㈠ 大数据怎么应用,大数据是什么
大数据:
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
根据维基网络的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。[1]
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
意义:
有人把数据比喻为蕴[4] 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
2) 做小而美模式的中长尾企业可以利用大数据做服务转型;
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
㈡ 大数据存储与应用特点及技术路线分析
大数据存储与应用特点及技术路线分析
大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
大数据存储与应用的特点分析
“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。
大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。
(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。
相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。
(2)大数据由于其来源的不同,具有数据多样性的特点。
所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。
大数据存储技术路线最典型的共有三种:
第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。
这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。
第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。
第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。
以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货
㈢ 大数据技术与应用专业学什么的 有哪些课程
大数据技术与应用作为高校计算机类专业,学习的课程包括面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析等。
面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。2014年,从大数据作为国家重要的战略资源和加快实现创新发展的高度,在全社会形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。大数据科学将成为计算机科学、人工智能技术(虚拟现实、商业机器人、自动驾驶、全能的自然语言处理)、数字经济及商业、物联网应用、还有各个人文社科领域发展的核心。
大数据技术与应用的前景和方向:
1、大数据系统研发工程师
该专业人才负责大数据系统研发,包括大规模非结构化数据业务模型构建、大数据存储、数据库构设、优化数据库构架、解决数据库中心设计等。
2、大数据应用开发工程师
此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapRece,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才。
3、大数据分析师
此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。
㈣ 大数据处理的五大关键技术及其应用
作者 | 网络大数据
来源 | 产业智能官
数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。其中主要工作环节包括:
大数据采集 大数据预处理 大数据存储及管理 大数据分析及挖掘 大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
大数据采集一般分为:
大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。
基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。
二、大数据预处理技术
完成对已接收数据的辨析、抽取、清洗等操作。
抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。
清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。
开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。
四、大数据分析及挖掘技术
大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。
机器学习中,可细分为归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。
数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。
数据挖掘的计算复杂度和灵活度远远超过前两类需求。一是由于数据挖掘问题开放性,导致数据挖掘会涉及大量衍生变量计算,衍生变量多变导致数据预处理计算复杂性;二是很多数据挖掘算法本身就比较复杂,计算量就很大,特别是大量机器学习算法,都是迭代计算,需要通过多次迭代来求最优解,例如K-means聚类算法、PageRank算法等。
从挖掘任务和挖掘方法的角度,着重突破:
可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。 数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。 预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。 语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。 数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。预测分析成功的7个秘诀
预测未来一直是一个冒险的命题。幸运的是,预测分析技术的出现使得用户能够基于历史数据和分析技术(如统计建模和机器学习)预测未来的结果,这使得预测结果和趋势变得比过去几年更加可靠。
尽管如此,与任何新兴技术一样,想要充分发挥预测分析的潜力也是很难的。而可能使挑战变得更加复杂的是,由不完善的策略或预测分析工具的误用导致的不准确或误导性的结果可能在几周、几个月甚至几年内才会显现出来。
预测分析有可能彻底改变许多的行业和业务,包括零售、制造、供应链、网络管理、金融服务和医疗保健。AI网络技术公司Mist Systems的联合创始人、首席技术官Bob fridy预测:“深度学习和预测性AI分析技术将会改变我们社会的所有部分,就像十年来互联网和蜂窝技术所带来的转变一样。”。
这里有七个建议,旨在帮助您的组织充分利用其预测分析计划。
1.能够访问高质量、易于理解的数据
预测分析应用程序需要大量数据,并依赖于通过反馈循环提供的信息来不断改进。全球IT解决方案和服务提供商Infotech的首席数据和分析官Soumendra Mohanty评论道:“数据和预测分析之间是相互促进的关系。”
了解流入预测分析模型的数据类型非常重要。“一个人身上会有什么样的数据?” Eric Feigl - Ding问道,他是流行病学家、营养学家和健康经济学家,目前是哈佛陈氏公共卫生学院的访问科学家。“是每天都在Facebook和谷歌上收集的实时数据,还是难以访问的医疗记录所需的医疗数据?”为了做出准确的预测,模型需要被设计成能够处理它所吸收的特定类型的数据。
简单地将大量数据扔向计算资源的预测建模工作注定会失败。“由于存在大量数据,而其中大部分数据可能与特定问题无关,只是在给定样本中可能存在相关关系,”FactSet投资组合管理和交易解决方案副总裁兼研究主管Henri Waelbroeck解释道,FactSet是一家金融数据和软件公司。“如果不了解产生数据的过程,一个在有偏见的数据上训练的模型可能是完全错误的。”
2.找到合适的模式
SAP高级分析产品经理Richard Mooney指出,每个人都痴迷于算法,但是算法必须和输入到算法中的数据一样好。“如果找不到适合的模式,那么他们就毫无用处,”他写道。“大多数数据集都有其隐藏的模式。”
模式通常以两种方式隐藏:
模式位于两列之间的关系中。例如,可以通过即将进行的交易的截止日期信息与相关的电子邮件开盘价数据进行比较来发现一种模式。Mooney说:“如果交易即将结束,电子邮件的公开率应该会大幅提高,因为买方会有很多人需要阅读并审查合同。”
模式显示了变量随时间变化的关系。“以上面的例子为例,了解客户打开了200次电子邮件并不像知道他们在上周打开了175次那样有用,”Mooney说。
3 .专注于可管理的任务,这些任务可能会带来积极的投资回报
纽约理工学院的分析和商业智能主任Michael Urmeneta称:“如今,人们很想把机器学习算法应用到海量数据上,以期获得更深刻的见解。”他说,这种方法的问题在于,它就像试图一次治愈所有形式的癌症一样。Urmeneta解释说:“这会导致问题太大,数据太乱——没有足够的资金和足够的支持。这样是不可能获得成功的。”
而当任务相对集中时,成功的可能性就会大得多。Urmeneta指出:“如果有问题的话,我们很可能会接触到那些能够理解复杂关系的专家” 。“这样,我们就很可能会有更清晰或更好理解的数据来进行处理。”
4.使用正确的方法来完成工作
好消息是,几乎有无数的方法可以用来生成精确的预测分析。然而,这也是个坏消息。芝加哥大学NORC (前国家意见研究中心)的行为、经济分析和决策实践主任Angela Fontes说:“每天都有新的、热门的分析方法出现,使用新方法很容易让人兴奋”。“然而,根据我的经验,最成功的项目是那些真正深入思考分析结果并让其指导他们选择方法的项目——即使最合适的方法并不是最性感、最新的方法。”
罗切斯特理工学院计算机工程系主任、副教授shanchie Jay Yang建议说:“用户必须谨慎选择适合他们需求的方法”。“必须拥有一种高效且可解释的技术,一种可以利用序列数据、时间数据的统计特性,然后将其外推到最有可能的未来,”Yang说。
5.用精确定义的目标构建模型
这似乎是显而易见的,但许多预测分析项目开始时的目标是构建一个宏伟的模型,却没有一个明确的最终使用计划。“有很多很棒的模型从来没有被人使用过,因为没有人知道如何使用这些模型来实现或提供价值,”汽车、保险和碰撞修复行业的SaaS提供商CCC信息服务公司的产品管理高级副总裁Jason Verlen评论道。
对此,Fontes也表示同意。“使用正确的工具肯定会确保我们从分析中得到想要的结果……”因为这迫使我们必须对自己的目标非常清楚,”她解释道。“如果我们不清楚分析的目标,就永远也不可能真正得到我们想要的东西。”
6.在IT和相关业务部门之间建立密切的合作关系
在业务和技术组织之间建立牢固的合作伙伴关系是至关重要的。客户体验技术提供商Genesys的人工智能产品管理副总裁Paul lasserr说:“你应该能够理解新技术如何应对业务挑战或改善现有的业务环境。”然后,一旦设置了目标,就可以在一个限定范围的应用程序中测试模型,以确定解决方案是否真正提供了所需的价值。
7.不要被设计不良的模型误导
模型是由人设计的,所以它们经常包含着潜在的缺陷。错误的模型或使用不正确或不当的数据构建的模型很容易产生误导,在极端情况下,甚至会产生完全错误的预测。
没有实现适当随机化的选择偏差会混淆预测。例如,在一项假设的减肥研究中,可能有50%的参与者选择退出后续的体重测量。然而,那些中途退出的人与留下来的人有着不同的体重轨迹。这使得分析变得复杂,因为在这样的研究中,那些坚持参加这个项目的人通常是那些真正减肥的人。另一方面,戒烟者通常是那些很少或根本没有减肥经历的人。因此,虽然减肥在整个世界都是具有因果性和可预测性的,但在一个有50%退出率的有限数据库中,实际的减肥结果可能会被隐藏起来。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。
在我国,大数据将重点应用于以下三大领域:商业智能 、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。
㈤ 第三章 大数据存储
一,HDFS的基本特征与构架
1.基本特征
(1)大规模数据分布存储能力:以分布式存储能力和良好的可扩展性。(基于大量分布节点上的本地文件系统,构建一个逻辑上具有巨大容量的分布式文件系统,并且整个文件系统的容量可随集群中节点的增加而线性扩展)
(2)高并发访问能力:提供很高的数据访问宽带(高数据吞吐率),并且可以把带宽的大小等比例扩展到集群中的全部节点上
(3)强大的容错能力:(设计理念中硬件故障被视作常态)保证在经常有节点发生硬件故障的情况下正确检测硬件故障,并且能自动从故障中快速恢复,确保数据不丢失(采用多副本数据块形式存储)
(4)顺序式文件访问:(大数据批处理都是大量简单数据记录的顺序处理)对顺序读进行了优化,支持大量数据的快速顺序读出,代价是对于随机的访问负载较高
(5)简单的一致性模型(一次写多次读):支持大量数据的一次写入,多次读取;不支持已写入数据的更新操作,但允许在文件尾部添加新的数据
(6)数据块存储模式:默认的块大小是64MB。好处:减少元数据的数量,允许这些数据块通过随机方式选择节点,分布存储在不同地方
2.基本框架与工作过程
(1)基本组成结构与文件访问过程
[1]HDFS;一个建立在一组分布式服务器节点的本地文件系统之上的分布式文件系统(采用经典主-从结构)
[2]主控节点NameNode:
1)是一个主服务器,用来管理整个文件系统的命名空间和元数据,以及处理来自外界的文件访问请求
2)保存了文件系统的三中元数据
命名空间:整个分布式文件系统的目录结构
数据块与文件名的映射表
每个数据块副本的位置信息,每一个数据块默认有3个副本
[3]从节点DataNode:
1)用来实际存储和管理文件的数据块
2)为了防止数据丢失,每个数据块默认有3个副本,且3个副本会分别复制在不同节点上,以避免一个节点失效造成一个数据块的彻底丢失
[4]程序访问文件时,实际文件数据流并不会通过NameNode传送,而是从NameNode获得所需访问数据块的存储位置信息后,直接去访问对应的DataNode获取数据
[5]设计好处:
1)可以允许一个文件的数据能同时在不同DataNode上并发访问,提高数据访问的速度
2)减少NameNode的负担,避免使NameNode成为数据访问瓶颈
[6]基本访问过程:
1)首先,用户的应用程序通过HDFS的客户端程序将文件名发送至NameNode
2)NameNode接收到文件名之后,在HDFS目录中检索文件名对应的数据块,再根据数据块信息找到保存数据块的DataNode地址,讲这些地址回送到客户端
3)客户端接收到这些DataNode地址之后,与这些DataNode并行的进行数据传输操作,同时将操作结果的相关日志提交到NameNode
2.数据块
(1)为了提高硬盘的效率,文件系统中最小的数据读写单元是数据块
(2)HDFS数据块的默认大小是64MB,实际部署中,可能会更多
(3)将数据块设置大的原因是减少寻址开销的时间
(4)当应用发起数据传输请求:
[1]NameNode首先检索文件对应的数据块信息,找到数据块对应的DataNode
[2]DataNode根据数据块信息在自身的存储中寻找相应的文件,进而与应用程序之间交换数据
[3]因为检索过程是但进行,所以要增加数据块大小,这样就可以减少寻址的频度和时间开销
3.命名空间
(1)文件命名遵循“目录/子目录/文件”格式
(2)通过命令行或者是API可以创建目录,并且将文件保存在目录中。可以对文件进行创建,删除,重命名操作
(3)命令空间由NameNode管理。所有对命名空间的改动都会被记录
(4)允许用户配置文件在HDFS上保存的副本数量,保存的副本数称作“副本因子”
4.通信协议
(1)采用TCP协议作为底层的支撑协议
(2)应用协议
[1]应用可以向NameNode主动发起TCP连接
[2]应用和NameNode交互协议称为Client协议
[3]NameNode和DataNode交互的协议称为DataNode协议
(3)用户和DataNode的交互是通过发起远程调用(RPC),并由NameNode响应来完成的。另外,NameNode不会主动发起远程过程调用请求
5.客户端:是用户和HDFS通信最常见的渠道,部署的HDFS都会提供客户端
二,HDFS可靠性设计
1.HDFS数据块多副本存储设计
(1)采用了在系统中保存多个副本的方式保存数据,且同一个数据块的多个副本会存放在不同节点上
(2)优点:
[1]采用多副本,可以让客户从不同数据块中读取数据,加快传输速度
[2]HDFS的DataNode之间通过网络传输数据,如果采用多个副本可以判断数据传输是否出错
[3]多副本可以保证某个DataNode失效的情况下,不会丢失数据
2.可靠性的设计实现
(1)安全模式:
[1]HDFS启动时,NameNode进入安全模式
[2]处于安全模式的NameNode不能做任何文本操作,甚至内部的副本创建不允许
[3]NameNode需要和各个DataNode通信,获得其中保存的数据块信息,并对数据块信息进行检查
[4]只有通过了NameNode检查,一个数据块被认为安全。当被认为安全的数据块所占比例达到某个阈值,NameNode退出
(2)SecondaryNmaeNode
[1]使用它来备份NameNode元数据,以便在其失效时能从中恢复出其上的元数据
[2]它充当NameNode的一个副本,本身并不处理任何请求。
[3]作用:周期性保存NameNode的元数据
(3)心跳包和副本重新创建
[1]心跳包:位于HDFS核心的NameNode,通过周期性的活动检查DataNode的活动
[2]检测到DataNode失效,保存在其上的数据不可用。则其上保存的副本需要重新创建这个副本,放到另外可用的地方
(4)数据一致性
[1]采用了数据校验和机制
[2]创建文件时,HDFS会为这个文件生成一个校验和,校验和文件和文件本身保存在同一空间上,
[3]传输数据时会将数据与校验和一起传输,应用收到数据后可以进行校验
(5)租约
[1]防止同一个文件被多个人写入数据
[2]NameNode保证同一个文件只会发放一个允许的租约,可以有效防止出现多人写入的情况
(6)回滚
三,HDFS文件存储组织与读写
1.文件数据的存储组织
(1)NameNode目录结构
[1]借助本地文件系统来保存数据,保存文件夹位置由配置选项({dfs.name.dir}/{/tmp/dfs/name})决定
[2]在NameNode的${dfs.name.dir}之下有3个文件夹和1个文件:
1)current目录:
文件VERSION:保存了当前运行的HDFS版本信息
FsImages:是整个系统的空间镜像文件
Edit:EditLog编辑文件
Fstime:上一次检查点时间
2)previous.checkpoint目录:和上一个一致,但是保存的是上一次检查点的内容
3)image目录:旧版本的FsImage存储位置
4)in_use.look:NameNode锁,只在NameNode有效(启动并且能和DataNode正常交互)时存在。
(2)DataNode目录结构
[1]借助本地文件系统来保存数据。保存文件夹位置由配置选项{dfs.data.dir}决定
[2]在其之下有4个子目录和2个文件
1)current目录:已经成功写入的数据块,以及一些系统需要的文件
a)文件VERSION:保存了当前运行的HDFS版本信息
b)subdirXX:当同一目录下文件超过一定限制,新建一个目录,保存多出来的数据块和元数据
2)tmp目录和blockBeingWritten目录:正在写入的数据块,是HDFS系统内部副本创建时引发的写入操作对应的数据块
3)detach目录:用于DataNode升级
4)Storage目录:防止版本不同带来风险
5)in_user.lock文件:DataNode锁。只有在DataNode有效时存在。
(3)CheckPointNode目录结构:和上一个基本一致
2.数据的读写过程
(1)数据读取过程
[1]首先,客户端调用FileSystem实例的open方法,获得这个文件对应的输入流,在HDFS中就是DFSInputStream
[2]构造第一步的输入流时,通过RPC远程调用NameNode可以获得NameNode中此文件对应的数据块保存位置,包括这个文件副本的保存位置(注:在输入流中会按照网络拓扑结构,根据与客户端距离对DataNode进行简单排序)
[3]-[4]获得此输入流后,客户端调用READ方法读取数据。输入流选择最近的DFSInputStream会根据前面的排序结果,选择最近的DataNode建立连接并读取数据。
[5]如果已达到数据块末端,关闭这个DataNode的连接,然后重新查找下一个数据块
[6]客户端调用close,关闭输入流DFSInputStream
(2)数据输入过程
[1]-[2]:客户端调用FileSystem实例的create方法,创建文件。检查后,在NameNode添加文件信息,创建结束之后,HDFS会返回一个输出流DFSDataOutputStream给客户端
[3]调用输出流的write方法向HDFS中对应的文件写入数据。
数据首先会被分包,这些分包会写入一个输出流的内部队列Data队列中,接收完整数据分包,输出流回想NameNode申请保存文件和副本数据块的若干个DataNode
[4]DFSDataOutputStream会(根据网络拓扑结构排序)将数据传输给距离上最短的DataNode,这个节点接收到数据包后传给下一个。数据在各节点之间通过管道流通,减少传输开销
[5]数据节点位于不同机器上,数据需要通过网络发送。(为保证数据节点数据正确,接收到数据的节点要向发送者发送确认包)
[6]执行3-5知道数据全部写完,DFSDataInputStream继续等待知道所有数据写入完毕并确认,调用complete方法通知NameNode文件写入完成
[7]NameNode接收到complete消息之后,等待相应数量的副本写入完毕后,告知客户端
传输过程,当某个DataNode失效,HDFS执行:
1)关闭数据传输的管道
2)将等待ACK队列的数据放到Data队列头部
3)更新正常DataNode中所有数据块版本。当失效的DataNode重启,之前的数据块会因为版本不对被清除
4)在传输管道中删除失效的DataNode,重新建立管道并发送数据包
4.HDFS文件系统操作命令
(1)HDFS启动与关闭
[1]启动过程:
1)进入到NameNode对应节点的Hadoop安装目录
2)执行启动脚本:bin/start-dfs.sh
[2]关闭过程:bin/stop-dfs.sh
(2)文件操作命令格式与注意事项
[1]基本命令格式:
1)bin/hadoop dfs-cmd <args> args-> scheme://authority/path
2)args参数基本格式前面是scheme,authority是机器地址和对应端口
a)本地文件,scheme是file
b)HDFS上文件,scheme是hdfs
(3)文件操作基本格式
[1]hadoop dfs-cat URL [URL ...]
[2]作用:将参数所指示文件内容输出到stdout
㈥ 大数据关键技术有哪些
大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。
1、大数据采集技术
大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。
因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。
2、大数据预处理技术
大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。
因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。
3、大数据存储及管理技术
大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。
4、大数据处理
大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。
(6)大数据存储和应用扩展阅读:
大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹。
1、制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
5、电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
㈦ 大数据时代 大学哪些专业涉及大数据技术与应用
大数据时代 大学哪些专业涉及大数据技术与应用
早在1980年,未来学家阿尔文?托夫勒在 《第三次浪潮》一书中,就将大数据誉为“第三次浪潮的华彩乐章”。现在的大数据更是站在互联网的风口浪尖上,是公众津津乐道的热门词汇。同时这股热潮也催热了大学里的大数据专业。
到底什么是大数据?本科专业中哪个专业是和它相对应的?一般开设在哪些院系?对外经济贸易大学信息学院副院长华迎教授详解这个大家关注的热门专业。
一、专业解析
什么是大数据?
进入互联网时代,中国的网民人数已超7亿,大数据的应用涉及到生活的方方面面。例如,你在网站上买书,商家就会根据你的喜好和其他购书者的评价给你推荐另外的书籍;手机定位数据和交通数据可以帮助城市规划;甚至用户的搜索习惯和股市都有很大关系。
在谈到大数据的时候,人们往往知道的就是数据很大,但大数据≠大的数据。对外经济贸易大学信息学院副院长华迎教授介绍:“现在的大数据包括来自于多种渠道的多类数据,其中主要来源网络数据。数据分析不是新的,一直都有,但是为什么叫大数据呢?主要是因为网络数据的格式、体量、价值,都超出了传统数据的规模。对这些海量信息的采集、存储、分析、整合、控制而得到的数据就是大数据。大数据技术的意义不在于掌握庞大的数据信息,而在于对这些数据进行专业化处理,通过‘加工’实现数据的‘增值’,更好地辅助决策。”
数据科学与大数据技术专业
本科专业中和大数据相对应的是“数据科学与大数据技术”专业,它是2015年教育部公布的新增专业。2016年3月公布的《高校本科专业备案和审批结果》中,北京大学、对外经济贸易大学和中南大学3所高校首批获批开设“数据科学与大数据技术”专业。随后第二年又有32所高校获批“数据科学与大数据技术”专业。两次获批的名单中显示,该专业学制为四年,大部分为工学。
“数据科学与大数据技术是个交叉性很强的专业,很难说完全归属于哪个独立的学科。所以,不同的学校有的是信息学院申报,有的.是计算机学院牵头申报,有的设在统计学院,还有的在经管学院。像北京大学这个专业是放在理学下,授予理学学位。大多数是设在工学计算机门类下,授予的是工学学位。”华迎教授说:“数据科学很早就存在,是个比较经典的学科,现在和大数据技术结合形成了这个专业。目前教育部设定的本科专业名称为‘数据科学与大数据技术’,专科名称是‘大数据技术与应用’。”
数据科学与大数据技术学什么?
以对外经济贸易大学该专业为例,专业知识结构包括数学、统计、计算机和大数据分析四大模块,具体课程设置如下:
数学:数学分析一、数学分析二、高等代数、离散数学。统计学:概率论与数理统计、多元统计分析、随机过程。计算机:数据结构、计算机组成原理、操作系统、数据库系统原理、C++程序设计、Java程序设计、Python与大数据分析、科学计算与Matlab应用、R语言等。大数据分析:数据科学导论、机器学习与数据挖掘、信息检索与数据处理、自然语言处理、智能计算、推荐系统原理、大数据分析技术基础、数据可视化、大数据存储与管理、大数据分析实践等课程。
华迎教授介绍:“数据科学与大数据技术是一门实践性很强的新兴交叉复合型学科,无论是开设在哪个学院下,数学、统计学、计算机三大块课程是必须得有。各高校在这几门背景学科的基础上,交叉融合其他的专业知识技能。如我校在数学、统计学、计算机知识体系模块中又增加了体现学校特色的财经类行业应用和外语模块,以提升学生的行业应用能力和国际化水平。根据各校偏重的专业方向,课程设置有所差异,感兴趣的同学可以具体查看各校的专业和课程设置情况。”
二、专业与就业
行业增速快 人才缺口180万
随着移动互联网和智能终端的普及,信息技术与经济社会的交汇融合,引发了数据迅猛增长。新摩尔定律认为,人类有史以来的数据总量,每过18个月就会翻一番。而海量的数据蕴含着巨大生产力和商机。
2011年至2014年四年间,我国大数据处于起步阶段,每年均增长在20%以上。2015年,大数据市场规模已达到98.9亿元。2016年增速达到45%,超过160亿元。预计2020年,我国大数据市场规模将超过8000亿元,有望成世界第一数据资源大国。但数据开放度低、技术薄弱、人才缺失、行业应用不深入等都是产业发展中亟待解决的问题。
根据领英发布《2016年中国最热职位人才报告》显示,有六类热门职位的人才当前都处于供不应求状态,稀缺程度各有不同,其中,数据分析人才的供给指数最低,仅为0.05,属于高度稀缺。
中国商业联合会数据分析专业委员会资料显示,未来3至5年,中国需要180万数据人才,但截至目前,中国大数据从业人员只有约30万人。同时,大数据行业选才的标准也在不断变化。初期,大数据人才的需求主要集中在ETL研发、系统架构开发、数据仓库研究等偏硬件领域,以IT、计算机背景的人才居多。随着大数据往各垂直领域延伸发展,对统计学、数学专业的人才,数据分析、数据挖掘、人工智能等偏软件领域的需求加大。
大数据主要就业方向
2015年9月国务院印发《促进大数据发展行动纲要》,系统部署大数据发展工作。《纲要》明确提出了七方面政策机制,其中第六条就是加强专业人才培养,建立健全多层次、多类型的大数据人才培养体系。目前,大数据主要有三大就业方向:大数据系统研发类、大数据应用开发类和大数据分析类。具体岗位如:大数据分析师、大数据工程师等。
“大数据分析师是用适当的统计分析方法对收集来的大量数据进行分析,强调的是数据的应用,侧重于统计层面内容会多一些。比如做产品经理,可以通过数据建立金融模型,来推出一些理财产品。而大数据工程师则侧重于技术,主要是围绕大数据平台系统级的研发,偏开发层面。”华迎教授介绍:“我们把大数据分析在业务中使用的流程总结起来,分为以下几个步骤:数据获取和预处理、数据存储管理、数据分析建模、数据可视化。在这个应用流程中,毕业生可以根据自己的兴趣和特长,在不同的环节选择就业。”
三、报考指南
院校开设情况
教育部关于公布2015年度普通高等学校本科专业备案和审批结果的通知教育部关于公布2016年度普通高等学校本科专业备案和审批结果的通知在“教育部2015年度普通高等学校本科专业备案和审批结果”中北京大学、中南大学、对外经贸大学成为首批开设 “数据科学与大数据技术”本科专业的高校,随后中国人民大学、北京邮电大学、复旦大学等32所高校成为第二批成功申请该专业的高校。目前,我国已有35所高校获批“数据科学与大数据技术”本科专业,第三批申请结果也即将公布。
数据科学与大数据技术是个交叉性强、跨学科的专业,很难说是完全归属与那个独立的学科。高校牵头申报的学院不同,培养重点和授予的学位可能不一样。因为课程来自于不同的学院,也有高校是联合一些学院单独成立机构来申报。从名单可以看出,在大部分开设院校中该专业都属于工学类,有个别院校将其归属在理学门类,授予理学学位。
有志于学习数据科学与大数据技术专业的学生,可以从大学的传统优势领域和行业背景考虑选择。比如,复旦大学的大数据技术本科专业是设在大数据学院下;北京大学是在数学院开设了该专业,偏数学的内容更多一些。对外经济贸易大学该专业设在信息学院,因为财经是学校传统优势,专业还会偏重经济、金融等相关学科领域的知识。
录取分数不低
从2017年数据科学与大数据技术专业的录取情况看,该专业的录取分数还是比较高的。以对外经济贸易大学和重庆理工大学为例,2017年对外经贸大学数据科学与大数据技术专业在京理科一批录取最高分653分,最低分646分,平均分650分,平均分高出北京一本批次线113分。
重庆理工大学理学院院长李波介绍,学校理学院有金融数学、数学与应用数学、信息与计算科学、应用统计学、应用物理学、新能源科学与工程专业,数据科学与大数据技术是2017年获批后开设的。尽管该专业属于本科二批招生,但首批数据科学与大数据技术专业所招73名学生的平均分超一本线20分左右,并且第一志愿录取率达百分之百。
只招理科生 注意大类招生
考生报考时要注意,目前获批开设的院校并非在所有省都有招生计划,还有的高校是按大类招生。如北京邮电大学该专业2017年本科就是按计算机大类招生。随着各省高考改革的实施,越来越多的省份加入新高考的序列,未来会有更多的高校施行按大类招生。
值得注意的是,数据科学与大数据技术只招理科生,但女生的比例并不低。据华迎教授介绍:“第一年招生时,我们以为这纯工科专业绝大部分都会是男生报考,录取后发现女生还是很多的,女生比例大概占了这个专业总人数的一半儿。” 重庆理工大学2017年的首批73名学生中,男生45人,女生28人,女生比例占总人数38%。
㈧ 传统大数据存储的架构有哪些各有什么特点
数据时代,移动互联、社交网络、数据分析、云服务等应用的迅速普及,对数据中心提出革命性的需求,存储基础架构已经成为IT核心之一。政府、军队军工、科研院所、航空航天、大型商业连锁、医疗、金融、新媒体、广电等各个领域新兴应用层出不穷。数据的价值日益凸显,数据已经成为不可或缺的资产。作为数据载体和驱动力量,存储系统成为大数据基础架构中最为关键的核心。
传统的数据中心无论是在性能、效率,还是在投资收益、安全,已经远远不能满足新兴应用的需求,数据中心业务急需新型大数据处理中心来支撑。除了传统的高可靠、高冗余、绿色节能之外,新型的大数据中心还需具备虚拟化、模块化、弹性扩展、自动化等一系列特征,才能满足具备大数据特征的应用需求。这些史无前例的需求,让存储系统的架构和功能都发生了前所未有的变化。
基于大数据应用需求,“应用定义存储”概念被提出。存储系统作为数据中心最核心的数据基础,不再仅是传统分散的、单一的底层设备。除了要具备高性能、高安全、高可靠等特征之外,还要有虚拟化、并行分布、自动分层、弹性扩展、异构资源整合、全局缓存加速等多方面的特点,才能满足具备大数据特征的业务应用需求。
尤其在云安防概念被热炒的时代,随着高清技术的普及,720P、1080P随处可见,智能和高清的双向需求、动辄500W、800W甚至上千万更高分辨率的摄像机面市,大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
目前市场上的存储架构如下:
(1)基于嵌入式架构的存储系统
节点NVR架构主要面向小型高清监控系统,高清前端数量一般在几十路以内。系统建设中没有大型的存储监控中心机房,存储容量相对较小,用户体验度、系统功能集成度要求较高。在市场应用层面,超市、店铺、小型企业、政法行业中基本管理单元等应用较为广泛。
(2)基于X86架构的存储系统
平台SAN架构主要面向中大型高清监控系统,前端路数成百上千甚至上万。一般多采用IPSAN或FCSAN搭建高清视频存储系统。作为监控平台的重要组成部分,前端监控数据通过录像存储管理模块存储到SAN中。
此种架构接入高清前端路数相对节点NVR有了较高提升,具备快捷便利的可扩展性,技术成熟。对于IPSAN而言,虽然在ISCSI环节数据并发读写传输速率有所消耗,但其凭借扩展性良好、硬件平台通用、海量数据可充分共享等优点,仍然得到很多客户的青睐。FCSAN在行业用户、封闭存储系统中应用较多,比如县级或地级市高清监控项目,大数据量的并发读写对千兆网络交换提出了较大的挑战,但应用FCSAN构建相对独立的存储子系统,可以有效解决上述问题。
面对视频监控系统大文件、随机读写的特点,平台SAN架构系统不同存储单元之间的数据共享冗余方面还有待提高;从高性能服务器转发视频数据到存储空间的策略,从系统架构而言也增加了隐患故障点、ISCSI带宽瓶颈导致无法充分利用硬件数据并发性能、接入前端数据较少。上述问题催生了平台NVR架构解决方案。
该方案在系统架构上省去了存储服务器,消除了上文提到的性能瓶颈和单点故障隐患。大幅度提高存储系统的写入和检索速度;同时也彻底消除了传统文件系统由于供电和网络的不稳定带来的文件系统损坏等问题。
平台NVR中存储的数据可同时供多个客户端随时查询,点播,当用户需要查看多个已保存的视频监控数据时,可通过授权的视频监控客户端直接查询并点播相应位置的视频监控数据进行历史图像的查看。由于数据管理服务器具有监控系统所有监控点的录像文件的索引,因此通过平台CMS授权,视频监控客户端可以查询并点播整个监控系统上所有监控点的数据,这个过程对用户而言也是透明的。
(3)基于云技术的存储方案
当前,安防行业可谓“云”山“物”罩。随着视频监控的高清化和网络化,存储和管理的视频数据量已有海量之势,云存储技术是突破IP高清监控存储瓶颈的重要手段。云存储作为一种服务,在未来安防监控行业有着可观的应用前景。
与传统存储设备不同,云存储不仅是一个硬件,而是一个由网络设备、存储设备、服务器、软件、接入网络、用户访问接口以及客户端程序等多个部分构成的复杂系统。该系统以存储设备为核心,通过应用层软件对外提供数据存储和业务服务。
一般分为存储层、基础管理层、应用接口层以及访问层。存储层是云存储系统的基础,由存储设备(满足FC协议、iSCSI协议、NAS协议等)构成。基础管理层是云存储系统的核心,其担负着存储设备间协同工作,数据加密,分发以及容灾备份等工作。应用接口层是系统中根据用户需求来开发的部分,根据不同的业务类型,可以开发出不同的应用服务接口。访问层指授权用户通过应用接口来登录、享受云服务。其主要优势在于:硬件冗余、节能环保、系统升级不会影响存储服务、海量并行扩容、强大的负载均衡功能、统一管理、统一向外提供服务,管理效率高,云存储系统从系统架构、文件结构、高速缓存等方面入手,针对监控应用进行了优化设计。数据传输可采用流方式,底层采用突破传统文件系统限制的流媒体数据结构,大幅提高了系统性能。
高清监控存储是一种大码流多并发写为主的存储应用,对性能、并发性和稳定性等方面有很高的要求。该存储解决方案采用独特的大缓存顺序化算法,把多路随机并发访问变为顺序访问,解决了硬盘磁头因频繁寻道而导致的性能迅速下降和硬盘寿命缩短的问题。
针对系统中会产生PB级海量监控数据,存储设备的数量达数十台上百台,因此管理方式的科学高效显得十分重要。云存储可提供基于集群管理技术的多设备集中管理工具,具有设备集中监控、集群管理、系统软硬件运行状态的监控、主动报警,图像化系统检测等功能。在海量视频存储检索应用中,检索性能尤为重要。传统文件系统中,文件检索采用的是“目录-》子目录-》文件-》定位”的检索步骤,在海量数据的高清视频监控,目录和文件数量十分可观,这种检索模式的效率就会大打折扣。采用序号文件定位可以有效解决该问题。
云存储可以提供非常高的的系统冗余和安全性。当在线存储系统出现故障后,热备机可以立即接替服务,当故障恢复时,服务和数据回迁;若故障机数据需要调用,可以将故障机的磁盘插入到冷备机中,实现所有数据的立即可用。
对于高清监控系统,随着监控前端的增加和存储时间的延长,扩展能力十分重要。市场中已有友商可提供单纯针对容量的扩展柜扩展模式和性能容量同步线性扩展的堆叠扩展模式。
云存储系统除上述优点之外,在平台对接整合、业务流程梳理、视频数据智能分析深度挖掘及成本方面都将面临挑战。承建大型系统、构建云存储的商业模式也亟待创新。受限于宽带网络、web2.0技术、应用存储技术、文件系统、P2P、数据压缩、CDN技术、虚拟化技术等的发展,未来云存储还有很长的路要走。