Ⅰ 统计学专业与大数据有哪些不同统计学就业前景怎么样
统计学专业与大数据专业会有一些不同,但总体上是有相同之处都跟网络有关系统计信息数据的。同济学就业前景比较广阔,从事的岗位也比较多,可以从事计算工作,也可以从事销售工作,也可以去银行工作,这些岗位都是能够提供的。
因为市场的发展在不断完善,而且中国传统贸易化的发展越来越快,统计学工作的相关人员需求量越来越多,需要提供准确的消息,现在是大数据时代,如果统计学学的非常扎实。可以从事的工作也有很多,可以当数据分析师也可以从事银行金融类证券公司的工作人员。所以这个专业的毕业生需要有很强的技术能力才能有更好的发展,在校学习的知识也会增多。
Ⅱ 大数据和传统统计学的区别
统计学是大数据的三大基础学科之一,所以统计学与大数据之间的关系专还是非常密切的。但属在以下方面还是存在一定的不同。
一、知识体系不同
1、统计学注重的是方式方法;
2、大数据则更关注于整个数据价值化的过程,大数据不仅需要统计学知识,还需要具备数学知识和计算机知识。
二、技术体系结构不同
1、统计学知识主要应用在大数据分析领域,统计学方式是大数据分析的两种主要方式之一,另一种数据分析方式是机器学习。
2、大数据技术,不只是涉及到统计学,还有数学、计算机及各行业的学科内容。是学科交叉融合的一门新兴专业。
三、数据集不同
1、传统统计学由于可行性的原因,常常得到的只是一个样本,但是需要描述样本取自的那个大数据集。
2、大数据则常常可以得到数据总体,例如关于一个公司的所有职工数据,数据库中的所有客户资料等。在这种情形下,统计学的推断就没有价值了。
参考资料
网络-大数据
网络-统计学
Ⅲ 应用统计学是大数据吗
是大数据包含这块!
大数据领域有一个岗位是数据分析师,而统计学是数据版分析的基础。当然数权据分析师现在也分为两类,一类是宏观上对行业的分析,一种是技术层面的分析,技术层面就要求掌握统计学。点我名字,扫我大头贴,了解更多的大数据知识。
Ⅳ 大数据与统计学有什么关系
实际上,虽然在大数据时代背景下,统计学的知识体系产生了一定程度的调整,但是统计学本身的理念与大数据还是具有一定区别的,统计学注重的是方式方法,而大数据则更关注于整个数据价值化的过程,大数据不仅需要统计学知识,还需要具备数学知识和计算机知识。从另一个角度来说,统计学为大数据进行数据价值化奠定了一定的基础。
从技术体系结构来看,统计学知识主要应用在大数据分析领域,统计学方式是大数据分析的两种主要方式之一,另一种数据分析方式是机器学习。所以,对于主攻大数据分析方向的研发人员来说,掌握统计学知识还是很有必要的,统计学在数据分析方面已经形成了一个较为系统的知识体系,而且很多技术已经经过了实践的检验。其实对于很多职场人来说,平时大部分的数据分析任务都是基于统计学理论进行的,包括采用的数据分析工具也都属于统计学领域的范畴。
从未来的发展趋势来看,一方面统计学会进一步向大数据倾斜,包括目前不少统计学专业的研究生课题,都逐渐开始向大数据方向拓展,另一方面大数据会在发展的初期大量采用统计学相关理论和技术,这也能够提升大数据相关技术的落地应用能力。
Ⅳ 什么是统计大数据
三大基础。统计大数据的三大基础学科之一,大数据(bigdata),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
Ⅵ 大数据分析应该掌握哪些基础知识呢
前言,学大数据要先换电脑:
保证电脑4核8G内存64位操作系统,尽量有ssd做系统盘,否则卡到你丧失信心。硬盘越大越好。
1,语言要求
java刚入门的时候要求javase。
scala是学习spark要用的基本使用即可。
后期深入要求:
java NIO,netty,多线程,ClassLoader,jvm底层及调优等,rpc。
2,操作系统要求
linux 基本的shell脚本的使用。
crontab的使用,最多。
cpu,内存,网络,磁盘等瓶颈分析及状态查看的工具。
scp,ssh,hosts的配置使用。
telnet,ping等网络排查命令的使用
3,sql基本使用
sql是基础,hive,sparksql等都需要用到,况且大部分企业也还是以数据仓库为中心,少不了sql。
sql统计,排序,join,group等,然后就是sql语句调优,表设计等。
4,大数据基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析。
5,maprece及相关框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件输入格式,map数目,rece数目,调优等。
6,hive和hbase等仓库
hive和hbase基本是大数据仓库的标配。要回用,懂调优,故障排查。
hbase看浪尖hbase系列文章。hive后期更新。
7,消息队列的使用
kafka基本概念,使用,瓶颈分析。看浪尖kafka系列文章。
8,实时处理系统
storm和spark Streaming
9,spark core和sparksql
spark用于离线分析的两个重要功能。
10,最终方向决策
a),运维。(精通整套系统及故障排查,会写运维脚本啥的。)
b),数据分析。(算法精通)
c),平台开发。(源码精通)
自学还是培训?
无基础的同学,培训之前先搞到视频通学一遍,防止盲目培训跟不上讲师节奏,浪费时间,精力,金钱。
有基础的尽量搞点视频学基础,然后跟群里大牛交流,前提是人家愿意,
想办法跟大牛做朋友才是王道。
Ⅶ 应用统计学是大数据吗
应用统计学不完全是大数据,大数据是应用统计学下的其中一个方向。
应用统计学专业主要包括一般统计和经济统计两类专业方向,培养具有良好的数学或数学与经济学素养,掌握统计学的基本理论和方法,能熟练地运用计算机分析数据,能在企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部门从事研究和教学工作的高级专门化应用型人才。
大数据采集与管理专业是从大数据应用的数据管理、系统开发、海量数据分析与挖掘等层面系统地帮助企业掌握大数据应用中的各种典型问题的解决办法的专业。
Ⅷ 大数据是统计数吗
理论是认知的必经途径,也是被广泛认同和传播的基线。我会从大数据的特征回定义理解行业对大数据的答整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;从对大数据的现在和未来去洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
技术,技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
实践,实践是大数据的最终价值体现。我将分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的
上面是介绍的大数据,云计算是通过云服务器进行统计运算,和其他各种运算,需要的是服务器打造,和使用与什么计算
Ⅸ 统计与大数据的关系
“社会统计学与数理统计学的统一"理论与大数据
统计学与大数据的关系
已上提问是统计学基本概念不清楚:有的学者认为大数据时代统计学过时了;实际上:这是一种错误学说,就是一个大呼悠。所为的大数据就是数据流大一点而已,从数据扩展到信息,并没有超出统计学描述的范围;
也就是互联网、计算机、苹果手机,小朋友手机摇啊摇,小姑娘们聊啊聊,帅哥键盘敲啊敲,这些数据、信息、资料、图片向白云一样飘啊飘,飘到空间瞬间形成庞大的几十万亿的数据云。最后这些数据流我们用计算机通过统计学专家学者加已整理、分析;
这就对统计学家提出了新的挑战。大数据和信息是通过互联网传播的,社会统计学与数理统计学的统一理论是、互联网的理论基础。
统计学是通过搜索、整理、分析、描述数据、信息等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。