『壹』 打听一下,这个中软国际的大数据服务核心团队咋个样
非常不错啊,从业时间长、经验实力雄厚。
『贰』 如何打造优秀的大数据团队
如何打造优秀的大数据团队
对于企业来说,要建设自己的大数据平台,需要的不只是技术解决方案,更重要的是组建一支优秀的数据团队。那么,数据团队有哪些成员组成?他们的工作方式是什么?采用怎样的组织架构来开展工作?
1. 数据团队成员这里只讨论数据团队中核心成员的角色和他们的工作职责。1)基础平台团队主要负责搭建稳定、可靠的大数据存储和计算平台。核心成员包括:数据开发工程师负责Hadoop、Spark、Hbase和Storm等系统的搭建、调优、维护和升级等工作,保证平台的稳定。数据平台架构师负责大数据底层平台整体架构设计、技术路线规划等工作,确保系统能支持业务不断发展过程中对数据存储和计算的高要求。运维工程师负责大数据平台的日常运维工作2)数据平台团队主要负责数据的清洗、加工、分类和管理等工作,构建企业的数据中心,为上层数据应用提供可靠的数据。数据开发工程师负责数据清洗、加工、分类等开发工作,并能响应数据分析师对数据提取的需求。数据挖掘工程师负责从数据中挖掘出有价值的数据,把这些数据录入到数据中心,为各类应用提供高质量、有深度的数据。数据仓库架构师负责数据仓库整体架构设计和数据业务规划工作。3)数据分析团队主要负责为改善产品体验设计和商业决策提供数据支持。业务分析师主要负责深入业务线,制定业务指标,反馈业务问题,为业务发展提供决策支持。建模分析师主要负责数据建模,基于业务规律和数据探索构建数据模型,提升数据利用效率和价值。2. 数据团队的工作方式数据团队的工作可以分成两大部分,一部分是建设数据存储和计算平台,另一部分是基于数据平台提供数据产品和数据服务。平台的建设者包括三种人群:基础平台团队对hadoop、spark、storm等各类大数据技术都非常熟悉,负责搭建稳定、可靠的大数据存储和计算平台。数据平台团队主要负责各类业务数据进行清洗、加工、分类以及挖掘分析,然后把数据有组织地存储到数据平台当中,形成公司的数据中心,需要团队具有强大的数据建模和数据管理能力。数据产品经理团队主要是分析挖掘用户需求,构建数据产品为开发者、分析师和业务人员提供数据可视化展示。平台的使用者也可以包括三种人群:数据分析团队通过分析挖掘数据,为改善产品体验设计和商业决策提供数据支持。运营、市场和管理层可以通过数据分析师获得有建设性的分析报告或结论,也可以直接访问数据产品获得他们感兴趣的数据,方便利用数据做决策。数据应用团队利用数据平台团队提供的数据开展推荐、个性化广告等工作。3. 数据分析团队的组织架构在整个大数据平台体系中的团队:基础平台、数据平台、数据应用和数据产品经理团队都可以保持独立的运作,只有数据分析团队的组织架构争议比较大。数据分析团队一方面要对业务比较敏感,另一方面又需要与数据平台技术团队有深度融合,以便能获得他们感兴趣的数据以及在数据平台上尝试实验复杂建模的可能。从他们的工作方式可以看出,数据分析团队是衔接技术和业务的中间团队,这样的团队组织架构比较灵活多变:1)外包公司自身不设立数据分析部门,将数据分析业务外包给第三方公司,当前电信行业,金融行业中很多数据分析类业务都是交给外包公司完成的。优势: 很多情况下,可以降低公司的资金成本和时间成本;许多公司内部缺乏相关的知识与管理经验,外包给专业的团队有助于公司数据价值的体现 。劣势:一方面外包人员的流动和合作变数,对数据的保密性没有保证;另外一方面,外包团队对需求的响应会比较慢,处理的问题相对通用传统,对公司业务认知不如内部员工深入,创新较低。2)分散式每个产品部门独立成立数据分析团队,负责响应自己产品的数据需求,为业务发展提供决策支持。优势:数据分析团队与开发团队、设计团队以及策划团队具有共同的目标,团队整体归属感强,绩效考核与产品发展直接挂钩,有利于业务的发展。劣势:在业务规模比较小的情况下,数据分析师比较少,交流的空间也比较小。因为身边的同事都不是该领域的人才,无法进行学习交流,所以成长空间会比较小,分析师的流失也会比较严重,最终陷入招募新人——成长受限——离职——招募新人的恶性循环。另一方面,每个产品团队都零星地招募几个分析师,整体来看给员工的感觉是公司并不是特别重视数据化运营的文化,对数据的认同感会被削弱,不利于公司建立数据分析平台体系。3)集中式数据分析团队与产品团队、运营团队各自独立,团队的负责人具有直接向分管数据的副总裁或CEO直接汇报的权限,团队负责响应各业务部门的数据需求。优势:分析团队具有充分的自主权,可以专心建设好公司级别的数据平台体系,研究数据最具有价值的那些问题,有权平衡业务短期需求和平台长期需求直接的关系。另一方面,这种自上而下建立起来组织架构,可以向全体员工传达数据在公司的重要位置,有利于建立数据化运营的文化。劣势:产品业务团队会觉得他们对数据的掌控权比较弱,一些业务数据需求得不到快速响应,认为分析团队的反应太慢无法满足业务发展的需要。随着业务发展越来越大,产品团队会自己招募分析师来响应数据需求,逐渐替代分析团队的工作,这样势必会导致分析团队的工作被边缘化。4)嵌入式数据分析团队同样独立于产品团队存在,但只保留部分资深数据专家,负责招聘、培训数据分析师,然后把这些人派遣到各产品团队内部,来响应各类业务数据需求。优势:团队的灵活性比较好,可以根据公司各业务线的发展情况合理调配人力资源,重点发展的项目投入优秀的人才,一些需要关闭的项目人才可以转移到其他项目中去。劣势:分析师被嵌入到产品团队内部,受产品团队主管的领导,从而失去了自主权,导致沦落为二等公民。人事关系在公司数据分析团队中,却要被业务团队主管考核,但业务团队主管并不关心他们的职业发展,导致分析师的职业发展受到限制。那么,到底采取哪一种组织架构比较合适呢?可以根据公司数据化运营进展的深度灵活采取一种或几种方式。除了外包模式,其他组织架构我都经历过,简单来说,早期采用分散式、中期采用集中式、后期采用分散式或嵌入式以及两则并存。早期:公司对数据体系的投入一般是比较谨慎的,因为要全面建设数据体系需要投入大量的人力和财力,公司不太可能还没有看清楚局势的情况下投入那么多资源。所以,往往都是让每个产品团队自己配置分析师,能解决日常的业务问题就行。杭研院早期的网易云阅读、印像派等项目中就是采用的这种分散的模式。中期:随着业务的发展、公司对数据的认识有所提高并且重视程度不断加大,就开始愿意投入资源来构建公司级别的数据体系。这个阶段采用集中式有利于快速构建数据分析平台,为公司各个产品团队提供最基础的数据分析体系,能在未来应对业务的快速发展。杭研院花了两年时间完成了这个阶段的主要工作,并在网易云音乐和易信产品发展阶段起到了至关重要的作用。后期:一旦公司级别的数据分析平台构建完成,消除了早期分散模式中分析师缺少底层平台支持的窘境,他们能够在分析平台上自助完成大量的数据分析工作。而且经历过集中式阶段的洗礼,公司上上下下对数据的认识都有了很大的提高。此时,在回到分散模式时,原先的很多弊端已基本消除,此外,采用嵌入模式也是可以的。目前杭研院在网易云音乐、网易云课堂、考拉海购等几个产品中就是分散式和嵌入式并存的架构。总之,没有最好的组织架构,只有适合自己的组织架构。
『叁』 2020年度大数据解决方案TOP50出炉!智领云榜上有名
近年来,我国大数据生态环境不断向好,产业发展维持高增长态势,大数据技术在与政府、企业核心业务的融合中,释放出了更多创新活力和应用潜能。
此次上榜企业,均属于大数据领域的驱动力量,也是其所在行业不可替代的创新主力。入选榜单进一步提升了智领云的品牌形象和影响力,更是对公司产品与技术实力的认可。
未来我们将不断挖掘大数据的巨大潜力,扩大自身专业性和影响力,更好地支撑企业数字化建设,落地更多的数字化创新应用,不断 探索 大数据产业链的融合应用,为各行各业数字化转型提供可实践的方法论与经验,并致力于为大数据与行业的融合创新不断贡献自己的力量。
关于智领云
武汉智领云 科技 有限公司成立于2016年8月,专注于云计算、大数据领域前沿技术的研发。公司创始团队成员来自于推特(Twitter)、苹果(Apple)和艺电(EA)等硅谷知名企业,是硅谷最早一批从事云计算和大数据研究与实践的技术专家,拥有十多年的云计算、大数据系统的系统架构和系统开发经验。公司作为拥有云计算、大数据领域核心技术的高 科技 企业获得了来自硅谷、国内知名投资人和投资机构的青睐。
公司为企业级客户提供云原生数据中台系统解决方案;帮助企业搭建数据和AI中台,轻松打造业务数据能力闭环,掌握全面、及时、更多维度的业务现状,提升数据驱动应用的迭代和发布速度;实现系统资产(人/资源/数据/应用) 在同一系统中的统一管理,建立数字化运营体系,并最终完成数据驱动的数字化转型。
公司在能源、教育、医疗 健康 、物联网、金融等行业同国内外很多知名企业和上市公司建立了合作关系,包括:D2IQ(Mesos平台的主要开发商),埃克森美孚(中国)、天源迪科、中电数据、天喻教育、深圳智宇、青岛赛维、广州畅驿、楚天云、华讯网络、南瑞集团等。公司与合作伙伴在多个领域中展开紧密的合作,充分利用各自的优势,共同为企业客户提供更有价值的云计算、大数据产品和技术服务。
『肆』 天云大数据的管理团队
田溯宁先生,1963年出生于北京。1985年毕业于辽宁大学生物系,随后进入中国科学院研究生院学习并获生态学硕士学位。1988年赴美国德州理工大学就读于资源管理专业,1993年获得博士学位。
1994年至1999年,田溯宁先生参与创建了亚信科技(中国)有限公司并担任首席执行官职务。2000年,亚信在美国纳斯达克成功上市,成为第一家在美国上市的中国高科技企业(NASDAQ:ASIA)。
1999年至2006年,田溯宁先生担任中国网通(HKSE:0906; NYSE:CN)副董事长兼CEO。中国网通是国内领先的固话电信运营商,也是亚太地区领先的国际数据通讯运营商。
2006年田溯宁先生创建宽带资本(ChinaBroadband Capital)并担任董事长。宽带资本是中国第一家专注于电信、互联网、媒体与科技产业的股权投资基金。
2010年8月在北京市政府、北京经信委、北京经济技术开发区的领导和大力支持下,田溯宁先生创建了北京云基地。位于北京亦庄经济技术开发区的北京云基地成为了北京第一个云计算示范基地。 雷涛先生现任天云融创数据科技(北京)有限公司(简称天云大数据)首席执行官,服务于宽带资本投资的云基地,支持创始人田溯宁建立和拓展大数据业务,主导大数据商业模式、产品策略、研发和市场策略。
拥有20年丰富的IT从业经验,10年以上全球先进跨国IT企业技术领导职务,领域涉及网络,系统,J2EE中间件,存储等;2002年在Sun Microsystem晋级亚太区唯一的ES Ambassador企业方案大使, 期间获得诸多专业领域认证,Solaris认证;J2EE Architect; Sun Cluster集群认证;Sun ONE Identity安全认证;存储架构师认证;光纤网络BCSD认证;2004年在McDATA通过了最高等级的存域网专家资质MCSD;任SNIA存储工业协会中国区技术委员会联合主席,推广云存储接口标准;任CCF中国计算机学会大数据专委会委员。
『伍』 如何建立以人工智能和大数据为支撑的技术运营团队
人工智能需要有大数据支撑
人工智能主要有三个分支:
1.基于规则的人工智能;
2.无规则,计算机读取大量数据,根据数据的统计、概率分析等方法,进行智能处理的人工智能;
3.基于神经元网络的一种深度学习。
基于规则的人工智能,在计算机内根据规定的语法结构录入规则,用这些规则进行智能处理,缺乏灵活性,不适合实用化。因此,人工智能实际上的主流分支是后两者。
而后两者都是通过“计算机读取大量数据,提升人工智能本身的能力/精准度”。如今,大量数据产生之后,有低成本的存储器将其存储,有高速的CPU对其进行处理,所以才有了人工智能后两个分支的理论得以实践。由此,人工智能就能做出接近人类的处理或者判断,提升精准度。同时,采用人工智能的服务作为高附加值服务,成为了获取更多用户的主要因素,而不断增加的用户,产生更多的数据,使得人工智能进一步优化。
大数据挖掘少不了人工智能技术
大数据分为“结构化数据”与“非结构化数据”。
“结构化数据”是指企业的客户信息、经营数据、销售数据、库存数据等,存储于普通的数据库之中,专指可作为数据库进行管理的数据。相反,“非结构化数据”是指不存储于数据库之中的,包括电子邮件、文本文件、图像、视频等数据。
目前,非结构化数据激增,企业数据的80%左右都是非结构化数据。随着社交媒体的兴起,非结构化数据更是迎来了爆发式增长。复杂、海量的数据通常被称为大数据。
但是,这些大数据的分析并不简单。文本挖掘需要“自然语言处理”技术,图像与视频解析需要“图像解析技术”。如今,“语音识别技术”也不可或缺。这些都是传统意义上人工智能领域所研究的技术。
『陆』 大数据分析团队口号
大数据是IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的'决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。下面由我精心整理的大数据分析团队口号,希望可以帮到你哦!
1、智能数据搜索,商机定位高效。
2、数接千载,据联万里。
3、数据分析在线,商机精准体验。
4、问道专业大数据,抢占市场新效益。
5、搜索轻松,快速高效。
6、知数据,抢先机。
7、先人一步,商机可循。
8、大数据,天下没有难赢的商机。
9、智汇商业大数据,市场决策无忧虑。
10、智能数据分析,先机转化效益。
11、数据不是黄金,数据指引黄金。
12、数据分析到家,商机一触即发。
13、数据平台经典,安全精准首选。
14、数据检索定位快,高效分析云平台。
15、专业数据聚一堂,商机定位赢辉煌。
16、数据分析,高效岀色。
17、质能方程,无所不能。
18、先人一步,数说未来。
19、计算一站式,服务零距离。
20、数据云平台,高效享未来。
21、搜索定位相助,数据让你出众。
22、数据分析平台,精准对接未来。
23、大数据大时代,云搜索云平台。
24、云平台,大数据,搜索不要太快噢。
25、数据一网打尽,搜索平步青云。
26、搜索未来商机,下载未来先机。
27、数据分析,抢占先机。
28、大数据高效分析,商机抢占先机。
29、洞察数据先机,智造商业传奇。
30、智慧数字生态,互动多屏时代。
31、定位商机正能量,数据专业新榜样。
32、定位新理念,高效心体验。
33、快速定位,高效分析,洞察先机。
34、快速分析,洞察先机。
35、商机魅力无限,数据精彩有约。
36、数据搜检精分析,商业智能赢先机。
37、数析先机,商联天下。
38、没数,做事没谱。
39、智能高效大数据,个性营销新神器。
40、安全携手效率,数据揭开规律。
41、数据分析,料敌先机。
42、云在指尖,触手可及。
43、搜一搜,全知道。
44、让数据更有价值。
45、分析数据,领先一步。
46、数据精彩非凡,商机一目了然。
47、市场充满挑战,数据做你伙伴。
48、数据搜索到家,商机一触即发。
49、数据纳百川,领先在云端。
50、数控未来,商机无限。