『壹』 数据生产要素中大数据是什么
数据生产要素中大数据就是生产资料。大数据称谓生产资料或者说是生产要素这种叫法非常符合互联网推动经济与科技的推动力。大数据复杂的运算及广泛的应用推动了互联网的升级,推动了智能化产业发展,推动了物联网的发展。
大数据作为一种新型生产要素写入文件中,与土地、劳动力、资本、技术等传统要素并列为要素之一。当前数字经济正在引领新经济发展,数字经济覆盖面广且渗透力强,与各行业融合发展,如大数据、云计算、互联网、人工智能等。
因此,数据成为关键生产要素。同时,大数据在社会治理中如城市交通、老年服务、城市安全等方面也发挥了重要作用。
数据要素的作用
数据越多价值越大,越分享价值越大,越不同价值越大,越跨行业、区域、国界价值越大。因此,实施数据开放共享,优化治理基础数据库,不断完善数据权属界定、开放共享、交易流通等标准和措施,促使数据资产重复使用、多人共同使用加快推动各区域、部门间数据共享交换,显得十分必要。
数字经济可以降低搜寻成本、复制成本、交通成本、追踪成本,但数据要素作为一种虚拟的、客观存在的要素,在生产、交易过程中容易产生信息不对称问题。
为促使数据资源转化为数据要素,有必要建立数据资源清单管理机制,构建与互联网技术相适应的开放、扁平、灵活的组织体系,从而有效破解数据造假、供需错配等问题。
『贰』 大数据云分析平台的安全性怎么样
SpeedBI数据云是一款免收费免安装、自适应pc、移动端的大数据云分析产品。登录便可免费版使用平台上的所有权功能,根据实际需求制作直观易懂、分析挖掘深入的数据可视化报表,真正实现数据辅助决策,融入数字经济市场中。
SpeedBI数据云安全吗?
毕竟是要处理企业数据,安全问题绝对是重中之重。奥威软件自然倍加重视。
SpeedBI数据云通过过严密的权限管理制度,完善组织结构、明确账号权限。管理者可根据用户角色限定业务数据权限,保证数据安全。
举个例子:当管理者对某个角色权限限定在销售部,该角色登陆后便只能浏览销售部的数据分析,而无法查看诸如财务、人事等的数据分析报表。
SpeedBI数据云严密的权限管理制度,不仅便于企业内部部门和人员利用相应数据,轻松实现数据驱动,还最大限度提升了数据分析效率,加快数据决策落地。其操作简单,数据报表展现直观易懂、全面细致,是当下企业落实数据可视化分析的不二选择。
『叁』 大数据和云计算的区别是什么啊
一、大数据与云计算的概念及特点
大数据:在维基网络中,大数据(big data)是用于数据集的一个术语,是指大小超出了常用软件工具在运行时间内可以承受的收集,管理和处理数据能力的数据集。与传统海量数据相比,它不仅在数据规模上呈几何倍数的增长,还在于它集收集,分类,处理,分析于一体,能够充分挖掘出一份数据的潜在价值。
云计算:根据美国国家标准与技术研究院定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投人很少的管理工作,或与服务供应商进行很少的交互。也就是说云计算既是一种商业模式,也是一种计算模式。
二、大数据和云计算的区别及联系
云计算是一种商业模式,也是一种计算模式。所以,云计算是在大数据的基础上进行的,大数据的目的主要是通过海量数据发现潜在价值,使人们更好的理解和把握信息,云计算更倾向于提供服务,二者相互关联。
1、大数据和云计算的区别
1)目的不同:大数据是为了发掘信息价值,而云计算主要是通过互联网管理资源,提供相应的服务。
2)对象不同:大数据的对象是数据,云计算的对象是互联网资源以及应用等。
3)背景不同:大数据的出现在于用户和社会各行各业所产生大的数据呈现几何倍数的增长;云计算的出现在于用户服务需求的增长,以及企业处理业务的能力的提高。
4)价值不同:大数据的价值在于发掘数据的有效信息,云计算则可以大量节约使用成本。
2、大数据和云计算的联系
大数据和云计算的相同点在于它们都是数据存储和处理服务,都需要占用大量的存储和计算资源,因而都要用到海量数据存储技术、海量数据管理技术等/随着数据量的递增、数据处理复杂程度的增加,相应的性能和扩展瓶颈将会越来越大。在这种情况下,云计算所具备的弹性伸缩和动态调配、资源的虚拟化,按需使用,以及绿色节能等基本要素正好契合了新型大数据处理技术的需求。在数据量爆发增长以及对数据处理要求越来越高的先当下,实现大数据和云计算的结合,才能最大程度上发挥二者的优势,满足用户的需求,带来更高的商业价值。
三、如何理解大数据与云计算的关系
简单来说就是,大数据的超大容量自然需要容量大,速度快,安全的存储,满足这种要求的存储离不开云计算。高速产生的大数据只有通过云计算的方式才能在可等待的时间内对其进行处理。同时,云计算是提高对大数据的分析与理解能力的一个可行方案。大数据的价值也只有通过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。总之,云计算是大数据处理的核心支撑技术,是大数据挖掘的主流方式。没有互联网,就没有虚拟化技术为核心的云计算技术,没有云计算就没有大数据处理的支撑技术。
其实,云计算是工业时代的电,大数据就是福特生产线,云存储就是钢铁工业。也就是说,没有钢铁,就没有电,就不会有大规模工业化生产。没有云计算,大数据不会出来,如果云计算没有解决云存储的问题,也不会出来。
四、大数据和云计算的发展前景
1、提升网络质量。随着互联网以及移动互联网的持续发展网络将会更加繁忙,用于监测网络状态的信令数据也会快速增长。通过对海量运维信息以及信令数据的智能分析,能够提高网络维护的实时性,预测网络流量峰值,预警异常流量。从而有效地防止网络拥塞和系统宕机,从而提高网络服务质量,提升用户体验。
2、提升客户价值通过使用大数据分析、数据挖掘等工具和方法,企业能够整合来自市场部门、销售部门、服务部门的数据,从各种不同的角度全面了解自己的客户,对客户形象进行精准刻画,以寻找目标客户,制定有针对性的营销计划、产品组合或商业决策,提升客户价值。
3、提升行业信息化水平。智慧城市的发展以及教育、医疗、交通、环境保护等关系到国计民生的行业,都具有极大的信息化需求。
4、提高用户体验。高速的信息处理,更优质的服务,能够更好地满足用户需要,使用户能够以最廉价的成本为生活带来更好的便利,最大程度上提高了用户的生活学习工作质量。
『肆』 大数据、云计算、数据中心这三者之间有什么区别和联系
不少人把数据中心、云计算数据中心、大数据搞混淆,觉得这三者是一样的产品,其实有显著的区别,数据中心机房是一整套复杂的设施,如今,云计算即将成为信息 社会 的公共资源,而数据中心则是支撑云计算服务的基础设施,所以自从云计算横空出世,一切信息技术都开始围着它转,云计算有如神一样地存在着,下面看看数据中心、云计算、大数据之间有什么区别和联系?
一、大数据
1、 大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产,“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
2、大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
3、移动互联网的大数据主要来自四个方面
(1)、内容数据:
Web2.0时代以后,每个人都成为了媒体,都在网络上生产内容,包括文字、图片、视频等等。
(2)、电商数据:
随着电子商务的发展,线上交易量已经占据整个零售业交易的大部分。每一笔交易都包含了买家、卖家以及商品背后的整条价值链条的信息。
(3)、社交数据:
随着移动社交成为最主要的社交方式,社交不仅仅只有人与人之间的交流作用,社交数据中包括了人的喜好、生活轨迹、消费能力、价值取向等各种重要的用户画像信息。
(4)、物联网数据:
各行各业都出现了物联网的需求和解决方案,每时每刻都在产生巨量的监测数据。那么如此之多的数据,包含着很多有价值的信息,这些信息并不是以直观的形式呈现出来的,需要有办法对这些数据进行处理,无论是计算、存储还是通信,都提出了很高的要求,云计算的相关技术就是对巨量数据的计算、存储和通信的解决方案。
二、云计算
云计算是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。典型的云计算提供商往往提供通用的网络业务应用,可以通过浏览器等软件或者其他Web服务来访问,而软件和数据都存储在服务器上。云计算服务通常提供通用的通过浏览器访问的在线商业应用,软件和数据可存储在数据中心。
三、数据中心
数据中心是全球协作的特定设备网络,用来在internet网络基础设施上传递、加速、展示、计算、存储数据信息,数据中心大部分电子元件都是由低压直流电源驱动运行的。数据中心面临的物理问题是服务器本身和用来连接这些服务器到其他应用环境的电缆。
四、三者之间的联系:
1、大数据和云计算的概念区别:
大数据说的是一种移动互联网和物联网背景下的应用场景,各种应用产生的巨量数据,需要处理和分析,挖掘有价值的信息;云计算说的是一种技术解决方案,就是利用这种技术可以解决计算、存储、数据库等一系列IT基础设施的按需构建的需求,两者并不是同一个层面的东西。
2、大数据与云计算的关系,以上介绍了大数据和云计算的区别,两者之间又有着非常紧密的联系,大数据是云计算非常重要的应用场景,而云计算则为大数据的处理和数据挖掘都提供了最佳的技术解决方案。
3、大数据必然与云计算相关(大数据和云计算没有必然联系,你要作大数据,可以用云计算,也可以不用),数据中心是云计算的基础,从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分,大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术,随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。
4、数据中心是云计算的基础设施,我们通常讲到的服务器资源分配,带宽分配,业务支撑能力,流量防护和清洗能力,都是基于数据中心的大小,和其带宽的容量,数据中心分布在不同的核心城市,辐射到周边城市,提供基础支撑,其一般都符合国家机房一级标准,具备极强的容灾能力,多数厂商会选择两地三中心等方式来架设机房,云计算是在数据中心的基础上提供的从基础服务到增值服务的一种闲置资源利用。
5、但有一点不变的是,不管云计算怎样去变化,必然需要依托数据中心实现落地。可以说,数据中心是云计算的根,云计算是数据中心“叶子”,云计算通过“光合作用”促进数据中心的发展,而数据中心得壮大又为云计算发展提供了坚实的基础,这三者起到相互依存,互相促进的作用。
『伍』 云计算,大数据和人工智能三者之间的关系
云计算、大数据、人工智能这三者的发展不能分开来讲,三者是有着紧密联系的,互相联系,互相依托的,脱离了谁都不能更好的发展,让我们具体来看一下!
一、大数据
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
数据每天都在产生,各行各业都有,数据量也是相当之大,但如何整合数据,清洗数据,然后实现数据价值,这才是当今大数据行业的研究重点。大数据最后要实现的是数据超融合,应用到应用场景,大数据的价值才会体现出来。
人工智能就是大数据应用的体现。
二、云计算
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
对云计算的定义有多种说法。对于到底什么是云计算,至少可以找到100种解释。现阶段广为接受的是美国国家标准与技术研究院(NIST)定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问, 进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。
说白了,云计算计算的是什么?云存储存储的是什么?还是大数据!所以离开大数据谈云计算,离开云计算谈大数据,这都是不科学的。
三、人工智能
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种复杂工作的理解是不同的。
人工智能其实就是大数据、云计算的应用场景。
现在已经比较火热的VR,沉浸式体验,就是依赖与大数据与云计算,让用户能够由更加真切的体验,并且VR技术是可以使用到各行各业的。
人工智能不同于传统的机器人,传统机器人只是代替人类做一些已经输入好的指令工作,而人工智能则包含了机器学习,从被动到主动,从模式化实行指令,到自主判断根据情况实行不同的指令,这就是区别。
大数据的概念在前几年已经炒得火热,但是也就是近两年才开始慢慢落地,依赖于云计算的发展,以及人们对人工智能的预期。
『陆』 数据中心,云计算,大数据这三个词之间有什么区别和联系
作者:XDCPlus
链接:https://www.hu.com/question/21814158/answer/197093338
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
一、数据中心是全球协作的特定设备网络,用来在Internet网络基础设施上传递、加速、展示、计算、存储数据信息。它不仅包括计算机系统和其它与之配套的设备,还包含冗余的数据通信连接、环境控制设备、监控设备以及各种安全装置。
二、而云计算是什么?一般说来,它是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云计算是一种按使用量付费的IT服务模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。那么云计算的定义中有一个最重要的关键词:按需。云计算提供商是根据用户需求,按需提供计算资源的,另外就是云计算架构具有很大的弹性,和扩展性,因为所有的实际物理资源都被虚拟化(抽象化),可配置和可管理。
云计算技术包括分布式文件系统、分布式计算、分布式数据存储等。基于云计算架构,可以实现高并发处理系统来处理海量请求,也可以搭建存储海量数据的云存储系统,也可以搭建分布式计算系统来对数据进行挖掘。生活化一点,包括我们所熟知的搜索引擎、网络视频、电子商务、电子邮件、地图导航等都属于云计算的范畴。
三、大数据是什么?在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中提出:大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。
那么究竟多大的数据算是大数据,这个其实并没有明确的定义。不过IBM提出了大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。这也是目前大家比较公认的大数据的特征。
这个5V的特点,反映了大数据数据量大、产生的速度快且多样,同时大数据具有低价值密度的特点,同时大数据也可能会夹杂一些干扰,影响数据的真实性。因此需要一些技术手段能够快速处理海量数据,并且能够从大数据中挖掘有价值的信息。
大数据从何而来?
移动互联网的大数据主要来自四个方面:
(1)内容数据。Web2.0时代以后,每个人都成为了媒体,都在网络上生产内容,包括文字、图片、视频等等。
(2)电商数据。随着电子商务的发展,线上交易量已经占据整个零售业交易的大部分。每一笔交易都包含了买家、卖家以及商品背后的整条价值链条的信息。
(3)社交数据。随着移动社交成为最主要的社交方式,社交不仅仅只有人与人之间的交流作用,社交数据中包括了人的喜好、生活轨迹、消费能力、价值取向等各种重要的用户画像信息。
(4)物联网数据。各行各业都出现了物联网的需求和解决方案,每时每刻都在产生巨量的监测数据。
那么如此之多的数据,包含着很多有价值的信息,这些信息并不是以直观的形式呈现出来的,需要有办法对这些数据进行处理,无论是计算、存储还是通信,都提出了很高的要求,云计算的相关技术就是对巨量数据的计算、存储和通信的解决方案。
但有一点不变的是,不管云计算怎样去变化,必然需要依托数据中心实现落地。可以说,数
据中心是云计算的根,云计算是数据中心“叶子”,云计算通过“光合作用”促进数据中心的发展,
而数据中心得壮大又为云计算发展提供了坚实的基础。两者起到相互依存,互相促进的作用。
关于大数据和云计算的概念区别,我们总结一下:大数据说的是一种移动互联网和物联网背景下的应用场景,各种应用产生的巨量数据,需要处理和分析,挖掘有价值的信息;云计算说的是一种技术解决方案,就是利用这种技术可以解决计算、存储、数据库等一系列IT基础设施的按需构建的需求。两者并不是同一个层面的东西。
大数据与云计算的关系
那么上面说了大数据和云计算的区别,两者之间又有着非常紧密的联系。大数据是云计算非常重要的应用场景,而云计算则为大数据的处理和数据挖掘都提供了最佳的技术解决方案。
『柒』 大数据在云计算中转换的4个步骤
大数据在云计算中转换的4个步骤
如今的企业必须向顾客提供始终如一的高价值体验,否则会失去顾客。他们正在求助于大数据技术。通过大数据分析,组织可以更好地了解他们的客户,了解他们的习惯,并预测他们的需求,以提供更好的客户体验。但是,大数据转换的路径并不简单。传统数据库管理和数据仓库设备变得过于昂贵,难以维护和规模化。此外,他们无法应对当今面临的挑战,其中包括非结构化数据,物联网(IoT),流数据,以及数字转型相结合的其他技术。大数据转换的答案是云计算。参与大数据决策的IT专业人士中有64%的人表示已将技术堆栈转移到云端,或正在扩大其实施。根据调研机构Forrester公司的研究,另外23%的企业计划在未来12个月内转向云端。利用云计算的好处是显着的。调查对象最常引用的优势是IT成本较低;竞争优势;开拓新见解的能力;建立新客户应用程序的能力;易于整合;有限的安全风险;并减少时间。大数据在云端的挑战虽然云计算的好处是巨大的,但转移大数据可能会带来一些挑战:具体来说:数据集成:66%的IT专业人士表示,数据集成在公共云中变得更为复杂。安全性:61%表示关注数据访问和存储。传统设施:64%的人表示从传统基础设施/系统过渡过于复杂。技能:67%的人表示担心大数据所需技能和建设基础设施的技能。克服云计算挑战的4个步骤 组织如何克服这些挑战并将其转化为机会?以下是利用云计算进行大数据转换的四个关键步骤:(1)数据集成如果组织具有多样化且复杂的数据生态系统,那么并非所有的云或大数据技术都可以无缝地集成数据。选择需要复杂数据转换的目标技术可能并不理想。在选择任何技术之前完成数据管道分析。这样可以降低创建不连贯数据和不兼容系统的风险。(2)安全性如果组织的数据是机密和专有的,或者需要解决严格的安全和合规性要求,则可能会对数据放在云端有所担心。在这种情况下,具有高度自定义网络和加密功能的单租户的私有云解决方案可以为组织提供所需的大数据功能,以及专用环境的安全性。另外,请记住,公共云并不意味着“不安全”。AWS和微软Azure等领先供应商提供云原生安全认证解决方案,并提供包括磁盘级加密和严格的授权,以及认证技术的选项。云计算中的数据安全性正在快速成熟。许多具有严格的安全和合规要求的组织已经成功地利用公共云上的大数据技术。(3)原有传统系统从原来的传统基础架构的转型总是涉及到数据迁移,通常会涉及这三个路径的其中一个: ·提升和转移:将现有工作负载转移到云基础设施即服务,只是利用云计算,存储和网络功能,无需复杂的应用程序重写,同时提供可扩展基础架构的优势。·随着时间的推移,停用原有系统的数据:将现有数据保留在旧系统上,并将新数据直接发送到基于云计算的新平台,无需数据迁移。新功能和功能被设计为云就绪。·复杂的数据转换:这涉及数据驱动应用程序的现代化,最适用于应用程序接近生命周期。其示例包括从大型机,AS / 400和较旧的关系数据库管理系统转移到新的数据库,如Hive,Hadoop和HBase。(4)技能大数据实现取决于不同的技能,包括开发人员,管理人员,云计算和大型数据架构师。市场对这些专家供不应求,所以组织经常要求内部人员或合同人员超越其核心能力进行工作,这会减慢实现的速度。选择以交钥匙为基础提供这些功能的供应商是更为经济的。确保它在专用环境和公其云上大规模管理多个复杂的大数据环境。结论大数据的应用已经成为许多行业的巨大差异。成功开展业务的公司已经在行业中脱颖而出,这些公司不能面对落后的风险。云计算提供了最快,最安全,最具前途的大数据转换途径。 不要担心数据集成,安全性,传统系统或技能阻止组织进行正确的移动。这些都比人们想象的要容易得多。
『捌』 大数据和云计算的关系
大数据与云计算的概念
大数据
指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据领域的人才需求主要围绕大数据的产业链展开,涉及到数据的采集、整理、存储、安全、分析、呈现和应用,岗位多集中在大数据平台研发、大数据应用开发、大数据分析和大数据运维等几个岗位。
大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。关于大数据的话题,基本围绕三个问题展开:一是数据从哪里来,二是数据如何进行分析,三是数据如何进行商品化。
云计算
是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
云计算的应用目前正在经历从IaaS向PaaS和SaaS发展,在用户分布上也逐渐开始从互联网企业向广大传统企业过渡,未来的市场空间还是非常大的。
大数据与云计算的联系
大数据与云计算经常联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十数百或甚至数千的服务器分配工作,大数据需要特殊的技术,以有效地处理大量数据。适用大数据的技术,包括大规模并行处理数据库、数据挖掘电网、分布文件系统、分布式数据库、计算平台、互联网和可扩展的存储系统,大数据指的海量的数据一般日处理PB级别以上,一般用于挖掘,分析,做一些智能性商业板块。
从理论角度来看,二者属于不同层次的事情,云计算研究的是计算问题,大数据研究的是巨量数据处理问题,而巨量数据处理依然属于计算问题的研究范围,因此,从这个角度来看,大数据是云计算的一个子领域。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术,随着云时代的来临,大数据也吸引了越来越多的关注。
从应用角度来看,大数据是云计算的应用案例之一,云计算是大数据的实现工具之一。综上,大数据与云计算既有不同又有联系,但在现实中,由于大数据处理时为了获得良好的效率和质量,常常采用云计算技术,因此,大数据与云计算便常常同时出现于人们的眼前,从而造成了人们的困惑。
大数据注重的是数据分析,云计算是偏向计算机软硬件架构与应用。大数据方向需要有一定的数学基础,如果数学不是很好,这个学习起来比较吃力。云计算需要计算机技术能力较强。两个方向应该来说都需要良好的数学基础和编程基础。
大数据和云计算各有不同的关注点,但是在技术体系结构上,都是以分布式存储和分布式计算为基础,所以二者之间的联系也比较紧密。
总结,不管云计算怎样去变化,必然需要依托数据中心实现落地。可以说,云计算是数据中心“叶子”,云计算通过“光合作用”促进数据中心的发展,而数据中心得壮大又为云计算发展提供了坚实的基础,这二者起到相互依存,互相促进的作用。
『玖』 大数据和云计算究竟有什么关系
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提内供动态易扩展且经常容是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算
大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理.
『拾』 大数据和云计算是什么
大数据和云计算的区别:
1)目的不同:大数据是为了发掘信息价值,而云计算主要是通过互联网管理资源,提供相应的服务。
2)对象不同:大数据的对象是数据,云计算的对象是互联网资源以及应用等。
3)背景不同:大数据的出现在于用户和社会各行各业所产生大的数据呈现几何倍数的增长;云计算的出现在于用户服务需求的增长,以及企业处理业务的能力的提高。
4)价值不同:大数据的价值在于发掘数据的有效信息,云计算则可以大量节约使用成本。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。
大数据分析经常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十数百或甚至数千的服务器分配工作,大数据需要特殊的技术,以有效地处理大量数据。适用大数据的技术,包括大规模并行处理数据库、数据挖掘电网、分布文件系统、分布式数据库、计算平台、互联网和可扩展的存储系统,大数据指的海量的数据一般日处理PB级别以上,一般用于挖掘,分析,做一些智能性商业板块。
大数据必然与云计算有相关(大数据和云计算没有必然的联系,你要作大数据,可以用云计算,也可不用)数据中心是云计算基础,从技术上来看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分,大数据必然无法用单台的计算机进行处理,必须采用分布式的架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算分布式处理、分布式数据库和云存储、虚拟化等技术,随着云时代的来临,大数据也吸引了越来越多的关注。