㈠ 大数据开发工程师的基本职责-岗位职责
大数据开发工程师的基本职责-岗位职责
在学习、工作、生活中,很多情况下我们都会接触到岗位职责,明确岗位职责能让员工知晓和掌握岗位职责,能够最大化的进行劳动用工管理,科学的进行人力配置,做到人尽其才、人岗匹配。我们该怎么制定岗位职责呢?以下是我为大家整理的大数据开发工程师的基本职责-岗位职责,仅供参考,欢迎大家阅读。
职责:
1、参与大数据平台搭建以及项目技术架构。
2、数据分析,挖掘,模型具体的产品化;
3、根据产品需求,分析编写和制定大数据相关解决方案
岗位要求:
1、计算机相关专业本科以上学历,编程基础扎实,有2年以上大数据开发经验
2、熟悉Hadoop生态和体系架构,熟悉Flink、Spark,Hive等常用开源工具
3、熟悉Flume,kakfa,scribe等日志收集体系
4、熟悉主流数据库(Oracle、postgresql、Mysql、Sql Server)中的1种及以上,有较好的SQL性能调优经验
5、有数据仓库ETL经验者优先
6、有用户行为日志采集、海量数据处理、数据建模方面经验者优先
7、有持续学习的能力;喜欢开源软件,乐于知识分享;对工作认真负责;可以独立承担较大工作压力
职责:
1、数字货币领域数据统计分析,负责数字货币量化投资策略的设计、管理以及实际投资运作
2、与交易员对接,制定切实可行的的'策略测试计划,开展新策略模型的开发和验证
3、协助交易员进行交易、风险管理,并对实际交易结果进行量化的绩效分析,推动交易自动化
4、上级交办的其他工作
任职要求:
1、数学/计算机/金融专业毕业,有扎实的算法和机器学习的理论基础
2、有量化实盘交易经验,具备丰富的数学建模经验及较强的数据处理能力优先
3、对金融市场的价格波动有独特理解和深入的量化分析,具备一定对冲策略研究经验;
4、对数字货币领域感兴趣,结果导向;
5、有网页抓取和爬虫程序编写经验者优先。
职责:
1、大数据日志分析系统的设计,选型和开发;
2、配合各业务给予数据支持,对产品和运营数据总结和优化;
3、处理用户海量数据,提取、分析、归纳用户属性,行为等信息,完成分析结果;
4、发现并指出数据异常情况,分析数据合理性;
5、公司大数据基础架构平台的运维,保障数据平台服务的稳定性和可用性;
6、大数据基础架构平台的监控、资源管理、数据流管理;
7、基于数据分析的可预测的云平台弹性扩展解决方案。
任职要求:
1、日志分析数据系统实际经验;
2、3年以上互联网行业研发经验,有使用Hadoop/hive/spark分析海量数据的能力;
3、掌握Hadoop、Flume,Kafka、Zookeeper、HBase、Spark的安装与调试;
4、熟悉大数据周边相关的数据库系统,关系型数据库和NoSQL。
5、掌握Linux操作系统的配置,管理及优化,能够独立排查及解决操作系统层的各类问题;
6、有良好的沟通能力,具备出色的规划、执行力,强烈的责任感,以及优秀的学习能力。
职责:
1、负责数据分析、加工、清理、处理程序的开发;
2、负责数据相关平台的搭建、维护和优化;
3、负责基于Hadoop/Spark/Hive/kafka等分布式计算平台实现离线分析、实时分析的计算框架的开发;
岗位要求:
1、本科学历须211院校以上,硕士及以上学历不限院校,计算机软件及相关专业
2、熟悉java和Scala语言、熟悉常用设计模式、具有代码重构意识;
3、熟练使用hadoop、hbase、Kafka、hive、spark、presto,熟悉底层框架和实现原理;
4、使用Spark Streaming和Spark SQL进行数据处理,并具有SPARK SQL优化经验;
5、需要有至少2年开发经验,有flink开发经验优先;
6、学习能力强,喜欢研究新技术,有团队观念,具备独立解决问题的能力。
职责:
1、负责大数据平台的基础环境搭建与性能优化,完成平台的构建与维护、实时流计算平台、分布式调度、可视化报表等平台的架构与研发;
2、对各种开源框架进行深入的代码剖析和优化;
3、参与大数据技术方案评审;
4、指导初中级大数据工程师工作;
岗位要求:
1、计算机相关专业全日制专科及以上学历,具有3年或以上的分布式计算平台研发工作经验;
2。对大数据相关组件:Hadoop、Spark、Hbase、Hive、Flink、Kafka、Flume等架构与底层实现有深入理解,具备相应的定制和研发能力,尤其需要精通Flink框架;
3。具备构建稳定的大数据基础平台的能力,具备数据收集、数据清洗、数据仓库建设、实时流计算等系统研发经验;
4。对技术有热情,有不错的数据思维和敏感度,有一定的数据分析能力优先,对深度学习、机器学习有一定的了解优先;
5。工作有计划性,责任心和执行能力强,具备高度的责任心、诚信的工作作风、优秀沟通能力及团队精神。
;㈡ 大数据分析与大数据开发是什么
.大数据分析比较侧重于在千万复杂的数据当中提取精华,也就是提取本身平台或需求指定相关的数据。2.大数据开发可以理解为数据的采集和数据的获得
㈢ 本人想自学大数据hadoop,有那种讲得比较全面详细的大数据视频教程资源吗
现在大数据人才的缺口很大,但是从事大数据开发是需要一定的数据库基础和编程基础回的,而且大数据答的教学视频或者书籍目前来说适合入门的非常少,课程也非常繁杂。自学的难度不小,如果你的逻辑思维能力足够好的话可以先看尚硅 谷的谷粒学院大数据Hadoop教程。
㈣ 外贸公司销售怎么使用诚睿大数据找客户资源
外贸业务员找客户的方式有很多,通过大数据开发客户资源也是很不错的选择,建议可以多操作对比几家,选择出最适合自己的
㈤ 大数据开发行业的就业方向有哪些
根据专业社交平台LinkedIn发布的“中国互联网最热门人才报告”,研发工程师,产品经理,人力资源,市场营销,运营和数据分析是中国互联网行业最苛刻的六个人才职位,其中,研发工程师的需求最大,而数据分析人才最稀缺,LinkedIn报告显示,数据分析人才供给指数最低,仅为0.05%,这是高度稀缺的表现,稀缺的人才也加速了人才流动大,大数据人才的平均跳槽速度为16个月左右。
根据中国商业联合会的数据委员的统计,未来中国的基础数据分析人才缺口将达到1500万,而且,英美烟草公司招聘的职位中有60%以上正在招聘大数据人才,由此可见,数据开发的人才在我国是非常稀缺的,即使他们频繁跳槽,也不会因为找不到工作而实业,薪资只会越来越高。
大数据职业发展的三个方向:
1.系统研发类涉及的职业:数据工程师,数据维护工程师,大数据研发工程师,大数据架构师等;
2.数据分析和挖掘,数据分析和机器学习,涉及的职业包括:数据分析师,大数据高级工程师,数据分析师专家,数据挖掘者,数据算法工程师等;
3.大数据应用开发,对应职位:大数据应用工程师;
以最基本的大数据开发为例,入门的最低工资可以达到8K-1W人民币,并且这个行业的工资增长率是直线飙升的,可以说非常高,根据某些求职网站的薪水对比,发现高级大数据工程师的平均工资为每月5万人民币,可以说相当高了,因此,有想往大数据行业发展的朋友,可以尝试一下。
关于大数据开发行业的就业方向有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈥ 大数据分析所需的五个资源是什么
1.完成MATLAB Mastery Bundle
MATLAB或Matrix是一个多范型数字计算空间和编程语言。用外行人的话来说,它是一种工具,它使得编写代码,运行脚本以及执行数据分析和可视化等任务变得轻松易懂,从而解决复杂问题,而这些代码还不那么复杂。
2.Python Power Code BONU SBundle
市场上有许多重要的编程语言可供选择,数据分析师使用其日常任务和职责中的很多。但是,如果有人要先学习,那就是Python。Python语言被誉为用户友好型以及直观性。此外,它拥有众多的功能,这使它能够处理数据争夺。70小时的培训通过展示如何下载,提取,清理,汇总,分析和可视化数据,开始了编程教育。
3.大数据和分析主工具包
数据分析师和高级分析咨询人员使用大量的语言和工具来获取角色,这并不足为奇。这四个模块集合为数据库添加了四个重要的分析工具,即Minitab,SPSS,SAS和RStudio。
4.使用Tableau Desktop9 Bundle进行数据可视化
通过交互式仪表板分析和呈现数据以完全挖掘信息的主要工具之一是Tableau9.这个收集将使您了解Tableau。因此,可以开始创建自己的可视化数据。
5.完整介绍R编程包
R的核心是一种统计编程语言,它非常适合挖掘和分析数据。但是,它也具有高级图形和机器学习功能,也在数据可视化和集成复杂算法上提供了一些独一无二的优势。在五门课程和三本电子书中,收集指导通过要点使用R来充分发挥潜力。
关于大数据分析所需的五个资源是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据分析所需的五个资源是什么?的相关内容,更多信息可以关注环球青藤分享更多干货
㈦ 大数据开发需要掌握哪些技术
大数据开发需要掌握java,Scala,Python等技术。
首先在学习真正的大数据技术之前,要熟练掌握一门编程语言,比如java等,在学习大数据期间还会接触到其他的编程语言,比如说Scala、Python等编程语言,不过这些语言都是相通的,掌握了一门编程语言其他的就很好学习了。
㈧ 大数据的就业方向
总的来说大数据领域有几大细分 1 数据清洗、收集、爬虫 //偏脚本、爬虫能力 2 数据回分析 //偏业务答,偏SQL,偏分析能力 3 数据开发 //偏平台,偏工程化、后端开发能力 4 数据挖掘 //偏算法,偏挖掘能力 一般来说,数据分析的门槛最低,其次数据开发和爬虫类,门槛最高的是挖掘,当然薪酬也是相对较高的。 从应用开发入手,你可以往两个方向房展: 1 进一步熟悉架构,提升开发能力,往数据架构师转; 2 从应用工程化往挖掘工程师转,需要自己多学算法相关的知识;