导航:首页 > 网络数据 > 看病大数据分析

看病大数据分析

发布时间:2023-03-02 23:44:16

大数据医疗具体是指什么

医疗大数据是个很宽泛的概念,他有很多详细的分类,包括:电子病历数据,这是患者就医过程中所产生的数据,包括患者基本信息、疾病主诉、检验数据、影像数据、诊断数据、治疗数据等,这类数据一般产生及存储在医疗机构的电子病历中,这也是医疗数据最主要的产生地。电子化的医疗病历方便了病历的存储和传输,但是并未达到进行数据分析的要求。大约80%的医疗数据是自由文本构成的非结构化数据,其中不仅包括大段的文字描述,也包括包含非统一文字的表格字段。通过医学自然语言理解技术,将非结构化医疗数据转化为适合计算机分析的结构化形式是医疗大数据分析的基础。电子病历中所采集的数据是数据量最多、最有价值的医疗数据。通过和临床信息系统的整合,内容涵盖了医院内的方方面面的临床数据集。在电子病历的互通互联上,出于各自的利益性(限制病人转诊),各大电子病历企业也不愿意使数据互通互联。根据美国政府相关报告显示,其电子病历共享比例也仅为30%左右。
检验数据
医院检验机构产生了大量患者的诊断、检测数据,也有大量存在的第三方医学检验中心也在产生数据。检验数据是医疗临床子系统中的一个细分小类,但是可以通过检验数据直接患者的疾病发展和变化。目前临床检验设备得到迅速发展,通过LIS 系统对检验数据进行收集,可以对疾病的早发现早诊断和正确诊断做出贡献。
影像数据
随着数据库技术和计算机通讯技术的发展,数字化影像传输和电子胶片应运而生。医疗影像数据是通过影像成像设备和影像信息化系统产生的,医院影像科和第三方独立影像中心存储了大量的数字化影像数据。医学影像大数据,是由DR、CT、MR 等医学影像设备产生所产生并存储在PACS 系统内的大规模、高增速、多结构、高价值和真实准确的影像数据集合。与检验信息系统(LIS)大数据和电子病历(EMR)等同属于医疗大数据的核心范畴。医学影像数据量非常庞大,影像数据增速快,标准化程度高。影像数据和临床其他数据比较起来,它的标准化、格式化、统一性是最好的,价值开发也最早。
费用数据
医院门诊费用、住院费用、单病种费用、医保费用、检查和化验收入、卫生材料收入、诊疗费用、管理费用率、资产负债率等和经济相关的数据。除了医疗服务的收入费用之外,还包含医院所提供医疗服务的成本数据,包含药品、器械、卫生人员工资等成本数据。在DRGs 按疾病诊断相关组付费模式中,需要详细的成本数据核算。通过大样本量的测算,建立病种标准成本,加强病种成本核算和精细化成本管理。
基因测序数据
基因检测技术通过基因组信息以及相关数据系统,预测罹患多种疾病的可能性。基因测序会产大量的个人遗传基因数据,一次全面的基因测序,产生的个人数据则达到300GB。一家基因测序企业每月产生的数据量可以达到数百TB 甚至1PB。
智能穿戴数据
各种智能可穿戴设备的出现,使得血压、心率、体重、体脂、血糖、心电图等健康体征数据的监测都变成可能,患者的单一体征健康数据以及运动数据快速上传到云端,而且数据的采集频率和分析速度大大提升。除了生命体征之外,还有其他智能设备收集的健康行为数据,比如每天的卡路里摄入量、喝水量、步行数、运动时间、睡眠时间等等。智能穿戴设备虽然在这两年遇冷,用户很难形成粘性,但是并不意味着智能穿戴设备所产生的数据没有意义。提供健康数据和服务,可能是智能穿戴厂商未来的转型之路。健康大数据的收集必须依靠硬件载体,智能穿戴设备还将会遇到自己的第二春。
体检数据
体检数据是体检机构所产生的健康人群的身高、体重、检验和影像等数据。这部分数据来自医院或者第三体检机构,大部分是健康人群的体征数据。随着亚健康人群、慢病患者的增加,越来越多的体检者除了想从体检报告中了解自己的健康状况,还想从体检结果中获得精准的健康风险评估,以及如何进行健康、慢病管理。
移动问诊数据
通过移动设备端或者PC 端连接到互联网医疗机构,产生的轻问诊数据和行为数据。曾经通过互联网问诊企业春雨医生的数据,分析各地医生互联网问诊的活跃度、细分疾病种的问诊行为。通过这些数据的分析,对行业发展、互联网问诊企业的决策有非常重要的帮助。

⑵ 医疗大数据的分析和挖掘发展现状如何未来会有什么样的应用前景

如今是大数据时代,前景自然好了,据前瞻产业研究院《2016-2021年中国行业大数据市场发展前景预测与投资战略规划分析报告》显示,总的来说,医疗大数据应用主要体现在临床操作、研发、新的商业模式、付款/定价、公众健康五大领域,在这些场景中,大数据的分析和应用都将发挥巨大的作用。
医疗大数据的应用对于临床医学研究、科学管理和医疗服务模式转型发展都具有重要意义,而大数据技术的运用前景是十分光明的。
医院和医疗行业面临的大数据主要有医学影像、视频(教学、监控)及文献等非结构化数据。由于这些数据增长很快且结构复杂,给数据管理和利用带来较大的压力,存储与管理成本不断提高,数据利用困难、利用率低。除了数据数量和形态的迅速增加,医疗数据还需要越来越长的保留期。一旦存储系统的安全性出现问题,导致医疗数据丢失,医院会面临严重不良局面。医疗大数据的应用要保证数据的全面性、准确性、实时性和使用的便捷性,要能快速运算和快速展现,要与日常工作平台紧密结合。
国人已经把健康大数据上升为国家战略,而面对“大数据”的挑战,医院必须考虑三大主要问题。
(1) 数据存储是否安全可靠?因为系统一旦出现故障,首先考验的就是数据的存储、灾备和恢复能力。如果数据不能迅速恢复,而且恢复不能到断点,则将对医院的业务、患者满意度构成直接损害。
(2) 如何提高医院运行和服务的效率?提高效率就是节省医生的时间,从而缓解医疗资源的紧张状况,在一定程度上可以帮助解决“看病难”的问题。
(3) 如何控制大数据的成本?存储架构是否合理,不仅影响医院IT系统的成本,而且关乎医院的运营成本,医疗数据激增,使医院普遍存在着较大的存储扩容压力。如今,医院的存储设备大多是由不同厂商构成的完全异构的存储系统。这些不同的存储设备利用各自不同的软件工具来进行控制和管理,这样就增加了整个系统的复杂性,使管理成本非常高。
未来,大数据必将影响医疗行业,未来医疗行业的大数据将会具体应用在:临床辅助决策,医疗质量监管,疾病预测模型,临床实验分析。其发展空间有:个人健康门户,慢病管理和健康管理,电子病历和临床质量监控,医学知识管理,临床路径和循证医学,远程医疗和移动医疗,医学研究数据仓库和共享平台,跨医疗机构协作平台。

⑶ 大数据准不准

毫不夸张地讲,大数据是准确的。否则大数据还有什麼意义呢?大数据的关键在於这个"大"字。这个大字,不是大小的大。而是指数量大,样本大,规模大。大数据之所以能够得到重视,并且能够得到广泛的应用,最根本的一点就是它从本质上反映了统计学的规律。就个例而言,大数据可能不准确。但从宏观上看,大数据一定是准确的。

新冠病毒刚开始出现时,包括医疗机构在内,并不知道是怎麼回事。也因此没有相应的治疗方法。莫名其妙的发热,乃至病亡,引起疾控部门的重视。统计数据更是提醒新冠肺炎来势凶猛,传播极快。此时此刻,正是大数据为决策者提供了依据。在没有相应的有效治疗办法的情况下,为了控制疫情蔓延,只能封城。强制性地减少人与人之间的接触。封闭,隔离,使大家都感到不便。但强制性的隔离措施大大减少了病毒感染的人数,这是不争的事实。可见,大数据提供的信息是准确的,有益的。

当今社会时代是一个开放的时代。每时每刻都有大量的人流,物流,信息流在快速流动传播。如何从这些大量的快速的流动中找到基本的规律,在更高的层次上进行梳导和管理,是管理者不可推卸的责任。而要真正做到这一点,大数据是必不可少的管理手段和技术。大数据如此重要,不准确显然是不允许的。

大数据的准确性是有一系列的技术保障的。从数据的收集,统计,到最终做出科学合理的决策,都不能马虎敷衍,它有一整套严格的操作流程,确保数据可靠有效。

一般情况下,大数据分析,是提供概率的,比如,同一时间、同一气候条件下,吃午饭点某个炒菜的概率是多少!

我感觉正如你所说的大数据不太准。大数据是指数据的真实性、准确性、可信赖度和数据质量等。数据库是获取、存储、管理、分析,工具软件,信息数据集合。

大数据特点是:1、多样;2、大量;3、高速;4、低价值密度;5、真实性。

大数据管理在变化,不断地提高数据质量。现在是信息时代,各行各业都在研发和使用数据库模块,实现数字化。网上购物用得吃的早已普遍大众化,网上法院、办公、教学、培训,医疗保险等等都是新模式,办事需要身份证,现在扫码变成数字化这是方式的变革,驾驶证变成电子证也就是数字化管理模式,疫情期间扫吉祥码终端就知道的疫情期间行踪轨迹路线。扫码是能够知道身份证号、家庭住址、配偶、子女、工作单位、父母和亲属等一系列需要的信息,想要了解这些信息只是集合权力而已。

现在随着变化适应时代,大数据库需要不断变化适应时代发展需要,换句话说,通过大数据库不出门就能从你出生到现在和想要知道的一切信息。可以说数字化给我们带来便利,改变生活、消费方式都是变革式的。未来建立更多的数据库,譬如,建立完善医疗看病数据库,病源追溯,医疗责任,金融、 社会 保险更体现人性化,建立完善食品安全追溯系统等等,都须要建立完善大数据库和质量,提高数据准确性、可信赖度。今天,我们想引用一些大数据共享大数据带给我们的便利,必须要以官方公布的数据为准,官方公布的数据是受法律法规保护,有知情权和解释权。总之,引用使用大数据按照规定去做,否则是要负法律责任的。我们处在信息变革的时代,携手共进,拥抱明天。

大数据是全量数据统计,它不准,难道抽样数理统计结果更准吗?

先回答大数据准不准的问题:

可以肯定地说大数据是非常准确 ,这个毋庸置疑,大数据的分析能力以及速度是非常急速的,假如你感觉大数据不准,那只有一个可能就是,有人在引导你的思维。。。。

对于为什么说大数据准确,我们首先了解一下大数据的概念:
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。他是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,

大数据的 特点

海量的数据规模、 快速的数据流转、多样的数据类型和价值密度 四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

未来什么最值钱:那就是大数据

有很多数据不一定真实。

⑷ 大数据常见的应用场景有哪些

大数据时代的出现简单的讲是海量数据同完美计算能力结合的结果,确切的说是移动互联网、物联网产生了海量的数据,大数据计算技术完美地解决了海量数据的收集、存储、计算、分析的问题。
对于大数据的应用场景,包括各行各业对大数据处理和分析的应用,最核心的还是用户需求。
一、医疗大数据看病更高效
除了较早前就开始利用大数据的互联网公司,医疗行业是让大数据分析最先发扬光大的传统行业之一。
二、生物大数据改良基因
当下,我们所说的生物大数据技术主要是指大数据技术在基因分析上的应用,通过大数据平台人类可以将自身和生物体基因分析的结果进行记录和存储,利用建立基于大数据技术的基因数据库。
三、金融大数据理财利器
大数据在金融行业的应用可以总结为以下五个方面:精准营销、风险管控、决策支持、效率提升、产品设计等。
四、零售大数据最懂消费者
零售行业大数据应用有两个层面,一个层面是零售行业可以了解客户消费喜好和趋势,进行商品的精准营销,降低营销成本。另一层面是依据客户购买产品,为客户提供可能购买的其它产品,扩大销售额,也属于精准营销范畴。另外零售行业可以通过大数据掌握未来消费趋势,有利于热销商品的进货管理和过季商品的处理。
五、电商大数据精准营销法宝
电商是最早利用大数据进行精准营销的行业,除了精准营销,电商可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单15分钟内将货物送上门,提高客户体验。
六、农牧大数据量化生产
大数据在农业应用主要是指依据未来商业需求的预测来进行农牧产品生产,降低菜贱伤农的概率。同时大数据的分析将会更见精确预测未来的天气气候,帮助农牧民做好自然灾害的预防工作。大数据同时也会帮助农民依据消费者消费习惯决定来增加哪些品种的种植,减少哪些品种农作物的生产,提高单位种植面积的产值,同时有助于快速销售农产品,完成资金回流。
七、交通大数据畅通出行
交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。
尽管现在已经基本实现了数字化,但是数字化和数据化还根本不是一回事,只是局部的提高了采集、存储和应用的效率,本质上并没有太大的改变。而大数据时代的到来必然带来破解难题的重大机遇。
八、教育大数据因材施教
随着技术的发展,信息技术已在教育领域有了越来越广泛的应用。考试、课堂、师生互动、校园设备使用、家校关系……只要技术达到的地方,各个环节都被数据包裹。在课堂上,数据不仅可以帮助改善教育教学,在重大教育决策制定和教育改革方面,大数据更有用武之地。
九、体育大数据夺冠精灵
大数据对于体育的改变可以说是方方面面,从运动员本身来讲,可穿戴设备收集的数据可以让自己更了解身体状况。媒体评论员,通过大数据提供的数据更好的解说比赛,分析比赛。数据已经通过大数据分析转化成了洞察力,为体育竞技中的胜利增加筹码,也为身处世界各地的体育爱好者随时随地观赏比赛提供了个性化的体验。尽管鲜有职业网球选手愿意公开承认自己利用大数据来制定比赛策划和战术,但几乎每一个球员都会在比赛前后使用大数据服务。
十、环保大数据对抗PM2.5
气象对社会的影响涉及到方方面面。传统上依赖气象的主要是农业、林业和水运等行业部门,而如今,气象俨然成为了二十一世纪社会发展的资源,并支持定制化服务满足各行各业用户需要。借助于大数据技术,天气预报的准确性和实效性将会大大提高,预报的及时性将会大大提升,同时对于重大自然灾害,例如龙卷风,通过大数据计算平台,人们将会更加精确地了解其运动轨迹和危害的等级,有利于帮助人们提高应对自然灾害的能力。
十一、食品大数据舌尖上的安全
大数据不仅能带来商业价值,亦能产生社会价值。随着信息技术的发展,食品监管也面临着众多的各种类型的海量数据,如何从中提取有效数据成为关键所在。可见,大数据管理是一项巨大挑战,一方面要及时提取数据以满足食品安全监管需求;另一方面需在数据的潜在价值与个人隐私之间进行平衡。相信大数据管理在食品监管方面的应用,可以为食品安全撑起一把有力的保护伞。
十二、调控和财政支出大数据令其有条不紊
政府利用大数据技术可以了解各地区的经济发展情况,各产业发展情况,消费支出和产品销售情况,依据数据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。
十三、舆情监控大数据
国家正在将大数据技术用于舆情监控,其收集到的数据除了解民众诉求,降低群体事件之外,还可以用于犯罪管理。

⑸ 医疗大数据爆发,千亿级市场怎么玩

未来资本对大数据的争夺战已经开始。据媒体报道,2013年至2014年以来, 大数据是互联网医疗健康主要并购投资领域之一。
前身为中国首家专业从事医院信息系统软件开发与应用工程企业的北大医疗信息技术有限公司(下称“北大医信”)已经瞄准了医疗大数据的战略方向。
今年3月,北大基金会向北大医信投资3000万,这是北大史上投资最大的“真金白银”。在3月14日的北大医信成立大会上,方正集团高级副总裁、方正信产集团CEO方中华直接给其赋予了重任:“北大和方正集团的大力支持、大数据时代带来的无限机遇,都应该让我们感到,我们的事业之无上光荣;光荣的背后是任重道远,必须要共同努力将北大、方正赋予北大医信的使命完成好、做好大数据事业,不仅要做北大大数据中心,未来还要做国家级、世界级的大数据中心。”
12月11日,弘毅投资、高盛、东软控股及协同创新等投资者共同对东软熙康进行1.7亿美元的增资。东软熙康是东软集团旗下专门从事互联网医疗和健康管理的公司,致力于通过大数据,云计算、物联网、移动互联网提供基于O2O模式的健康管理与医疗服务平台,这笔投资刷新了国内互联网医疗与健康管理领域最大单笔融资的纪录,也是全球互联网医疗与健康管理领域最大单笔融资之一。
上海医联工程已经建立了国内目前医疗机构联网范围最大的临床信息共享系统。该工程的承建商万达信息股份有限公司(下称“万达信息”),2014年7月收购上海复高计算机科技有限公司,8月收购宁波金唐软件股份有限公司。这两个公司都是在医疗信息化领域做了十多年的企业。
万达信息股份有限公司总裁助理冯东雷告诉网易科技,万达信息加上新收购的两个子公司,现在一共有员工3500人左右,其中从事与医疗健康相关的有事业部和子公司,员工共有1500人左右,是万达信息业务中最大的一块。
上海金仕达卫宁软件股份有限公司是一家专业从事医疗卫生领域信息化、数字化、软件研究与开发的高科技企业。徐春华告诉网易科技,金仕达卫宁做数据处理是原有业务的一种延伸,但是在过去一年当中,他发现,涉足医疗大数据领域的不光传统的做医疗IT软硬件服务的企业,甚至还有许多跨界的、之前和医疗没关系的上市公司,例如以地产起家的运盛实业、浓缩果汁生产企业国投中鲁等。
而在日前的“2014年中国移动医疗产业年会”上,中国移动、中国电信、中国联通、IBM、保险公司招商信诺等,还有各种健康管理公司都参与了主题为“健康大数据 全民大健康”的论坛。
企业之外,医院和各路研究机构也在尝试开展医疗大数据的研究。11月29日,中国科学院深圳先进技术研究院健康大数据研究中心成立。北京大学正在筹备成立北大医疗健康大数据中心。最近两个月,冯东雷拜访了北京大学、浙江大学、中山大学、中南大学等几所高校,“这些高校都希望在大数据方面和我们进行合作。”他透露。
2014年10月18日,首都医科大学附属北京安贞医院和辉瑞投资有限公司合作的国内首个心血管医疗大数据中心项目启动。
临床应用:还不成熟
目前对医疗大数据的需求集中在在三个层面:运营管理、辅助治疗和辅助科研。在业界看来,目前在中国,医疗大数据已经取得良好效果的是行政管理。
北京市公共卫生信息中心统计室主任郭默宁告诉网易科技,目前在数据的挖掘和利用方面,北京市公共卫生信息中心做的比较有成效的是对医疗机构进行绩效分析。
以前,对医疗机构进行绩效评价并不容易,因为每个病人病情各异,医疗机构的工作难度和工作效果很难衡量,医疗机构之间进行对比也非常困难。郭默宁告诉网易科技,以往对医疗机构进行绩效评估的通常模式是找专家给医院评分,依据经验和主观判断比较多。
2008年开始,北京市公共卫生信息中心尝试根据通过数据挖掘得来的指标对辖区内医疗机构进行绩效评价。她告诉网易科技:“利用统计学方法,可以把医疗机构收治的病症相似的病人进行分组,这样在同组病人当中,就可以比较各个机构的服务优劣了。这样可以促进医疗机构精细化管理,提高医疗服务的质量。”
郭默宁告诉网易科技,未来在公共卫生领域,医疗数据的挖掘和利用的前景是非常广阔的。比如,在医疗卫生资源规划、配置,疾病预警等方面都会得到充分的应用。
在临床辅助治疗和辅助科研方面,已经有机构在进行探索和尝试,但是目前尚不成熟。
万达信息之前研发的“临床辅助决策系统”在业界比较知名,其目前可以在上海市38家市级医院向医生提供近期重复用药、检验、检查的提醒、治疗安全警示以及临床路径(是指针对某一疾病建立一套标准化治疗模式与治疗程序,是一个有关临床治疗的综合模式,以循证医学证据和指南为指导来促进治疗组织和疾病管理的方法,最终起到规范医疗行为,减少变异,降低成本,提高质量的作用)服务。
但是,冯东雷告诉网易科技,这些功能的提供,实际上需要做知识库的建设,但是现在的知识库都是基于现有的教科书、药品使用说明以及一些临床手册,都比较简单,今后要把医生的真实的看病的经验也输入进来,才能在临床上发挥更大的意义,这才是真正的大数据挖掘。他透露,在即将开展的“心血管疾病和肿瘤疾病大数据处理分析与应用研究”的项目中,就有心血管、肿瘤专家参与进来。
2012年,万达信息、国家卫生工程中心就申请了上海市科委医疗健康大数据的课题。在这个项目中,万达信息尝试了对高血压进行大数据分析,试图找到病症、用药和疗效之间的关联。但是冯东雷告诉网易科技,这样的分析目前遇到一些困难。以往的临床研究(随机对照试验RCT)是用实验组和对照组进行的,对照组是一些排除了并发症等相对理想的对照人群。样本量小,但每个样本的数据颗粒很细。但是用医疗大数据做分析的话,样本量很大,但是每个样本数据颗粒比较粗。因此不能套用传统RCT的研究方法。因此需要新的研究思路。目前用大数据已经发现了一些治疗手段和效果的关联性,但是这种结论在临床使用上有多大的意义还有待检验。
这样的研究还在继续。国家“863”计划2015年度项目申报指南中,在生物和医药技术领域已经部署“生物大数据开发与利用关键技术研究”,涉及的内容包括生物大数据标准化和集成、融合技术,生物大数据表述索引、搜索与存储访问技术,心血管疾病和肿瘤疾病大数据处理分析与应用研究,基于区域医疗与健康大数据处理分析与应用研究,组学大数据中心和知识库构建与服务技术等。
万达信息参与了其中的两项,分别为“基于区域医疗与健康大数据处理分析与应用研究”,以及“心血管疾病和肿瘤疾病大数据处理分析与应用研究”。其中后者开展面向中医的心血管疾病和肿瘤疾病大数据分析与应用的研究。
北大医信也在与北京大学合作,研究临床医疗大数据的分析和利用。北大医信服务过的医院超过500家,其中三甲医院200多家,占全国三甲医院总数的1/4左右,北京大学下属有9家附属医院、13家教学医院,这些医院信息系统中积累的大量数据,为进行大数据分析和利用打下了坚实的基础。
北大医信资深副总裁兼CTO邹悦告诉网易科技,目前北大医信的临床决策支持体系正在北京大学人民医院、北京大学国际医院、江苏省人民医院进行试点。
北大医信已经开发了临床预警和建议类的应用。预警类的应用可以根据患者的一些生命体征,判断患病风险并进行提示。建议类的应用,目前北大医信做了糖尿病这个病种,系统可以根据糖尿病人的症状、检验检查结果和病历,给出相应的治疗方案建议。
在临床科研方面,北大医信也做了一些数据分析,并且得到了一些结果。比如,以往子宫内膜异位和子宫肌瘤的误诊率高达65.1%,因为两种疾病的症状非常相似。通过大数据分析发现,卵巢囊肿、腹痛、贫血这三种症状在这两种病中的权重是不同的,子宫内膜异位与卵巢囊肿的关联最强,子宫肌瘤和贫血的关联最强。
“我们分析出了这个结果,但是在临床上怎么用,还要再进一步探讨。”邹悦介绍。
好医生集团董事长高瞻认为,要让大数据产生价值,需要有一条完整的价值链,目前中国的这个价值链还有缺失。大数据的价值链有数据的收集、储存、分析、应用四个环节,但是目前这个产业投入比较多的是收集和储存,分析和应用还比较弱。即使在投入较多的数据收集环节,由于缺乏相应的机制,数据的质量也不是很高。
业内者说:怎么做
在目前的情况下,如何做好大数据?高瞻认为,应当先抓住一些关键业务需求,同时数据基础比较好,先做起来,然后再逐步扩展。他举了两个例子。
好医生集团曾参与过安徽省肥西县卫生局的一个项目。据高瞻介绍,肥西县卫生局将新农合医疗报销系统的数据和卫生局为居民建立的电子健康档案做了一个关联性分析。结果发现,居民的肥胖、抽烟与高血压、糖尿病的发病关联性很强。高瞻告诉网易科技,这不是什么新的发现,但是应用大数据分析的意义在于,之前大家只是从概念上知道肥胖和抽烟会对高血压和糖尿病产生影响,用大数据分析之后,能够真实地看到具体的一个个人的肥胖和抽烟对病症产生了影响。之后,社区医院应用了这个分析结果,给高血压病人、糖尿病病人看病时不光降血压、降血糖,还要干涉患者的肥胖和吸烟。现在整个肥西、还有安徽的很多县都在推广这样的做法,这一个小小的改变,使得很多地方的居民电子健康档案的使用率从20%左右变成了60%—70%,医生们本没有使用积极性的数据库被激活了。
肥西还做了个试验。原来农村治病,不管大人小孩,一般都是开抗生素、输液,好医生集团多年来做乡村医生的培训,呼吁不要滥用抗生素,但是在实际中效果不大。今年年初,安徽省启动了基层医疗卫生机构处方集系统,这个系统可以根据疾病诊断,提示建议处方,旨在规范诊疗行为和用药行为。同时,从今年2月开始,肥西县卫生局每月把医生处方当中使用两种以上抗生素的处方的比例发给医生。结果到了10月份,原来高达20%-60%的数据降到了个位数。
高瞻总结,大数据应用应当先从“Low hanging fruits”,即挂得低的果子、容易达成的目标开始,先把手头有限的“小数据”用好。
这个观点与北京301医院计算机室原主任任连仲不谋而合。
任连仲告诉网易科技,目前中等规模以上的医院起码都积累了数百GB的数据,每100GB的数据就相当于30万份病历。虽然这个数量级还没达到PB级,但是其中一定蕴含着许多有价值的信息。
他拿自己的观察举例说:“我观察了我身边20个左右患恶性肿瘤的人,我发现其中六七成的人在生活中有过非常苦恼郁闷的一段时期。20个样本,就可以总结出一点规律了,何况这个样本量大到GB级呢?那会得到更多、更有价值、更准确的结论。”
他主张先把目前的数据利用起来,现在301医院那些成摞的申请单就是真实的需求。他说:“目前在医院里,这样的服务还是被动的,是医生找上门来我们才提供服务,如果这种服务再进一步走上主动,广而告之,告诉广大医护人员和管理人员我们这里可以提供你们所需的‘信息服务’,医生在和技术人员在不断交流的过程中,一定能挖掘出大数据更大的价值。”
任连仲今年80岁,但是老爷子嘴里蹦出的词是“快速迭代”,按照他的说法:“好工具是用出来的。这是一个巨大的市场,这个事我们不能等。”

⑹ 医疗大数据有什么作用

医疗大数据,就是通过医疗的大数据进行数据分析,可以进行医疗方面的比较和研究。
通全面析病特征数据疗效数据比较种干预措施效性找针特定病佳治疗途径。

⑺ 医疗大数据的主要来源有哪些

医疗大数据主要来自医疗机构,大家平时去看病、体检都会有医疗数据的产生,大量的数据汇集到一起就成了大数据。

⑻ 大数据应用潜力,医疗大数据的实践又有哪些

现在的时代可以成为大数据时代。大数据时代的下的我们能更好地生活,与此同时,我们的生活方式也被大数据改变。数据基本上能跟任何行业进行互动,也可以说数据对每个领域来说都起到了推动性的作用,因为在数据驱动之下,各类领域就会根绝要求去改善自身的服务,提高产品的质量,这样就能更好地满足客户的需求。大数据在医疗领域的应用也是很明显。

虽然说大数据是一个数据的收集,对于个体还是不太具有针对性的。但是,大数据对我们的生活真的是起到了一个积极的作用。不过,即使医疗手段再先进,我们还是要保护好身体,不要生病。

⑼ 大数据在医疗行业的应用有哪些

大数据专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。所以大数据在众多行业都有应用,下面说说其在医疗领域的应用。
随着互联网规模不断的扩大,大数据正在改变着这个时代的绝大一部分的行业或者企业,医疗行业也不例外,医疗健康正在成为人们关注的重点问题,以智能化、数字化为特征的医疗信息化正在蓬勃兴起,医疗行业的数据类型也在向海量、复杂、多样的类型方式转变。
1.就医数据进行电子化管理
对电子医疗记录的收集,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。在信息系统中进行分享,每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。
2.健康预测
通过智能手表等可穿戴设备的数据,建立健康预测模型,通过这些可穿戴设备持续不断地收集健康数据并存储在云端,实时汇报病人的健康状况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。
3.医学影像以及临床诊断
通过让大数据机器人来识别记住各类海量的医学影像,例如X射线、核磁共振成像、超声波……等各种的图像。对大量病历进行深度挖掘与学习,训练其对影片的诊断,最终实现辅助医生进行临床决策,规范诊疗路径,提高医生的工作效率。
4.药品研发
利用大数据进行数据建模并进行分析,预测药物的临床结果,可以为临床阶段的实验结果提供参考,节省临床阶段的时间并优化临床实验结果。制药公司也可以通过数据建模进行分析,从而生产出治疗成功率更高的药品并极大地缩短药品从研发到投入市场的时间。

阅读全文

与看病大数据分析相关的资料

热点内容
数据库中实体的完整性如何保持 浏览:831
哪个二手车网站便宜啊 浏览:489
济南地铁app买了票怎么退 浏览:424
食用油行情看哪个app 浏览:776
怎么移动迅雷下载到一半的文件 浏览:803
哪些红头文件的抬头下面是双红线 浏览:638
炒股app有哪个 浏览:108
汽车钥匙编程器哪个好 浏览:688
误删除文件怎么恢复 浏览:885
360wifi扩展器版本升级 浏览:336
word批量删除某个同一图片logo 浏览:637
苹果5应用需要证书 浏览:531
触摸屏编程有哪些优势 浏览:550
ps文件存储环境 浏览:74
文件名怎么改不了大小写 浏览:613
眼睛验光数据什么样算假近视 浏览:269
1在编程里代表什么 浏览:193
密码文件柜哪里便宜 浏览:949
box文件怎么打开 浏览:114
线切割编程哪个好用 浏览:70

友情链接