导航:首页 > 网络数据 > 金融大数据面临的挑战

金融大数据面临的挑战

发布时间:2023-03-02 23:00:13

大数据在金融领域的应用

大数据在金融领域的应用如下:

1. 概述

近年来,随着大数据、云计算、区块链、人工智能等新技术的快速发展,这些新技术与金融业务深度融合,释放出了金融创新活力和应用潜能,这大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。

在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。

从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。

2. 大数据技术在金融行业中的典型应用

大数据技术在金融行业中有着广泛的应用, 下面将介绍大数据技术在银行、证券、保险等金融细分领域中的应用。

3. 金融大数据应用面临的挑战及对策

大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。

㈡ 大数据金融前景

一、大数据金融的含义
大数据金融指的是将巨量非结构化数据通过互联网和云计算等方式进行挖掘和处理后与传统金融服务相结合的一种新的金融模式,它是一种相比于传统金融更加透明、参与度更加广泛、体验更好、效率更高的新兴金融模式。
广义的大数据金融包括整个互联网金融在内的所有需要依靠发掘和处理海量信息的线上金融服务。也就是说,我们所提到的不管是P2P还是众筹等互联网金融行为,其核心都是大数据金融,因为互联网金融如果没有大数据的支撑,就成了一个单纯意义上的平台。而互联网金融得以在互联网诞生之日起,到今天人类社会进入“PB(1024TB)”时代,历年来数据信息的记录与积累,以及云计算技术的不断成熟,使得大数据金融在互联网诞生数十年后终于可以一展风采。持续高增长的电子交易数量和网络零售服务,使得依赖于商务需求的金融体系能够在线上寻求到数据支撑。

狭义上的大数据金融指的是依靠对商家和企业在网络上历史数据的分析,对其进行线上资金融通和信用评估的行为。我们可以很直观地看到,最初在互联网平台上寻求到金融服务的商家和企业,一类是在互联网平台上留下了一定数量的历史信用信息的商家或企业,另一类是在相关产业之内积累了相当程度的历史信用的商家或企业。而从未在线上或实际交易中产生过信息的全新商家和企业在没有建立足够的交易基础之前是不太容易通过单纯的信用方式进行这种融资的。无论是广义还是狭义的定义,大数据金融的核心内容都是对商家和客户的海量数据进行收集、储存、发掘和整理归纳,使得互联网金融机构能够得到客户的全方位信息,掌握客户的消费习惯并准确预测客户行为。这样的做法不管是作为评级认定标准,还是作为目标客户进行营销宣传的理由,都能够使互联网金融机构对自己的风险进行控制,对自己的发展策略进行更详尽的规划。作为大数据的使用者,互联网金融机构必须为数据的采集和使用付出成本,如果不是同时作为数据的收集方,进行原始数据的采集和整理,那就要向数据来源的第三方支付使用费用。
二、大数据金融的发展机遇
1.互联网企业自身转型需要。随着电商竞争愈演愈烈,最初的零售领域与支付领域的竞争已逐渐延伸到了整个供应链的其他环节,包括物流、仓储,自然也包含了最重要的金融服务。尽快发展自身原有业务引申出来的大数据金融服务,有利于建立用户黏性。积极地进行专业化、个性化定制金融服务对未来电商领域的全方位竞争有着十分重要的意义。
2.实体产业需要大数据金融的支持。大数据金融通过各种方式给市场带来了活性,整个产业链的效率提升、资源配置优化是有目共睹的,虚拟经济与实体产业的下一步发展,必定都离不开大数据金融的支持。打通上下游环节,使资金更有效率,无论是对电商的未来发展还是对传统金融的突破都大有益处。
三、大数据金融面临的挑战
大数据使得互联网金融得到空前的发展,同时也带来了一系列的问题。原来的互联网非金融机构从事类金融服务,给传统的金融体系带来了一定的冲击,如何协调和处理好这两者之间的关系,成了未来大数据金融发展至关重要的环节。未来,大数据金融的发展必将基于传统金融行业与互联网大数据技术的进一步融入和整合,这就要求金融服务与互联网及大数据的关联程度必须不断加强。
1.必须推进金融服务与社交网络的进一步融合。使金融业的数据来源能够脱离早期呆板滞后的提交、审批、尽职调查等来源方式。要使金融信息的获取渠道能够直接深入金融服务本身,就要利用互联网、社交媒体等新的数据来源,从多渠道获取实时客户信息和市场信息,充分了解自标客户的需求和资质情况,建立更高效的客户关系与更完整的客户视图,并利用社交网络对忠实客户和潜在客户进行精准营销和定制化金融服务的方案。

2.传统金融机构要进行互联网、大数据金融的转型,必须要处理好与数据服务商的竞争、合作关系。目(下转80页)(上接76页)前,线上互联网企业由于占据极大的平台优势,垄断从交易发生到交易结算的各个环节以及这其中产生的各项数据信息,使传统金融企业想要介入十分困难。要想在实际过程中重新组建自己的数据平台,从时间方面来看,已经处于劣势。因此,传统金融机构与数据服务商开展战略合作是比较现实的选择。
四、大数据金融的发展趋势
大数据技术还远未成熟,而大数据金融带给我们的变化已足以让人惊讶,大数据金融的未来也是一片光明。未来,随着大数据技术的不断成熟,大数据金融的发展也必将进一步改变人们的生活生产方式。
1.大数据金融跨界发展。由于互联网技术的开放性,信息不对称将显著减少,金融在日后也许就不是少数传统的金融从业者的专属领域了。从供应链要求的技术来看,互联网企业、软件企业都纷纷加入大数据金融的开发中,大数据进入跨界发展的趋势越来越明显,金融业的竞争也将由于未来力量的冲击变得更加激烈。这也可能导致将来金融业内部混业经营的进一步发展,银行金融与非银行金融的界限、证券公司与非证券公司之间的界限都可能变得非常模糊。

2.大数据金融服务多样化。大数据金融从电商平台发展出来以后,不断地整合发展传统产业,从零售的日用百货发展到电子产品,再到汽车,甚至是大宗商品交易,未来也会发展到房地产、医疗等方面,日常的金融服务也将不断地扩展,综合化、社会化、日常化。
3.大数据金融服务专业化。随着涉足领域越来越广泛,大数据金融必将产生专业化趋势,产生更明确的产业链分工,根据不同的环节或者是不同的行业,其服务内容都将产生一系列的变化。同时随着发展水平的提高,必定会有高要求的定制化服务、个性化服务要求,未来的大数据金融企业必将以客户为中心,高度精准与定位客户需求来制定专业的个性化服务。总而言之,大数据金融凭借高度数据化的管理和运作模式,在互联网发展的今天有着不可替代的地位,将来大数据金融必将是金融业发展的中流砥柱,它将进一步渗透到各行各业的每一个角落,不断地促进金融生态的发展。在不久的将来,每个人都将能够切身体会到大数据金融带来的变化,都能从大数据金融的发展中获得益处。

㈢ 大数据时代,面临的七个挑战和八大趋势

大数据时代,面临的七个挑战和八大趋势

大数据挑战和机遇并存,大数据在未来几年的发展将从前几年的预期膨胀阶段、炒作阶段转入理性发展阶段、落地应用阶段,大数据在未来几年将逐渐步入理性发展期。未来的大数据发展依然存在诸多挑战,但前景依然非常乐观。

大数据发展的挑战

目前大数据的发展依然存在诸多挑战,包括七大方面的挑战:业务部门没有清晰的大数据需求导致数据资产逐渐流失;企业内部数据孤岛严重,导致数据价值不能充分挖掘;数据可用性低,数据质量差,导致数据无法利用;数据相关管理技术和架构落后,导致不具备大数据处理能力;数据安全能力和防范意识差,导致数据泄露;大数据人才缺乏导致大数据工作难以开展;大数据越开放越有价值,但缺乏大数据相关的政策法规,导致数据开放和隐私之间难以平衡,也难以更好的开放。

挑战一:业务部门没有清晰的大数据需求

很多企业业务部门不了解大数据,也不了解大数据的应用场景和价值,因此难以提出大数据的准确需求。由于业务部门需求不清晰,大数据部门又是非盈利部门,企业决策层担心投入比较多的成本,导致了很多企业在搭建大数据部门时犹豫不决,或者很多企业都处于观望尝试的态度,从根本上影响了企业在大数据方向的发展,也阻碍了企业积累和挖掘自身的数据资产,甚至由于数据没有应用场景,删除很多有价值历史数据,导致企业数据资产流失。因此,这方面需要大数据从业者和专家一起,推动和分享大数据应用场景,让更多的业务人员了解大数据的价值。

挑战二:企业内部数据孤岛严重

企业启动大数据最重要的挑战是数据的碎片化。在很多企业中尤其是大型的企业,数据常常散落在不同部门,而且这些数据存在不同的数据仓库中,不同部门的数据技术也有可能不一样,这导致企业内部自己的数据都没法打通。如果不打通这些数据,大数据的价值则非常难挖掘。大数据需要不同数据的关联和整合才能更好的发挥理解客户和理解业务的优势。如何将不同部门的数据打通,并且实现技术和工具共享,才能更好的发挥企业大数据的价值。

挑战三:数据可用性低,数据质量差

很多中型以及大型企业,每时每刻也都在产生大量的数据,但很多企业在大数据的预处理阶段很不重视,导致数据处理很不规范。大数据预处理阶段需要抽取数据把数据转化为方便处理的数据类型,对数据进行清洗和去噪,以提取有效的数据等操作。甚至很多企业在数据的上报就出现很多不规范不合理的情况。以上种种原因,导致企业的数据的可用性差,数据质量差,数据不准确。而大数据的意义不仅仅是要收集规模庞大的数据信息,还有对收集到的数据进行很好的预处理处理,才有可能让数据分析和数据挖掘人员从可用性高的大数据中提取有价值的信息。Sybase的数据表明,高质量的数据的数据应用可以显著提升企业的商业表现,数据可用性提高10%,企业的业绩至少提升在10%以上。

挑战四:数据相关管理技术和架构

技术架构的挑战包含以下几方面:(1)传统的数据库部署不能处理TB级别的数据,快速增长的数据量超越了传统数据库的管理能力。如何构建分布式的数据仓库,并可以方便扩展大量的服务器成为很多传统企业的挑战;(2)很多企业采用传统的数据库技术,在设计的开始就没有考虑数据类别的多样性,尤其是对结构化数据、半结构化和非结构化数据的兼容;(3)传统企业的数据库,对数据处理时间要求不高,这些数据的统计结果往往滞后一天或两天才能统计出来。但大数据需要实时处理数据,进行分钟级甚至是秒级计算。传统的数据库架构师缺乏实时数据处理的能力;(4)海量的数据需要很好的网络架构,需要强大的数据中心来支撑,数据中心的运维工作也将成为挑战。如何在保证数据稳定、支持高并发的同时,减少服务器的低负载情况,成为海量数据中心运维的一个重点工作。

挑战五:数据安全

网络化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,可能会出现更高明的骗局。如何保证用户的信息安全成为大数据时代非常重要的课题。在线数据越来越多,黑客犯罪的动机比以往都来的强烈,一些知名网站密码泄露、系统漏洞导致用户资料被盗等个人敏感信息泄露事件已经警醒我们,要加强大数据网络安全的建设。另外,大数据的不断增加,对数据存储的物理安全性要求会越来越高,从而对数据的多副本与容灾机制也提出更高的要求。目前很多传统企业的数据安全令人担忧。

挑战六:大数据人才缺乏

大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支掌握大数据技术、懂管理、有大数据应用经验的大数据建设专业队伍。目前大数据相关人才的欠缺将阻碍大数据市场发展。据Gartner预测,到2015年,全球将新增440万个与大数据相关的工作岗位,且会有25%的组织设立首席数据官职位。大数据的相关职位需要的是复合型人才,能够对数学、统计学、数据分析、机器学习和自然语言处理等多方面知识综合掌控。未来,大数据将会出现约100万的人才缺口,在各个行业大数据中高端人才都会成为最炙手可热的人才,涵盖了大数据的数据开发工程师、大数据分析师、数据架构师、大数据后台开发工程师、算法工程师等多个方向。因此需要高校和企业共同努力去培养和挖掘。目前最大的问题是很多高校缺乏大数据,所以拥有大数据的企业应该与学校联合培养人才。

挑战七:数据开放与隐私的权衡

在大数据应用日益重要的今天,数据资源的开放共享已经成为在数据大战中保持优势的关键。商业数据和个人数据的共享应用,不仅能促进相关产业的发展,也能给我们的生活带来巨大的便利。由于政府、企业和行业信息化系统建设往往缺少统一规划,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,这给数据利用造成极大障碍。另外一个制约我国数据资源开放和共享的一个重要因素是政策法规不完善,大数据挖掘缺乏相应的立法。无法既保证共享又防止滥用。因此,建立一个良性发展的数据共享生态系统,是我国大数据发展需要迈过去的一道砍。同时,开放与隐私如何平衡,也是大数据开放过程中面临的最大难题。如何在推动数据全面开放、应用和共享的同时有效地保护公民、企业隐私,逐步加强隐私立法,将是大数据时代的一个重大挑战。

大数据发展趋势

虽然大数据仍在起步阶段,存在诸多挑战,但未来的发展依然非常乐观。大数据的发展呈现八大趋势:数据资源化,将成为最有价值的资产;大数据在更多的传统行业的企业管理落地;大数据和传统商业智能融合,行业定制化解决方案将涌现;数据将越来越开放,数据共享联盟将出现;大数据安全越来越受重视,大数据安全市场将愈发重要;大数据促进智慧城市发展,为智慧城市的引擎;大数据将催生一批新的工作岗位和相应的专业;大数据在多方位改善我们的生活。

趋势一:数据资源化,将成为最有价值的资产

随着大数据应用的发展,大数据价值得以充分的体现,大数据在企业和社会层面成为重要的战略资源,数据成为新的战略制高点,是大家抢夺的新焦点。《华尔街日报》在一份题为《大数据,大影响》的报告宣传,数据已经成为一种新的资产类别,就像货币或黄金一样。Google、Facebook、亚马逊、腾讯、网络、阿里巴巴和360等企业正在运用大数据力量获得商业上更大的成功,并且金融和电信企业也在运用大数据来提升自己的竞争力。我们有理由相信大数据将不断成为机构和企业的资产,成为提升机构和企业竞争力的有力武器。

趋势二:大数据在更多的传统行业的企业管理落地

一种新的技术往往在少数行业应用取得了好的效果,对其他行业就有强烈的示范效应。目前大数据在大型互联网企业已经得到较好的应用,其他行业的大数据尤其是电信和金融也逐渐在多种应用场景取得效果。因此,我们有理由相信,大数据作为一种从数据中创造新价值的工具,将会在许多行业的企业得到应用,带来广泛的社会价值。大数据将在帮助企业更好的理解和满足客户需求和潜在需求,更好的应用在业务运营智能监控、精细化企业运营、客户生命周期管理、精细化营销、经营分析和战略分析等方面。企业管理既有艺术也有科学,相信大数据在科学管理企业方面有更显著的促进,让更多拥抱大数据的企业实现智慧企业管理。

趋势三:大数据和传统商业智能融合,行业定制化解决方案将涌现

来自传统商业智能领域者将大数据当成一个新增的数据源,而大数据从业者则认为传统商业智能只是其领域中处理少量数据时的一种方法。大数据用户更希望能获得一种整体的解决方案,即不仅要能收集、处理和分析企业内部的业务数据,还希望能引入互联网上的网络浏览、微博、微信等非结构化数据。除此之外,还希望能结合移动设备的位置信息,这样企业就可以形成一个全面、完整的数据价值发展平台。毕竟,无论是大数据还是商业智能,目的都是为分析服务的,数据全面整合起来,更有利于发现新的商业机会,这就是大数据商业智能。同时,由于行业的差异性,很难研发出一套适用于各行业的大数据商业智能分析系统,因此,在一些规模较大的行业市场,大数据服务提供商将会以更加定制化的商业智能解决方案提供大数据服务。我们相信更多的大数据商业智能定制化解决方案将在电信、金融、零售等行业出现。

趋势四:数据将越来越开放,数据共享联盟将出现

大数据越关联越有价值,越开放越有价值。尤其是公共事业和互联网企业的数据开放数据将越来越多。我们看到,美国、英国、澳大利亚等国家的政府都在政府和公共事业上的数据做出努力。而国内的一些城市和部门也在逐渐开展数据开放的工作。比如北京市在2012年就开始试运行政务数据资源网,在2013年年底正式开放;上海在2012年启动了政府数据资源开放试点工作,数据涉及地理位置、交通、经济统计和资格资质等数据;2014年,贵州省也加入数据开放之列,10月份云上贵州正式上线。对于不同的行业,数据越共享也是越有价值。如果每一个医院想获得更多病情特征库以及药效信息,那么就需要全国,甚至全世界的医疗信息共享,从而可以通过平台进行分析,获取更大的价值。我们相信数据会呈现一种共享的趋势,不同领域的数据联盟将出现。

趋势五:大数据安全越来越受重视,大数据安全市场将愈发重要

随着数据的价值的越来越重要,大数据的安全稳定也将会逐渐被重视。网络和数字化生活也使得犯罪的分子更容易获取关于他人的信息,也有更多的骗术和犯罪手段出现,所以,在大数据时代,无论对于数据本身的保护,还是对于由数据而演变的一些信息的安全,对大数据分析有较高要求的企业将至关重要。大数据安全是跟大数据业务相对应的,与传统安全相比,大数据安全的最大区别是安全厂商在思考安全问题的时候首先要进行业务分析,并且找出针对大数据的业务的威胁,然后提出有针对性的解决方案。比如,对于数据存储这个场景,目前很多企业采用开源软件如Hadoop技术来解决大数据问题,由于其开源性,但是其安全问题也是突出的。因此,市场需要更多专业的安全厂商针对不同的大数据安全问题来提供专业的服务。

趋势六:大数据促进智慧城市发展,为智慧城市的引擎

随着大数据的发展,大数据在智慧城市将发挥着越来越重要的作用。由于人口聚集给城市带来了交通、医疗、建筑等各方面的压力,需要城市能够更合理地进行资源布局和调配,而智慧城市正是城市治理转型的最优解决方案。智慧城市是通过物与物、物与人、人与人的互联互通能力、全面感知能力和信息利用能力,通过物联网、移动互联网、云计算等新一代信息技术,实现城市高效的政府管理、便捷的民生服务、可持续的产业发展。智慧城市相对于之前数字城市概念,最大的区别在于对感知层获取的信息进行了智慧的处理。由城市数字化到城市智慧化,关键是要实现对数字信息的智慧处理,其核心是引入了大数据处理技术。大数据是智慧城市的核心智慧引擎。智慧安防、智慧交通、智慧医疗、智慧城管等,都是以大数据为基础的的智慧城市应用领域。

趋势七:大数据将催生一批新的工作岗位和相应的专业

一个新行业的出现,必将在工作职位方面有新的需求,大数据的出现也将推出一批新的就业岗位,例如,大数据分析师、数据管理专家、大数据算法工程师、数据产品经理等等。具有有丰富经验的数据分析人才将成为稀缺的资源,数据驱动型工作将呈现爆炸式的增长。而由于有强烈的市场需求,高校也将逐步开设大数据相关的专业,以培养相应的专业人才。企业也将和高校紧密合作,协助高校联合培养大数据人才。如2014年,IBM 全面推进与高校在大数据领域的合作,引入强大的研发团队和业务伙伴,推动“大数据平台”和“大数据分析”的面向行业产学研创新合作以及系统化知识体系建设和高价值人才培养,建设符合中国教学特色及人才需求的大数据相关学分课程,为未来建设特色专业方向做准备。

趋势八:大数据在多方位改善我们的生活

大数据不仅用于企业和政府,也应用于我们的生活。在健康方面:我们可以利用智能手环监测,对我们的睡眠模式来进行追踪,了解睡眠质量;我们可以利用智能血压计、智能心率仪远程的监控身在异地的家里老人的健康情况,让远在他方的外出工作者更加放心;在出行方面:我们可以利用智能导航出行GPS数据了解交通状况,并根据拥堵情况进行路线实时调优。在居家生活方面:大数据将成为智能家居的核心,智能家电实现了拟人智能,产品通过传感器和控制芯片来捕捉和处理信息,可以根据住宅空间环境和用户需求自动设置控制,甚至提出优化生活质量的建议,如我们的冰箱可能会在每天一大早建议我们当天的菜谱。

以上是小编为大家分享的关于大数据时代,面临的七个挑战和八大趋势的相关内容,更多信息可以关注环球青藤分享更多干货

㈣ 大数据的发展所面临的挑战有哪些

挑战一:业务来部门没有清晰的大自数据需求。

挑战二:企业内部数据孤岛严重。

挑战三:数据可用性低,数据质量差。

挑战四:数据相关管理技术和架构。

挑战五:数据安全。

㈤ 大数据应用都面临什么挑战

第一个挑战就是对数据资源及其价值的认识不足。这是因为全社会尚未形成对大数据客观、科学的认识,对数据资源及其在人类生产、生活和社会管理方面的价值利用认识不足,存在盲目追逐硬件设施投资、轻视数据资源积累和价值挖掘利用等现象。所以说这是我国大数据长期内最大的挑战,但也是比较容易实现的目标。

第二个挑战就是技术创新与支撑能力不够。这主要是因为大数据需要从底层芯片到基础软件再到应用分析软件等信息产业全产业链的支撑,无论是新型计算平台、分布式计算架构,还是大数据处理、分析和呈现方面与国外均存在较大差距,对开源技术和相关生态系统的影响力仍然较弱,总体上难以满足各行各业大数据应用需求。而这是大数据短期内最大的挑战。

第三个挑战就是数据资源建设和应用水平不高。这是因为用户普遍不重视数据资源的建设,即使有数据意识的机构也大多只重视数据的简单存储,很少针对后续应用需求进行加工整理。而且数据资源普遍存在质量差,标准规范缺乏,管理能力弱等现象。在很多跨部门、跨行业的数据共享仍不顺畅,有价值的公共信息资源和商业数据开放程度低。数据价值难以被有效挖掘利用,所以说,大数据应用整体上处于起步阶段,潜力远未释放。

第四个挑战就是信息安全和数据管理体系尚未建立。数据所有权、隐私权等相关法律法规和信息安全、开放共享等标准规范缺乏,技术安全防范和管理能力不够,尚未建立起兼顾安全与发展的数据开放、管理和信息安全保障体系。

第五个挑战就是人才队伍建设还需加强。就目前而言,我国的综合掌握数学、统计学、计算机等相关学科及应用领域知识的综合性数据科学人才缺乏,远不能满足发展需要,尤其是缺乏既熟悉行业业务需求,又掌握大数据技术与管理的综合型人才。

㈥ 大数据在金融行业的应用与挑战

大数据在金融行业的应用与挑战
A 具有四大基本特征
金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。全球最大的金融数据公司Bloomberg在1981年成立时“大数据”概念还没有出现。Bloomberg的最初产品是投资市场系统(IMS),主要向各类投资者提供实时数据、财务分析等。
随着信息时代降临,1983年估值仅1亿美元的Bloomberg以30%股份的代价换取美林3000万美元投资,先后推出Bloomberg Terminal、News、Radio、TV等各类产品。1996年Bloomberg身价已达20亿美元,并以2亿美元从美林回购了10%的股份。2004年Bloomberg在纽约曼哈顿中心建成246米摩天高楼。到2008年次贷危机,美林面临崩盘,其剩余20%的Bloomberg股份成为救命稻草。Bloomberg趁美林之危赎回所有股份,估值跃升至225亿美元。2016年Bloomberg全球布局192个办公室,拥有1.5万名员工,年收入约100亿美元,估值约1000亿美元,超过同年市值为650亿美元的华尔街标杆高盛。
大数据概念形成于2000年前后,最初被定义为海量数据的集合。2011年,美国麦肯锡公司在《大数据的下一个前沿:创新、竞争和生产力》报告中最早提出:大数据指大小超出典型数据库软件工具收集、存储、管理和分析能力的数据集。
具体来说,大数据具有四大基本特征:
一是数据体量大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量。
二是数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据。
三是处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是数据的真实性高,随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限被打破,信息的真实性和安全性显得极其重要。
而相比其他行业,金融数据逻辑关系紧密,安全性、稳定性和实时性要求更高,通常包含以下关键技术:数据分析,包括数据挖掘、机器学习、人工智能等,主要用于客户信用、聚类、特征、营销、产品关联分析等;数据管理,包括关系型和非关系型数据、融合集成、数据抽取、数据清洗和转换等;数据使用,包括分布式计算、内存计算、云计算、流处理、任务配置等;数据展示,包括可视化、历史流及空间信息流展示等,主要应用于对金融产品健康度、产品发展趋势、客户价值变化、反洗钱反欺诈等监控和预警。
B 重塑金融行业竞争新格局
“互联网+”之后,随着世界正快速兴起“大数据+”,金融行业悄然出现以下变化:
大数据特征从传统数据的“3个V”增加到“5个V”。在数量(Volume)、速度(Velocity)、种类(Variety)基础上,进一步完善了价值(Value)和真实性(Veracity),真实性包括数据的可信性、来源和信誉、有效性和可审计性等。
金融业按经营产品分类变为按运营模式分类。传统金融业按经营产品划分为银行、证券、期货、保险、基金五类,随着大数据产业兴起和混业经营的发展,现代金融业按运营模式划分为存贷款类、投资类、保险类三大类别。
大数据市场从垄断演变为充分市场竞争。全球大数据市场企业数量迅速增多,产品和服务的差异增大,技术门槛逐步降低,市场竞争日益激烈。行业解决方案、计算分析服务、存储服务、数据库服务和大数据应用成为市场份额排名最靠前的五大细分市场。
大数据形成新的经济增长点。Wikibon数据显示,2016年,全球大数据硬件、软件和服务整体市场增长22%达到281亿美元,预计到2027年,全球在大数据硬件、软件和服务上的整体开支的复合年增长率为12%,将达到大约970亿美元。
数据和IT技术替代“重复性”业务岗位。数据服务公司Eurekahedge通过追踪23家对冲基金,发现5位对冲基金经理薪金总额为10亿美元甚至更高。过去10年,靠数学模型分析金融市场的物理学家和数学家“宽客”一直是对冲基金的宠儿,其实大数据+人工智能更精于此道。高盛的纽约股票现金交易部门2000年有600名交易员而如今只剩两人,其任务全由机器包办,专家称10年后高盛员工肯定比今天还要少。
美国大数据发展走在全球前列。美国政府宣称:“数据是一项有价值的国家资本,应对公众开放,而不是将其禁锢在政府体制内。”作为大数据的策源地和创新引领者,美国大数据发展一直走在全球最前列。自20世纪以来,美国先后出台系列法规,对数据的收集、发布、使用和管理等做出具体的规定。2009年,美国政府推出Data.gov政府数据开放平台,方便应用领域的开发者利用平台开发应用程序,满足公共需求或创新创业。2010年,美国国会通过更新法案,进一步提高了数据采集精度和上报频度。2012年3月,奥巴马政府推出《大数据研究与开发计划》,大数据迎来新一轮高速发展。
英国是欧洲金融中心,大数据成为其领先科技之一。2013年,英国投资1.89亿英镑发展大数据。2015年,新增7300万英镑,创建了“英国数据银行”data.gov.uk网站。2016年,伦敦举办了超过22000场科技活动,同年,英国数字科技投资逾68亿英镑,而收入则超过1700亿英镑。另外,英国统计局利用政府资源开展“虚拟人口普查”,仅此一项每年节省5亿英镑经费。
C 打造高效金融监管体系
大数据用已发生的总体行为模式和关联逻辑预测未来,决策未来,作为现代数字科技的核心,其灵魂就是——预测。
侦测、打击逃税、洗钱与金融诈骗
全球每年因欺诈造成的经济损失约3.7万亿美元,企业因欺诈受损通常为年营收额的5%。全球最大软件公司之一美国SAS公司与税务、海关等政府部门和全球各国银行、保险、医疗保健等机构合作,有效应对日益复杂化的金融犯罪行为。如在发放许可之前,通过预先的数据分析检测客户是否有过行受贿、欺诈等前科,再确定是否发放借贷或海关通关。SAS开发的系统已被国际公认为统计分析的标准软件,在各领域广泛应用。英国政府利用大数据检测行为模式检索出200亿英镑的逃税与诈骗,追回了数十亿美元损失。被福布斯评为美国最佳银行的德克萨斯资本银行(TCBank),不断投资大数据技术,反金融犯罪系统与银行发展同步,近3年资产从90亿美元增至210亿美元。荷兰第三大人寿保险公司CZ依靠大数据对骗保和虚假索赔行为进行侦测,在支付赔偿金之前先期阻断,有效减少了欺诈发生后的司法补救。
大数据风控建立客户信用评分、监测对照体系
美国注册舞弊审核师协会(ACFE)统计发现,缺乏反欺诈控制的企业会遭受高额损失。美国主流个人信用评分工具FICO能自动将借款人的历史资料与数据库中全体借款人总体信用习惯相比较,预测借款人行为趋势,评估其与各类不良借款人之间的相似度。美国SAS公司则通过集中浏览和分析评估客户银行账户的基本信息、历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如搜索到该客户从新出现的国家为特有用户转账,或在新位置在线交易等),进行实时反欺诈分析。
美国一家互联网信用评估机构通过分析客户在Facebook、Twitter等社交平台留下的信息,对银行的信贷和投保申请客户进行风险评估,并将结果出售给银行、保险公司等,成为多家金融机构的合作伙伴。
D 数据整合困难
应用经济指标预测系统分析市场走势
IBM使用大数据信息技术成功开发了“经济指标预测系统”,该系统基于单体数据进行提炼整合,通过搜索、统计、分析新闻中出现的“新订单”等与股价指标有关的单词来预测走势,然后结合其他相关经济数据、历史数据分析其与股价的关系,从而得出行情预测结果。
追踪社交媒体上的海量信息评估行情变化
当今搜索引擎、社交网络和智能手机上的微博、微信、论坛、新闻评论、电商平台等每天生成几百亿甚至千亿条文本、音像、视频、数据等,涵盖厂商动态、个人情绪、行业资讯、产品体验、商品浏览和成交记录、价格走势等,蕴含巨大财富价值。
2011年5月,规模为4000万美元的英国对冲基金DC Markets,通过大数据分析Twitter的信息内容来感知市场情绪指导投资,首月盈利并以1.85%的收益率一举战胜其他对冲基金仅0.76%的平均收益率。
美国佩斯大学一位博士则利用大数据追踪星巴克、可口可乐和耐克公司在社交媒体的围观程度对比其股价,证明Facebook、Twitter和 Youtube上的粉丝数与股价密切相关。
提供广泛的投资选择和交易切换
日本个人投资理财产品Money Design在应用程序Theo中使用算法+人工智能,最低门槛924美元,用户只需回答风险承受水平、退休计划等9个问题,就可使用35种不同货币对65个国家的1.19万只股票进行交易和切换,年度管理费仅1%。Money Design还能根据用户投资目标自动平衡其账户金额,预计2020年将超过2万亿美元投资该类产品。
利用云端数据库为客户提供记账服务
日本财富管理工具商Money Forward提供云基础记账服务,可管理工资、收付款、寄送发票账单、针对性推送理财新项目等,其软件系统连接并整合了2580家各类金融机构的各类型帐户,运用大数据分析的智能仪表盘显示用户当前财富状况,还能分析用户以往的数据以预测未来的金融轨迹。目前其已拥有50万商家和350万个体用户,并与市值2.5万亿美元的山口金融集团联合开发新一款APP。
为客户定制差异化产品和营销方案
金融机构迫切需要掌握更多用户信息,继而构建用户360度立体画像,从而对细分客户进行精准营销、实时营销、智慧营销。
一些海外银行围绕客户“人生大事”,分析推算出大致生活节点,有效激发其对高价值金融产品的购买意愿。如一家澳大利亚银行通过大数据分析发现,家中即将诞生婴儿的客户对寿险产品的潜在需求最大,于是通过银行卡数据监控准妈妈开始购买保胎药品和婴儿相关产品等现象,识别出即将添丁的家庭,精准推出定制化金融产品套餐,受到了客户的积极响应,相比传统的短信群发模式大幅提高了成功率。
催生并支撑人工智能交易
“量化投资之王”西蒙斯被公认为是最能赚钱的基金经理人,自1988年创立文艺复兴科技公司的旗舰产品——大奖章基金以来,其凭借不断更新完善的大数据分析系统,20年中创造出35%的年均净回报率,比索罗斯同期高10%,比股神巴菲特同期高18%,成为有史以来最成功的对冲基金,并于1993年基金规模达2.7亿美元时停止接受新投资。在美国《Alpha》杂志每年公布的对冲基金经理排行榜上,西蒙斯2005年、2006年分别以15亿美元、17亿美元净收入稳居全球之冠,2007年以13亿美元位列第五,2008年再以25亿美元重返榜首。
推动金融产品和服务创新
E 面临三大挑战
目前,全球各行业数据量的增长速度惊人,在我国尤其集中在金融、交通、电信、制造业等重点行业,信息化的不断深入正在进一步催生更多新的海量数据。
据统计,2015年中国的数据总量达到1700EB以上,同比增长90%,预计到2020年这一数值将超过8000EB。以银行业为例,每创收100万元,银行业平均产生130GB的数据,数据强度高踞各行业之首。但在金融企业内部数据处于割裂状态,业务条线、职能部门、渠道部门、风险部门等各个分支机构往往是数据的真正拥有者,缺乏顺畅的共享机制,导致海量数据往往处于分散和“睡眠”状态,虽然金融行业拥有的数据量“富可敌国”,但真正利用时却“捉襟见肘”。
数据安全暗藏隐患
大数据本质是开放与共享,但如何界定、保护个人隐私权却成为法律难题。大数据存储、处理、传输、共享过程中也存在多种风险,不仅需要技术手段保护,还需相关法律法规规范和金融机构自律。多项实际案例表明,即使无害的数据大量囤积也会滋生各种隐患。安全保护对象不仅包括大数据自身,也包含通过大数据分析得出的知识和结论。在线市场平台英国Handshake.uk.com就尝试允许用户协商个人数据被品牌分享所得的报酬。
人才梯队建设任重道远
人才是大数据之本。与信息技术其他细分领域人才相比,大数据发展对人才的复合型能力要求更高,需要掌握计算机软件技术,并具备数学、统计学等方面知识以及应用领域的专业知识。

㈦ 金融大数据应用面临哪些风险

1.金融科技巨头可能产生数据垄断
一些金融科技巨头凭借其在互联网领域的固有优势,掌握了大量数据,客观上可能会产生数据寡头的现象,可能会带来数据垄断。一些机构掌握了核心的信用数据资源,由于缺乏分享的激励机制,导致与征信的共享理念存在冲突。
2.存在数据孤岛现象,数据融合困难
政府和企业都面临数据孤岛难题。大数据时代,数据已经成为核心资源,企业出于保护商业机密或者节约数据整理成本的考虑而不愿意共享自身数据,一些政府部门也缺乏数据公开的动力。数据孤岛现象的存在,将导致大数据信用评估模型采用的数据维度和算法的不同,大数据征信模型的公信力和可比性容易遭到质疑。
3.数据安全和个人隐私保护难度升级
目前,大数据的获取大致有四种方法:自有平台积累、通过交易或合作获取、通过技术手段获取、用户自己提交的数据等。但是由于相关的法律法规体系尚不健全,数据交易存在许多不规范的地方,甚至出现数据非法交易和盗取信息的现象。大数据来源复杂多样加大了用户隐私泄露的风险,其一,我国金融大数据行业的发展乃至Fintech行业的发展,在很大程度上得益于互联网应用场景的发展,而大数据从互联网应用场景向金融领域的转移往往发生在一些金融科技企业的集团内部,这个过程缺乏监管和规范,可能会侵犯到用户的知情权、选择权和隐私权。其二,应用数据存在多重交易和多方接入的可能性,隐私数据保护的边界不清晰;其三,技术手段的加入,加大了信息获取的隐蔽性,一旦出现隐私泄露纠纷,用户将面临取证难、诉讼难的问题;其四,大数据采集数据的标准不一,用户的知情权、隐私权可能受到侵犯。可见,在大数据环境下,个人数据应用的隐私保护是一个复杂的消费者权益保护问题,涉及到道德、法律、技术等诸多领域。

㈧ 交通银行如何应对大数据

交通银行要学会“走出去”以应对大数据。
拓展资料:
在“大数据时代”,银行所面临的竞争不仅仅来自于同行业内部,外部的挑战也日益严峻。互联网、电子商务等新兴企业在产品创新能力、市场敏感度和“大数据”处理经验等方面都拥有明显的优势,一旦涉足金融领域,将对银行形成较大的威胁。日前,互联网公司阿里巴巴已开始在利用大数据技术提供金融服务,通过其掌握的电商平台阿里巴巴、淘宝网和支付宝等的各种信息数据,借助大数据分析技术自动判定是否给予企业贷款,全程几乎不用出现人工干预。这种基于“大数据”分析能力的竞争优势已明鲜显示了这种威胁的现实性和急迫性。

数据将是未来银行的核心竞争力之一,这已成为银行业界的共识。应该说,银行对于传统的结构化数据的挖掘和分析是处于领先水平的,但一方面银行传统的数据库信息量并不丰富和完整,如客户信息,银行拥有客户的基本身份信息,但客户其他的信息,如性格特征、兴趣爱好、生活习惯、行业领域、家庭状况等却是银行难以准确掌握的;另一方面对于多种异构数据的分析是难以处理的,如银行有客户的资金往来的信息、网页浏览的行为信息、服务通话的语音信息、营业厅、ATM的录像信息,但除了结构化数据外,其他数据无法进行分析,更谈不上对多种信息进行综合分析,无法打破“信息孤岛”的格局。也就是说,在“大数据时代”,银行的数据挖掘和分析能力严重不足。

阅读全文

与金融大数据面临的挑战相关的资料

热点内容
maya粒子表达式教程 浏览:84
抖音小视频如何挂app 浏览:283
cad怎么设置替补文件 浏览:790
win10启动文件是空的 浏览:397
jk网站有哪些 浏览:134
学编程和3d哪个更好 浏览:932
win10移动硬盘文件无法打开 浏览:385
文件名是乱码还删不掉 浏览:643
苹果键盘怎么打开任务管理器 浏览:437
手机桌面文件名字大全 浏览:334
tplink默认无线密码是多少 浏览:33
ipaddgm文件 浏览:99
lua语言编程用哪个平台 浏览:272
政采云如何导出pdf投标文件 浏览:529
php获取postjson数据 浏览:551
javatimetask 浏览:16
编程的话要什么证件 浏览:94
钱脉通微信多开 浏览:878
中学生学编程哪个培训机构好 浏览:852
荣耀路由TV设置文件共享错误 浏览:525

友情链接