A. 大数据都有什么就业方向
大数据专业就业方向
大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。
大数据专业介绍
计算机科学与技术(数据科学与大数据技术方向)主要培养大数据科学与工程领域的复合型高级技术人才。毕业生具有信息科学、管理科学和数据科学基础知识与基本技能,掌握大数据科学与技术所需要的计算机、网络、数据编码、数据处理等相关学科的基本理论和基本知识,熟练掌握大数据采集、存储、处理与分析、传输与应用等技术,具备大数据工程项目的系统集成能力、应用软件设计和开发能力,具有一定的大数据科学研究能力及数据科学家岗位的基本能力与素质。毕业后能从事各行业大数据分析、处理、服务、开发和利用工作,大数据系统集成与管理维护等各方面工作,亦可从事大数据研究、咨询、教育培训工作。
大数据(big data)是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据有五大特点,即大量(Volume)、高速(Velocity)、多样(Variety)、低价值密度(Value)、真实性(Veracity)。它并没有统计学的抽样方法,只是观察和追踪发生的事情。
大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。[1]
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。[2]
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。[3]
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。[4]
B. 大数据分析有哪些基本方向
【导读】跟着大数据时代的降临,大数据剖析也应运而生。随之而来的数据仓库、数据安全、数据剖析、数据发掘等等环绕大数据的商业价值的使用逐渐成为职业人士争相追捧的利润焦点。那么,大数据剖析有哪些根本方向呢?
1.可视化剖析
不管是对数据剖析专家仍是普通用户,数据可视化是数据剖析东西最根本的要求。可视化能够直观的展现数据,让数据自己说话,让观众听到成果。
2.数据发掘算法
可视化是给人看的,数据发掘便是给机器看的。集群、切割、孤立点剖析还有其他的算法让咱们深入数据内部,发掘价值。这些算法不只要处理大数据的量,也要处理大数据的速度。
3.猜测性剖析才能
数据发掘能够让剖析员更好的理解数据,而猜测性剖析能够让剖析员根据可视化剖析和数据发掘的成果做出一些猜测性的判别。
4.语义引擎
咱们知道由于非结构化数据的多样性带来了数据剖析的新的应战,咱们需求一系列的东西去解析,提取,剖析数据。语义引擎需求被设计成能够从“文档”中智能提取信息。
5.数据质量和数据管理
数据质量和数据管理是一些管理方面的最佳实践。经过标准化的流程和东西对数据进行处理能够保证一个预先界说好的高质量的剖析成果。
6.数据存储,数据仓库
数据仓库是为了便于多维剖析和多角度展现数据按特定形式进行存储所建立起来的联系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的根底,为商业智能系统供给数据抽取、转换和加载(ETL),并按主题对数据进行查询和拜访,为联机数据剖析和数据发掘供给数据平台。
以上就是小编今天给大家整理分享关于“大数据分析有哪些基本方向?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
C. 大数据的发展方向都有什么
说到大数据我们不能不提到人工智能,这个近几年非常火的一个新技术方向,从几年前大家科普什么是人工智能到现在产业普遍探讨如何落地问题,人工智能几乎霸屏各行各业。
大数据时代势不可挡。 一方面,为了实现降本增效,企业纷纷在寻求数字化、智能化转型。以期利用新技术带来结构性增长;;另一方面国家释放推动“新基建”加速经济建设信号,对于信息数字化 科技 产业的重视程度空前高涨。企业内部发展刚需和国家政策红利,人工智能化必然是新经济环境下的大势所趋。
人工智能的三大核心要素:算法、算力、数据缺一不可。 其中大数据更像是水电煤般的基础设施的存在。数据沉淀将变成未来企业搭建壁垒的核心竞争力。而具体来看大数据的发展方向也是涵盖多个方面,举例来说:
>> 新零售
新零售的新就在于将“零售数据化”,通过大数据重新定义“人货场”概念。传统零售下,通常是“人找货”,卖场提供什么样的商品用户就只能买到什么。而在大数据加持下的新零售时代,则是相反的“货找人”,零售平台将用户的“数据”和货的“数据”进行匹配。用户“数据”例如:用户的性别、年龄、兴趣品类、性格标签、消费能力、购物频次、浏览时长……等等;货的“数据”包含了:商品价格、促销优惠、品类细分、品质、产地、库存……等等。通过数据赋能、精准匹配,商家能比用户自己更了解用户。
>>在线教育
教育的线上化在这次疫情的驱动下变得十分必要,传统教育一个老师面对多个学生或者一对一的私教,老师的精力无法顾及所有学生,而通过技术手段可以沉淀学生、老师及课程的数据,从而更好地服务好双边体验。例如:AI识别学生上课状态,是否打瞌睡是否专注上课;智能批改作业,实时反馈学习成绩和遗漏知识点;知识点查漏补缺,根据学生个人情况定制测试作业……大数据智能协助提高效率的同时,也减轻人工成本,解放老师“管理”的时间,花更多时间精力备课。
>>直播
直播行业的大数据更是其生存之本,用户侧的“数据”有:内容喜好、观看时段、浏览时长等等,内容侧的“数据”有:什么样的主播在什么时段播什么类型的什么内容、转赞评数据等等。有了这样的双边数据后,平台自然可以实现“千人千面”的算法推荐内容,从而增强用户对平台的粘度。而直播的最直接的变现手段带货,大数据的则能进行智能跳转,快速结算。
大数据赋能下的行业有着不同的新业态,未来大数据必然会成为产业、生活必不可少的工具,涵盖我们生活的各个方面,帮我们更便捷高效的生活。
大数据是未来人工智能领域一项非常重要的基础。而随意人工智能的发展,需要的大数据将会在广度和深度两个方向同步扩展。从广度来看,大数据最终会扩展到 社会 的所有环节;从深度来看,大数据最终会深入到每个人从生到死全过程。
大数据的未来:万物皆可互联,世界鲜有隐私!
第一:大数据自身能够创造出更多的价值。大数据相关技术紧紧围绕数据价值化展开,数据价值化将开辟出广大的市场空间,重点在于数据本身将为整个信息化 社会 赋能。随着大数据的落地应用,大数据的价值将逐渐得到体现。目前在互联网领域,大数据技术已经得到了较为广泛的应用。
第二:大数据推动 科技 领域的发展。大数据的发展正在推动 科技 领域的发展进程,大数据的影响不仅仅体现在互联网领域,也体现在金融、教育、医疗等诸多领域。在人工智能研发领域,大数据也起到了重要的作用,尤其在机器学习、计算机视觉和自然语言处理等方面,大数据正在成为智能化 社会 的基础。
第三:大数据产业链逐渐形成。经过近些年的发展,大数据已经初步形成了一个较为完整的产业链,包括数据采集、整理、传输、存储、分析、呈现和应用,众多企业开始参与到大数据产业链中,并形成了一定的产业规模,相信随着大数据的不断发展,相关产业规模会进一步扩大。
第四:产业互联网将推动大数据落地。当前互联网正在经历从消费互联网向产业互联网过渡,产业互联网将利用大数据、物联网、人工智能等技术来赋能广大的传统产业,可以说产业互联网的发展空间非常大,而大数据则是产业互联网发展的一个重点,大数据能否落地到传统行业,关乎产业互联网的发展进程,所以在产业互联网阶段,大数据将逐渐落地,也必然落地。
通过以上分析可以得出,未来大数据领域的发展空间还是比较大的,而且目前大数据领域的人才缺口比较大。
大数据的发展趋势总的来说应该体现在以下几个方面:
第一:互联网逐渐大数据化。随着大数据技术的逐渐成熟,互联网将成为大数据首先落地的领域,大数据将在电子商务等互联网应用平台得到广泛的应用。互联网 科技 公司也是推动大数据技术发展的中坚力量,在大数据发展的过程中会起到重要的作用,通过大数据技术在互联网领域的应用也能积累大量的应用经验。
第二:传统产业逐渐大数据化。随着互联网发展到产业互联网阶段,未来产业互联网将深入到整个传统行业中,而大数据技术作为产业互联网的核心技术之一必然会深入到传统行业中,所以未来传统行业大数据化将是一个重要的趋势。通过大数据相关技术不仅能够促进传统行业的信息化建设,包括物联网、云计算建设等,更是能够通过大数据来为传统行业创新带来帮助。
第三:人才大数据化。大数据的发展必然需要大量的大数据人才,不仅需要专业的大数据开发人才(大数据平台开发、大数据应用开发、大数据分析、大数据运维等),也需要大量的大数据应用型人才(基于大数据工具开展大数据分析等工作),所以人才大数据化也是未来一个重要的趋势。对于职场人来说,掌握一定的大数据知识会提升自身的岗位竞争力。
大数据的发展方向我认为…每个人的生活轨迹习惯喜好,每个企业的需求和全方位信息,每个行业的发展方向布局,每个国家的综合状态,通过大数据统计分析,做出你所想要的结论!
大数据未来发展趋势将从以下几个方面体现:
按需提供的大数据基础设施一切皆有弹性。基于云的数据库和存储可以根据使用情况双向伸缩,用户只需购买和使用其需要的东西。
大数据边缘计算当数据传输变得更快数据量更大时,边缘计算的智能化可以避免消耗更大的云存储空间和远端基础设施。
大数据硬件更加商品化
大数据硬件更加廉价,同时越来越多的智能化软件替代硬件功能。云时代,硬件越来越廉价。
大数据带来新的数据结构平面文件和表结构将继续存在,同时会出现更多的空间数据、图形和网络数据。
大数据带来“大分析”
数据的价值决定于数据如何处理。引用舍恩伯格《大数据时代》中的一句话, 大数据带来的“不是随机样本,而是全体数据;不是精确性,而是混杂性;不是因果关系,而是相互关系。”你能获得的数据量越大,你能挖掘到的价值就越多。
法律检索大数据是目前发展方向之一。法律 科技 新秀律宝AI大脑,导入最新最全的司法大数据,把人工智能技术运用在法律检索、案件信息提取与分析上,律师只需输入文字或语音识别录入事情经过或案件事实,系统将会自动进行信息提取和数据匹配,输出精准的法律检索结果和详细的案件分析报告,节省了律师办案时间。
【大数据检索】又新又全的司法大数据,输入关键词即可一键检索获取法规、案例、工商信息、司法观点等,方便律师进行检索。
【类案大数据】律宝能根据律师录入的案件详情,通过大数据智能检索匹配同类型案件和适用法条,给律师提供办案思路。
1、智慧城市
智慧城市(英语:Smart City)是指利用各种信息技术或创新意念,集成城市的组成系统和服务,以提升资源运用的效率,优化城市管理和服务,以及改善市民生活质量。
用途范围
用途分为十大智慧体系,分别为:智慧物流体系、智慧制造体系、智慧贸易体系、智慧能源应用体系、智慧公共服务、智慧 社会 管理体系、智慧交通体系、智慧 健康 保障体系、智慧安居服务体系、智慧文化服务体系。
2、增强现实(AR)与虚拟现实(VR)
增强现实技术(Augmented Reality,简称 AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像、视频、3D模型的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动。这种技术1990年提出。VR是Virtual Reality的缩写,中文为虚拟现实。虚拟现实技术是一种能够创建和体验虚拟世界的计算机仿真技术, 它利用计算机生成一种交互式的三维动态视景,其实体行为的仿真系统能够使用户沉浸到该环境中。
3、人工智能(Artificial Intelligence)
英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
用途范围
机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
国内外大数据标准化现状及发展方向
https://www.toutiao.com/i6605430386438701572/
数据工程师、数据分析师、架构设计师 ----------河南新华
D. 大数据就业方向
大数据系统研发类人才;
大数据应用开发类人才;
大数据分析类人才。
一、ETL研发
随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。
ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
二、Hadoop开发
Hadoop的核心是HDFS和MapRece.HDFS提供了海量数据的存储,MapRece提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。
三、可视化(前端展现)工具开发
海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。
可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。
过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。
数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
六、OLAP开发
随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。
总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
八、数据预测(数据挖掘)分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证市场数据的完整性,准确性,唯一性,真实性和不冗余。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。
E. 大数据就业方向是什么
目前,互联网、物联网、人工智能、金融、体育、在线教育、交通、物流、电版商等等,几乎所权有的行业都已经涉足大数据,大数据将成为今后整个社会及企业运营的支撑。
1. Hadoop大数据开发方向
市场需求旺盛,大数据培训的主体,目前IT培训机构的重点
对应岗位:大数据开发工程师、爬虫工程师、数据分析师 等
2. 数据挖掘、数据分析&机器学习方向
学习起点高、难度大,市面上只有很少的培训机构在做。
对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等
3. 大数据运维&云计算方向
市场需求中等,更偏向于Linux、云计算学科
对应岗位:大数据运维工程师
当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇。
F. 大数据技术的发展方向有哪些
1、在大数据采集与预处理方向
这方向最常见的问题是数据的多源和多样性,导致数据的质量存在差异,严重影响到数据的可用性。针对这些问题,目前很多公司已经推出了多种数据清洗和质量控制工具(如IBM的Data Stage)。
2、在大数据存储与管理方向
这方向最常见的挑战是存储规模大,存储管理复杂,需要兼顾结构化、非结构化和半结构化的数据。分布式文件系统和分布式数据库相关技术的发展正在有效的解决这些方面的问题。在大数据存储和管理方向,尤其值得我们关注的是大数据索引和查询技术、实时及流式大数据存储与处理的发展。
3、大数据计算模式方向
由于大数据处理多样性的需求,目前出现了多种典型的计算模式,包括大数据查询分析计算(如Hive)、批处理计算(如Hadoop MapRece)、流式计算(如Storm)、迭代计算(如HaLoop)、图计算(如Pregel)和内存计算(如Hana),而这些计算模式的混合计算模式将成为满足多样性大数据处理和应用需求的有效手段。
4、大数据分析与挖掘方向
在数据量迅速膨胀的同时,还要进行深度的数据深度分析和挖掘,并且对自动化分析要求越来越高,越来越多的大数据数据分析工具和产品应运而生,如用于大数据挖掘的R Hadoop版、基于MapRece开发的数据挖掘算法等。
G. 大数据就业方向及前景
这个时代是大数据时代,也是大数据人才稀缺的时代。
由于中国人才缺口比较大,大数据的优势已经日渐凸显,作为一种可分析、可预测、可以实时监控的新科技正在被各个行业所青睐。无论是对人才的招聘还是再培训都成了刚需,这也促使大数据人才的薪资在同岗位中是最高的,掌握大数据技术,工资提升40%左右是很常见的。
大数据的就业领域是很宽广的,不管是科技领域,还是食品产业,零售业等等,都是需要大数据人才进行大数据的处理,以提供更好的用户体验,以及优化库存,降低成本,预测需求。
大数据时代热门职业
1、数据规划师
在一个产品设计之前,为企业各项决策提供关键性数据支撑,实现企业数据价值的最大化,更好地实施差异化竞争,帮助企业在竞争中获得先机。
2、数据工程师
大数据基础设施的设计者、建设者和管理者,他们开发出可根据企业需要进行分析和提供数据的架构。同时,他们的架构还可确保系统能够平稳运行。
3、数据架构师
擅长处理散乱数据、各类不相干的数据,精通统计学的方法,能够通过监控系统获得原始数据,在统计学的角度上解释数据。
4、数据分析师
职责是通过分析将数据转化为企业能够使用的信息。他们通过数据找到问题,准确地找到问题产生的原因,为下一步的改进找到关键点。
5、数据应用师
将数据还原到产品中,为产品所用。他们能够用常人能理解的语言表述出数据所蕴含的信息,根据数据分析结论推动企业内部做出调整。
6、数据科学家
大数据中的领导者,具备多种交叉科学和商业技能,能够将数据和技术转化为企业的商业价值。
H. 大数据都有哪些就业方向
主要有二个方向:
一是大数据维护、研发、架构工程师方向;所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
二是大数据挖掘、分析方向;所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等
I. 大数据有哪些职业方向
当下,大数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师。对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。
大数据就业前景
在就业“钱景”方面,各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。以基本的Hadoop开发工程师为例,入门月薪已经达到了8K以上,工作1年月薪可达到12K以上,资深的hadoop人才年薪可达到30万—50万。
大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。
大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。
大数据分析师
基于各种分析手段,利用大数据技术对大数据进行科学分析、挖掘、展现并用于决策支持。
数据挖掘工程师
数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。
算法工程师
数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。
数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。