然不知道下一个“黑客”是谁,但我们一定知道,它是通过寻求新的漏洞,从前面逐层进入。守方在明处,但相比攻方有明显的压倒性优势。而在大数据时代,任何人都可以是信息的提供者和维护者,这种由先天的结构性导入设计所带来的变化,你很难知道“它”从哪里进来,“哪里”才是前沿。这种变化,使得攻、防双方的力量对比的不对等性大大下降。
同时,由于这种不对等性的降低,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术发起新的攻击。“黑客”会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电子商务、电话和家庭住址等信息,大数据分析使“黑客”的攻击更加精准。此外,“黑客”可能会同时控制上百万台傀儡机,利用大数据发起僵尸网络攻击。
【解决方案】 面对大数据所带来新的安全问题,有针对性地更新安全防护手段,增加新型防护手段,混合生产数据和经营数据,多种业务流并行,增加特征标识建设内容,增强对数据资源的管理和控制。
挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低
在大数据环境下,数据的使用者同时也是数据的创造者和供给者,数据间的联系是可持续扩展的,数据集是可以无限延伸的,上述原因就决定了关于大数据的应用策略要有新的变化,并要求大数据网络更加开放。大数据要对复杂多样的数据存储内容做出快速处理,这就要求很多时候,安全管理的敏感度和复杂度不能定得太高。此外,大数据强调广泛的参与性,这将倒逼系统管理者调低许多策略的安全级别。
当然,大数据的大小也影响到安全控制措施能否正确地执行,升级速度无法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。
【解决方案】 使用更加开放的分布式部署方式,采用更加灵活、更易于扩充的信息基础设施,基于威胁特征建立实时匹配检测,基于统一的时间源消除高级可持续攻击(APT)的可能性,精确控制大数据设计规模,削弱“黑客”可以利用的空间。
大数据时代已经到来,大数据已经产生出巨大影响力,并对我们的社会经济活动带来深刻影响。充分利用大数据技术来挖掘信息的巨大价值,从而实现并形成强有力的竞争优势,必将是一种趋势。面对大数据时代的六种安全挑战,如果我们能够予以足够重视,采取相应措施,将可以起到未雨绸缪的作用。
以上是小编为大家分享的关于大数据安全的六大挑战的相关内容,更多信息可以关注环球青藤分享更多干货
『捌』 大数据面临哪些安全与隐私问题
(一)大数据遭受异常流量攻击
大数据所存储的数据非常巨大,往往采用分布式的方式进行存储,而正是由于这种存储方式,存储的路径视图相对清晰,而数据量过大,导致数据保护,相对简单,黑客较为轻易利用相关漏洞,实施不法操作,造成安全问题。由于大数据环境下终端用户非常多,且受众类型较多,对客户身份的认证环节需要耗费大量处理能力。由于APT攻击具有很强的针对性,且攻击时间长,一旦攻击成功,大数据分析平台输出的最终数据均会被获取,容易造成的较大的信息安全隐患。
(二)大数据信息泄露风险
大数据平台的信息泄露风险在对大数据进行数据采集和信息挖掘的时候,要注重用户隐私数据的安全问题,在不泄露用户隐私数据的前提下进行数据挖掘。需要考虑的是在分布计算的信息传输和数据交换时保证各个存储点内的用户隐私数据不被非法泄露和使用是当前大数据背景下信息安全的主要问题。同时,当前的大数据数据量并不是固定的,而是在应用过程中动态增加的,但是,传统的数据隐私保护技术大多是针对静态数据的,所以,如何有效地应对大数据动态数据属性和表现形式的数据隐私保护也是要注重的安全问题。最后,大数据的数据远比传统数据复杂,现有的敏感数据的隐私保护是否能够满足大数据复杂的数据信息也是应该考虑的安全问题。
(三)大数据传输过程中的安全隐患
数据生命周期安全问题。伴随着大数据传输技术和应用的快速发展,在大数据传输生命周期的各个阶段、各个环节,越来越多的安全隐患逐渐暴露出来。比如,大数据传输环节,除了存在泄漏、篡改等风险外,还可能被数据流攻击者利用,数据在传播中可能出现逐步失真等。又如,大数据传输处理环节,除数据非授权使用和被破坏的风险外,由于大数据传输的异构、多源、关联等特点,即使多个数据集各自脱敏处理,数据集仍然存在因关联分析而造成个人信息泄漏的风险。
基础设施安全问题。作为大数据传输汇集的主要载体和基础设施,云计算为大数据传输提供了存储场所、访问通道、虚拟化的数据处理空间。因此,云平台中存储数据的安全问题也成为阻碍大数据传输发展的主要因素。
个人隐私安全问题。在现有隐私保护法规不健全、隐私保护技术不完善的条件下,互联网上的个人隐私泄露失去管控,微信、微博、QQ等社交软件掌握着用户的社会关系,监控系统记录着人们的聊天、上网、出行记录,网上支付、购物网站记录着人们的消费行为。但在大数据传输时代,人们面临的威胁不仅限于个人隐私泄露,还在于基于大数据传输对人的状态和行为的预测。近年来,国内多省社保系统个人信息泄露、12306账号信息泄露等大数据传输安全事件表明,大数据传输未被妥善处理会对用户隐私造成极大的侵害。因此,在大数据传输环境下,如何管理好数据,在保证数据使用效益的同时保护个人隐私,是大数据传输时代面临的巨大挑战之一。
(四)大数据的存储管理风险
大数据的数据类型和数据结构是传统数据不能比拟的,在大数据的存储平台上,数据量是非线性甚至是指数级的速度增长的,各种类型和各种结构的数据进行数据存储,势必会引发多种应用进程的并发且频繁无序的运行,极易造成数据存储错位和数据管理混乱,为大数据存储和后期的处理带来安全隐患。当前的数据存储管理系统,能否满足大数据背景下的海量数据的数据存储需求,还有待考验。不过,如果数据管理系统没有相应的安全机制升级,出现问题后则为时已晚。
『玖』 大数据存在的安全问题有哪些
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
关于大数据存在的安全问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。