① 大数据时代创新创业的三个方向和四大挑战
大数据时代创新创业的三个方向和四大挑战
大数据时代创新创业的三个方向和四大挑战【导语】从传统互联网的人机互联,人人互联,到工业互联网的物物互联,人机物三种端各自互联,才带来大数据的产生,利用云进行大数据的存储和计算,实现数据的融合和服务,数据从哪里来,到哪里去,数据如何关联,如何找到市场需求实现价值是关键。数据采集加工的跑马圈地已入中盘,数据分析与应用的商业模式才刚刚开盘,而这需要模式具备可持续性和可扩展性。如今时代变了,以前以企业为核心的理念转向以消费者、以用户为核心的理念,以前的设计在进行创意时以往主要靠拍脑袋决策,如今需要数据的支持和支撑来指导创意。基于大数据的创新创业面临的挑战,主要有四个方面:一是拿到可以利用的数据比较难,目前不少创业公司都是基于互联网上公开的数据在进行应用开发。二是大数据应用可能威胁到企业中传统的角色地位甚至生存,这就涉及到与传统利益的冲突,因此大数据应用推广需要一把手牵头推动。第三个瓶颈是人力资源,不管美国还是中国大数据人才非常紧缺,包括数据科学家和数据分析师,这些人才需要高校和企业一起合作来进行培养。
第四关于投资的难度加大,需要有更多大数据商业应用成功的项目和例子来引领投资的方向。
大数据时代创新创业的三个方向和四大挑战
——ADEC联手浙大、五叶草大数空间举办“大数据时代的创新创业实践与思考”研讨会
在大众创新、万众创业的热潮中,基于大数据的创业创新备受关注。12月17日,阿里数据经济研究中心(ADEC)、浙江大学管理学院、五叶草大数空间三者携手合作,邀请20余位浙大学者走入云栖小镇,在杭州这个创新创业的基地,聆听大数据创业创新实践者的感受,共同开展“大数据时代创业创新的实践和思考”的相关话题研讨。
三家大数据创新创业领域的企业数能科技、华院数据和洛可可公司的负责人给大家分享了他们的实践方向、面临挑战以及心得体会。在分享结束后,就大家关注的话题分组讨论的环节受到参会企业以及研究者们的欢迎。
三个方向和四大挑战
浙江大学管理学院教授刘渊老师在分享中提到,从传统互联网的人机互联,人人互联,到工业互联网的物物互联,人机物三种端各自互联,才带来大数据的产生,利用云进行大数据的存储和计算,实现数据的融合和服务,数据从哪里来,到哪里去,数据如何关联,如何找到市场需求实现价值是关键。
图为浙江大学管理学院教授刘渊
以浙江大学郭斌老师为组长的小组认为大数据创新创业的商业模式有三个方向(Analytics , Data, Services ,ADS)值得关注,其中A相当于为企业提供数据的计算分析能力;第二类D是提供数据为主,要做有效的决策背后所使用的数据可能来源于多个数据源,可以集聚数据成为运营的资源;第三类S相当于提供基于数据的服务,这种服务要嵌入到企业运营的业务流程。
以郑刚老师为代表的小组总结了基于大数据的创新创业面临的挑战,主要有以下四个方面:一是拿到可以利用的数据比较难,目前不少创业公司都是基于互联网上公开的数据在进行应用开发,二是大数据应用可能威胁到企业中传统的角色地位甚至生存,这就涉及到与传统利益的冲突,因此大数据应用推广需要一把手牵头推动;第三个瓶颈是人力资源,不管美国还是中国大数据人才非常紧缺,包括数据科学家和数据分析师,这些人才需要高校和企业一起合作来进行培养;第四关于投资的难度加大,需要有更多大数据商业应用成功的项目和例子来引领投资的方向。
大数据创新创业的三个实践
数能科技:数据分析老兵的创业之路
数能科技的总经理张晓明先生在国外有20多年的数据分析的经验,他在分享中谈到,美国的大数据指的是用常规方法无法处理的数据,比如音频、视频等数据,而中国的大数据实际上是大数据+小数据,以电影行业为例,通常都是数据采集后转化为小数据来进行统计分析和数据挖掘。
图为数能科技的总经理张晓明
张总认为,中国发展大数据面临三大挑战:一是数据孤岛现象严重,二是行业知识缺乏,在业务、技术和行政人员三方面沟通比较困难,跨学科的沟通以前比较缺乏,使得整个行业发展在应用层面的发展不快,三是过去中国的发展是粗旷式的,哪有机会往哪跑,现在是精细化管理,进行资源的优化配置,而政府官员对这种需求的优先级不高。
在大数据的商业模式方面,张总认为,数据采集加工的跑马圈地已入中盘,数据分析与应用的商业模式才刚刚开盘,而这需要模式具备可持续性和可扩展性,其中人才也是发展的一个瓶颈,尤其欠缺具备硬实力和软实力的数据分析师,尤其是软实力方面对于理工科学生来说更难,软实力主要指的是沟通、好奇心和业务理解力。
数能科技开发的“电影票房预测”应用和“电影排片宝”应用都是典型的基于数据的新应用,电影票房预测每天早晨9点半会发布当天的票房预测结果,希望成为全国以及各个城市电影票房的预测风向标,为发行人进行精准营销提供依据,“电影排片宝”应用通过收集来自媒体、影院的历史数据、网上售票的预售数据等信息为各大影院排片提供建议。这种应用场景还可以衍生到客流预测与资源优化管理,比如在旅游景点、大型超市等。
华院数据:数据分析人才基地的孵化新模式
国内专业的数据分析挖掘人才有很多都来自于华院数据,来自华院数据的执行总裁麦星在分享“华院数据——产业大数据生态的深度孵化器”的主题时谈到,华院数据目前聚焦是以大数据行业解决方案为核心,基于自己多年的技术积累,提供数据互联、人工智能引擎等核心能力和产品,融入于垂直行业,在各行业孵化出独立、专注、聚焦的大数据子公司。
图为华院数据的执行总裁麦星
目前已经孵化了数云、数创、数尊、华院分析等多家大数据+电商、零售、O2O、运营商的创业公司,这些创业公司形成产业大数据的生态,比如数云科技是电商数据应用的创业公司,为阿里巴巴平台上的商家提供CRM解决方案,连续三年都是金牌淘拍档。
洛可可:传统工业设计公司的大数据创新转向消费者为中心
洛可可作为一家工业设计公司,它所推出的一款55度杯子一上市就备受欢迎,杭州分公司负责人夏治朋在分享时提到,如今时代变了,以前以企业为核心的理念转向以消费者、以用户为核心的理念,以前的设计在进行创意时以往主要靠拍脑袋决策,如今需要数据的支持和支撑来指导创意,而且数据不仅是B端的需求,更重要的需要最终消费者的需求,让创意和设计更加精准。
图为洛可可杭州分公司总经理夏治朋
以前的产品只有功能,现在的产品还要有服务、有情感,产品具备智能的基础需要有大数据,现在的产品大都是软硬件结合的,同时还有app,从而了解用户的行为和习惯,通过App端数据的抓取来获知用户的行为和习惯,从而改变创意和设计,使得用户感知到产品是为之定制的。
大数据的创新创业刚刚开始
在信息经济发展迅猛的今天,随着数据扮演生产要素的角色,云计算发挥公共计算基础设施的作用,数据的开放、共享与流动成为可能,数据的融合激发新的生产力。与以往任何一个时代相比,大数据时代的创业创新将拥有更多的机会、更大的空间。虽然现阶段我国数据相关的法规政策尚不完善,基于数据的创业创新实践尚在探索阶段,业务和服务模式还不成熟,不确定性正意味着更多机会,因此我国不断涌现出企业进行基于大数据的新模式的尝试和探索。阿里数据经济研究中心(ADEC)期待与更多学界研究者进行深入合作,共同推动中国数据经济的良性快速发展。
② 什么是大数据时代的思维
什么是大数据时代的思维
一百多年前,汽车行业是第一个真正引入大规模生产概念的行业。那些以前买不起车的美国工薪阶层,突然承担得起汽车这个富人的专属玩具了。福特T型车让成千上万美国家庭拥有汽车。但大规模制造也有其局限性,福特先生说过,你可以买到各种色彩的车,但红色、绿色都不可能,只能是黑色。大规模生产让数以百计的人买得起商品,但商品本身却是一模一样的。
我们面临这样一个矛盾:手工制作的产品漂亮无比却非常昂贵;与此同时,量产化的商品价格低廉,但无法完全满足消费者的需求。
我认为下一波的改革是大规模定制,为大量客户定制产品和服务,成本低、又兼具个性化。比如消费者希望他买的车有红色、绿色,厂商有能力满足要求,但价格又不至于像手工制作那般让人无法承担。
因此,在厂家可以负担得起大规模定制带去的高成本的前提下,要真正做到个性化产品和服务,就必须对客户需求有很好的了解,这背后就需要依靠大数据技术。
数据能告诉我们,每一个客户的消费倾向,他们想要什么,喜欢什么,每个人的需求有哪些区别,哪些又可以被集合到一起来进行分类。大数据是数据数量上的增加,以至于我们能够实现从量变到质变的过程。举例来说,这里有一张照片,照片里的人在骑马。这张照片每一分钟,每一秒都要拍一张,但随着处理速度越来越快,从1分钟一张到1秒钟1张,突然到1秒钟10张后,就产生了电影。当数量的增长实现质变时,就一张照片变成了一部电影。
让我来告诉大家,美国有一家创新企业Decide.com。它可以帮助人们做购买决策,告诉消费者什么时候买什么产品,什么时候买最便宜。预测产品的价格趋势。这家公司背后的驱动力就是大数据。他们在全球各大网站上搜集数以十亿计的数据,然后帮助数以十万计的用户省钱,为他们的采购找到最好的时间,提高生产率,降低交易成本,为终端的消费者带去更多价值。
在这类模式下,尽管一些零售商的利润会进一步受挤压,但从商业本质上来讲,可以把钱更多地放回到消费者的口袋里,让购物变得更理性。这是依靠大数据催生出的一项全新产业。这家为数以十万计的客户省钱的公司,在几个星期前,被ebay以高价收购。
再举一个例子,SWIFT是全球最大的支付平台,在该平台上的每一笔交易都可以进行大数据的分析。他们可以预测一个经济体的健康性和增长性。比如,该公司现在为全球性客户提供经济指数,这又是一个大数据服务。
大数据有三大特点: 更多,更乱,但内部有关系可循。
如果拍一张照片,我需要对着某一个人,好比说拍陈部长的照片,如果焦点只对准他,那其他的人物在照片里就会模糊掉。我会得到陈部长的所有信息,但是其他观众的信息就过滤掉了。我们采集信息的时候也要做决策,到底要回答什么问题,采集什么数据,因为一旦数据采集完毕,就无法重新问另外的问题。
但今天我们已经拥有全新的照相技术了,一张照片里可以把对角所有事物,包括所有的数据、光线都会被拍摄进去。这样,我任意点一个地方,它都能变得清晰。
为什么要这么做呢?方便决策。
我可以在照片生成之后再决定我究竟要什么,因为这些数据包含所有的答案。不要把自己限制于眼前的问题,要为有前瞻性,把其他有可能出现的问题也给囊括进去。这是一个非常创新的办法,同时很清晰地告诉我们大数据能够做什么。我可以跟大家分享一个秘密,如果你把照相机拿出来仔细看,可以看到这是中国制造。
在拥有如此多的数据以后,接下来我们面对的数据质量问题。
为了避免混乱,我们需要找到数据之间的关联性。
举个实际生活中的例子,大约20年前,亚马逊刚成立时,杰夫·贝索斯让50个书评员来为他卖书,他意识到不仅仅可以请人来写书评,还可以用数据技术来提供图书推荐。起初他使用的是小数据,不是大数据,把客户进行分类,比如说有人对中国旅游或者是对园艺感兴趣,系统会自动提供推荐。他的同事告诉他,刚刚开始使用这个数据推荐时,使用体验并不好;在进一步分析后,亚马逊决定不对人进行分类,而是对用户的需求分类。这个做法做法非常成功,以至于到今天,推荐系统为亚马逊带去30%的销售收入。
这就是数据收集和再处理。亚马逊有交易数据,每买一本书就是一个交易,然后对这个数据进行分析。但今天我们已不再满足于交易数据了,转而收集起沟通数据。你看了某一个书评、某一个交流会给商家更多的信息和细节。
同时,大数据也重构了传统零售业,是未来零售业变革的催化剂。比如使用谷歌眼镜,消费者不需要屏幕了,因为下一代的眼镜会更好地理解消费者看到什么,知道如何更好地抓住人们的视线。对于零售商而言,消费者眼中看到的信息是极具价值的资产。卖家就可以了解大家在看什么样的广告,什么样的产品,在路过橱窗时究竟看了一些什么。
数据的产生和收集本身并没有直接产生服务,最具价值的部分在于:当这些数据在收集以后,会被用于不同的目的,数据被重新再次使用。
大数据的一大优点就是数据可以被重复使用。比方说这家公司实时车辆交通数据采集商Inrix,该公司目前有1亿个手机端用户。Inrix可以帮助你开车,避开堵车,为司机呈现路的热量图,红的就表面堵车。如果只提供数据,这个产品没什么特色,
但值得一提的是,Inrix并没有用交警的数据,这个软件的每位用户在使用过程中会给服务器发送实时数据,比如走的多快,走到哪里,这样每个客户都是探测器。
这里还有更大的秘密,Inrix可以重复使用数据。比如它了解到周末堵车时,哪里有堵车哪里有更好的销售,他们就可以把这样的数据提供给投资公司,投资公司根据这些数据对零售业再投资,这样的服务以前是从来不存在的。
那么,大数据可以如何为创新企业所用?
你觉得之前成立新公司需要大笔资金,但事实并非如此。Inrix一开始并没有钱,如果你想在大数据时代获得成功,你已经不需要大的生产基地,大的仓库了。你只需数据,只要拥有数据,对其进行分析就可以了。有云存储的话,这个成本就更低。Inrix在成立之初根本没有服务器和电脑,他们只是租用了云服务,也不需要很多的启动资金,他们只是有这样一个产品想法。
大数据时代的思维方式是:每天早上起来想一下,这么多数据我能用来干什么,这些价值在哪里可以找到,能不能找到一个别人以前都没有做过的事情。你的想法和思路,是最重要的资产。
大数据的思维方式也可以帮助政府为大家提供更好更有效的服务,好比说我们可以通过大数据来确定哪些地方会有火灾。以前防火检查员只有13%的时间可以准备预测,现在他们找到火灾隐患的概率达到了70%,比以前提高了6倍。将效率提高6倍是一个巨大无比的进步,未来的公共服务业可以由此获得更多便利。
Target是一家非常大的美国零售公司,他们已有大数据的分析。
有一天,一个电话打进来,是一位非常生气的客户,这个客户说公司送给他17岁的女儿一个折扣券,这个产品是尿布或者是避孕药,这位客户说:“我17岁的女孩子根本不需要,我需要你来道歉。”几天以后,客户自己跑来道歉,他说你说的很准,我的女儿真的怀孕了。因为怀孕的女性会有不同的生活习惯,会买不同的东西,我们自己有时候都不知道他们已经怀孕了,而Target反而知道了。
这家公司就用这些信息为客户推荐产品,然后给折扣券。为什么要讲这个例子呢?因为美国很多客户感到紧张,Target有这样的能力来了解他们的生活中究竟发生了一些什么。
这意味着大数据的另一个关键点,要提高客户对你的信任。
举个例子,大数据时代美国运通有这样一个功能,你给他们打电话的话,他们会知道你是谁,好比说你的电话号码跟你的姓名相关。如果在电话里说:你好吗?维克托先生,我能为你做什么,这会吓着客户,因为他不知道为什么你知道他的名字。营造信任很重要。我相信你的过程中,也希望你们相信我,所以我们做大数据分析的时候,客户需要能够信任服务供应商,而服务供应商也需要表现出来为什么他是值得信任的。
这样一个信任也不应该被打碎,企业应该要知道哪些事情可以做,哪些事情不能做,客户的信任将是最珍贵的资产。
什么样的服务行业会从大数据中获益?
其实所有的服务行业都可能从中获益,即便是你觉得和大数据没有关系的也可以从中获益,好比说医疗服务、教育、学习。
我正在写一本新的书,明年的上半年会出版,还是大数据以及相关的服务业。明年你就知道了,这本书里面会提到大数据对服务业很重要,因为服务业将会面对巨大的改变,这不仅仅是效率,大数据会为各行各业带来效率,而大数据对于服务业来说不仅仅是效率,我们更多看到将是创新。我们会有越来越多的创新想法,来提供新的产品和服务,这样的话可以让经济更好地发展,我们以前是从来没有看到过的。
以上是小编为大家分享的关于什么是大数据时代的思维的相关内容,更多信息可以关注环球青藤分享更多干货
③ 大数据所带来的四种思维方式的转变
随着近年来大数据技术的快速发展,大数据所创造的价值深刻改变了我们的生活、工作和思维方式。大数据研究专家舍恩伯格指出,大数据时代,人们对待数据的思维方式会发生如下三个变化:
事实上,大数据时代带给人们的思维方式的深刻转变远不止上述三个方面。大数据思维最关键的转变在于从自然思维转向智能思维,使得大数据像具有生命力一样,获得类似于“人脑”的智能,甚至智慧。
以下将介绍大数据技术所带来的四种思维方式的转变。
社会科学研究社会现象的总体特征,以往的采样方法一直是主要数据获取手段,这是人类在无法获得总体数据信息条件下的无奈选择。在大数据时代,人们可以获得与分析更多的数据,甚至是与之相关的所有数据,而不再依赖于采样,从而可以带来更全面的认识,可以更清楚地发现样本无法揭示的细节信息。
在大数据时代,随着数据收集、处理、存储、分析技术的突破性发展,我们可以更加方便、快捷、动态地获得研究对象有关的所有数据,而不再因诸多限制不得不采用样本研究方法,相应地,思维方式也应该从之前的样本思维转向总体性思维,从而能够更加直观、全面、立体、系统地认识总体状况。
在大数据时代之前,由于收集的样本信息量比较少,所以必须确保记录下来的数据尽量结构化、精确化,否则,分析得出的结论在推及总体上就会“南辕北辙”的现象,导致数据的准确性大大降低,从而造成分析的结论与实际情况背道而驰,因此,就必须十分注重数据样本的精确思维。
然而,在大数据时代,得益于大数据技术的突破,大量的结构化、非结构化、异构化的数据能够得到储存、处理、计算和分析,这一方面提升了我们从海量数据中获取知识和洞见的能力,另一方面也对传统的精确思维造成了挑战。
在大数据时代,思维方式要从精确思维转向容错性思维,当拥有海量即时数据时,绝对的精准不再是追求的主要目标,适当忽略微观层面上的精确度,容许一定程度的错误与混杂,反而可以在宏观层面拥有更好的知识和洞察力。
在大数据世界未出现时,人们往往执着于现象背后的因果关系,试图通过有限样本数据来剖析其中的内在关联关系。数据量小的另一个缺陷就是有限的样本数据无法反映出事物之间的普遍性的关联关系。而在大数据时代,人们可以通过大数据挖掘技术挖掘与分析出事物之间隐蔽的关联关系,获得更多的认知与洞见,运用这些认知与洞见就可以帮助我们捕捉现在和预测未来,而建立在关联关系分析基础上的预测分析正是大数据的核心议题之一。通过关注线性的关联关系及复杂的非线性关联关系,可以帮助人们看到很多以前不曾注意的数据之间存在的某些联系,还可以掌握以前无法理解的复杂技术和社会动态,关联性关系甚至可以超越因果关系,成为我们了解这个世界的更好视角。
在大数据时代,思维方式要从因果思维转向相关思维,努力颠覆千百年来人类形成的传统思维模式和固有偏见,才能更好地分享大数据带来的深刻洞见。
不断提高机器的自动化、智能化水平始终是人类社会长期不懈努力的方向。计算机的出现极大地推动了自动控制、人工智能和机器学习等新技术的发展,“智能机器人”技术研发也取得了突飞猛进的成果并开始一定应用。应该说,自进入到信息社会以来,人类社会的自动化、智能化水平已得到明显提升,但始终面临瓶颈而无法取得突破性进展,机器的思维方式仍属于线性、简单、物理的自然思维,智能化水平仍不尽如人意。但是,大数据时代的到来,可以为提升机器智能带来契机,通过机器学习可以从数据中获取有价值的学习数据,大数据将有效的推进机器思维方式由自然思维转向智能化思维,这才是大数据思维转变的关键所在、核心内容。
众所周知,人脑之所以具有智能、智慧,就在于它能够对周遭的数据信息进行全面收集、逻辑判断和归纳总结,获得有关事物或现象的认识与见解。同样,在大数据时代,随着物联网、云计算、社会计算、可视技术等的突破发展,大数据系统也能够自动地搜索所有相关的数据信息,并进而类似“人脑”一样主动、立体、逻辑地分析数据、做出判断、提供洞见,那么,无疑也就具有了类似人类的智能思维能力和预测未来的能力。“智能、智慧”是大数据时代的显著特征,大数据时代的思维方式也要求从自然思维转向智能思维,不断提升机器或系统的社会计算能力和智能化水平,从而获得具有洞察力和新价值的东西,甚至类似于人类的“智慧”。
大数据开启了一个重大的时代转型。大数据技术正在改变我们传统的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发。大数据时代将带来深刻的思维转变,大数据不仅将改变每个人的日常生活和工作方式,改变商业组织和社会组织的运行方式,而且将从根本上奠定国家和社会治理的基础数据,彻底改变长期以来国家与社会诸多领域存在的“不可治理”状况,使得国家和社会治理更加透明、有效和智慧。
④ 大数据时代,对我们的生活和思维发生了哪些改变
一场生活、工作与思维的大变革。大数据开启了一次重大的时代转型。大数据时代的思维变革:1、更多。2、更杂。3、更好。大数据时代下的变革三部曲:商业变革(二)大数据时代下的变革三部曲:管理变革(三)
⑤ 数据时代的大数据思维特征,主要有哪些
1、大数据思维的整体性
近年来,我们进入大数据时代的同时,一定程度上带动着大数据思维由一元思维升级至二元思维,现在根据人类思维的转变模式进行分析,其依然进行至多元思维状态,即追求和谐稳定社会的模式。但是研究大数据思维的发展进程发现,大数据的二元思维模式是一种高效率并适合现今社会发展的思维模式,其追求效率性、相关性、概率性,为创新发展提高了效率。
根据当下社会的需求及其社会的快节奏发展,大数据思维已然在各领域发展处于主导地位,由其基本特征层面分析,大数据思维主要特征为整体性。整体性的理论基础在于人类认识世界的能力在自然观中的不断变革而体现,现今社会通过人类对于整体数据的整合及分析能力进行体现。
2、大数据思维的互联性
相对微观层面分析大数据思维特征,较为典型的为切合现今社会及科技发展的量化互联思维,量化为具体或明确目标的一种表述。而互联代表着两种事物间的连接,其作为大数据思维微观层面的一种表达方式,更加说明大数据思维的重要性。知名投资人孙正义对于大数据时代的发展提出:“要么数字化,要么死亡。”直接地表达出大数据思维目前所处的地位。
研究发现,数字信息成为时代发展的代表已成为必然趋势,而量化思维为数字化特征带来的必然思维结果。换言之,量化可以解释为共性语言描述和解释世界的一种方式。
3、大数据思维的价值性
由大数据思维的本质进行分析,大数据思维具有价值化特征。大数据时代信息的不断整合及分析已然使得信息及数据量化及互联转变为多维度的发展状态。
换句话说,大数据思维渗透至各个领域及行业的不同维度是大数据发展的初始动机和直接目的,现今社会看待其价值化特征将其价值性总结为大数据思维的本质,同时,万物的量化互联性及其整体性使得其价值性影响了多维度的发展,由此凸显了数据及大数据思维的创造性及重要性。
关于数据时代的大数据思维特征,主要有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于数据时代的大数据思维特征,主要有哪些?的相关内容,更多信息可以关注环球青藤分享更多干货
⑥ 大数据时代,大学生应该具备什么样的大数据思维
在大数据时代,身为一个大学生应该具有的大数据思想如下:
1.要学会利用所有的数据,而不是部分数据,要知道这是全体数据,而不是随机抽样
2.接受不准确性,唯有接受不准确性,才能打开另一扇门,就是不是准确性,而是混合的,混杂的
3.不是所有的都要知道现象背后的原因,而是要让数据它自己“发言”,这种关系既不是因果关系,也不是必然关系
大数据是当下比较高级的一种技术,而且发展越来越全面,涉及了很多的领域。它的实质是收集,整理海量数据,当代大学生身处大数据时代,应该具有收集整理数据的思维,通过对于收集、运算,推动新兴技术的产生与发展,为造福人类而不断努力奋斗。
⑦ 透过应用看行业 大数据如何带来思维创新
透过应用看行业 大数据如何带来思维创新
大数据正在逐渐成为我们茶余饭后谈论的热点问题,不单是在工作当中,在生活上的很多大数据应用也带给我们很大的启发和改变,我们可以举一些很简单的例子,在以前我们到医院就医的时候护士一天会跑好几趟来收集患者的各项身体数据,比如体温、血压、血糖等等,但是在当今的大数据时代下,大数据在医疗行业的广泛应用使得医疗机构每天所能收集到的用户数据点能够高达1200个左右,这样一来就非常有助于医生对于治疗方案的及时修改和制定。
在大数据时代,一定程度的不精确性是可以被接受的,这跟以往的小数据时代是非常不同的。在小数据时代,我们拥有的数据量非常少,很少的数据点让我们陷于数据饥荒中,我们生活在信息匮乏中,因此我们要求每个数据点都是精确的,也必须极精确地、高质量地来处理以及呈现它们。而如果我们拥有足够的数据,我们就不需要那么做了,我们可以更宽容地对待它们,用不那么精确的态度来对待它们。
数据提供给我们分析能力
数据量在一天天的增长,用户对于数据的分析能力也在不断的提升,据了解,对于数据分析的历史已经有几个世纪那么久远,人们通过对数据的探索来改变自身的行为模式在现在看来已经不再是什么新鲜事,亚马逊利用用户过去的点击记录和购物信息来预测顾客未来可能会想买什么。这样一来,亚马逊就能向我们推荐我们可能会买的书籍、光碟及其他东西。亚马逊在这项服务上做得非常出色,以至于其收入的三分之一都来自于这个推荐服务。这是一个极其简单而又极其有效的技术。
大数据的未来,通过相关关系收集更多数据点,接受不精确性,我们可以更好地预测未来,更好地理解和洞察社会、世界和生活。这使我们不仅比现在做得更好,还让我们可以去做那些我们认为永远不可能做到的事,这就是大数据的发展前景。
数据已经变成商品
对于现在的企业用户而言,除了原有的一些物理资源之外,对于数据资源的重视程度和把控程度也在逐渐提升,大数据赋予了企业全新的洞察力和发展效率,数据本身也变成了可以被贩卖的商品,放眼未来来看,数据将会成为非常重要的资源,就像金钱和劳动力一样宝贵的资源。
在小数据时代,也就是在过去,我们只为了单一、直接的目的来使用数据,比如账单数据是为了付款,市场数据是为了推销新产品,生产数据是为了提高生产力。一旦这些直接目的达成了,这些数据就会被弃掉。但在大数据时代,这将会非常非常的不同,因为在大数据时代,数据的价值并不体现在达成直接目的,而是体现在间接目的上,体现在那些我们甚至在收集数据时都没想到、而在后来才想出的无与伦比的用途上。
行业概览
我们前文说了,对于现在的医疗卫生行业来说,在大数据的应用当中能够使得医生对每一位患者的实时数据进行收集和分析,从而帮助医生制定和随时调整医疗方案,从而保证了治疗的效果,这样的定制化方案在没有应用大数据技术之前是不敢想象的。
在教育行业当中,我们此前也进行过报道,像国外很多学校那样,学生上学已经都背上了“云书包”,也就是说,教育的电子化和信息化已经被广泛应用在了实际当中,学校利用大数据收集学生们读书、理解程度的信息,将结果反馈给老师,而教学效果也将因此而得到提升,学习效果会得到提升,知识将得到更好的传播。
对于传统的商业领域以及电子商务行业来说,大数据更是提供给商家更加全面的用户信息,这使得商家能够准确地把握住用户需求,从而对商品种类以及营销模式等等方面进行及时的调整,同时对于购买者而言,在选择商家进行购物的时候也变得更加方便和高效
以上是小编为大家分享的关于透过应用看行业 大数据如何带来思维创新的相关内容,更多信息可以关注环球青藤分享更多干货
⑧ 大数据驱动创新思维
大数据驱动创新思维
大数据时代的变革重要的并不是升级现有逻辑,而是需要创造一种新的逻辑。正如外军研究所强调,大数据时代所需要创造的逻辑,关键是需要人们在通常状态下开动左脑的同时,来充分唤醒沉睡的右脑,激发创新思维。
作为继云计算、物联网之后IT产业又一次颠覆性新技术革命,大数据不但越来越多地被人们提及和广泛运用,而且成为影响当今世界科技创新、国家安全战略以及新军事变革极为重要的知识增长点。据外媒披露,截至2012年底,全球互联网总数据存储量已达160亿TB以上,并且正以59%以上年增长率在高速增长。外电有评论指出,现在每日遍布世界各个角落的传感器、移动设备、在线交易等生成的海量数据昭示世人:人类已加速步入“大数据时代”。
在军事领域,大数据更是独具“翻江倒海”之能。因为无处不在的海量数据是一座宝库,打开这座宝库从中可以找到许多有价值的数据,通过分析发现规律,就能够获取高价值的信息,从而作出重要决策,把握变幻风云,这也正是大数据的军事价值。击毙本?拉登让美国的“海豹”突击队着实吸引了世人目光,然而外军深入研究后才知道,发现本?拉登靠得则是数千名数据分析员长达10年对海量信息的分析,所以国际上也有“数据抓住了本?拉登”之说。
无独有偶。前不久,在美俄达成有关叙利亚化武换和平协议之时,美情报机构详细列出了叙数十项化武生产、储藏地点清单,而能够发现和锁定这些目标,大都是基于美卫星数据情报和分析员的解析。专家告诫,驾驭未来战争,决不可忽视没有硝烟的大数据战场。
现代科学研究表明,人脑构造主要由左右两个半脑组成,它们各有明确的分工,左脑主要完成语言、逻辑等认知与行为,而右脑则具有艺术创作、发明创造以及整体性思维的能力,蕴藏着发散思维、逆向思维、关联思维等非常规的思维潜质,正是这里迸发着无穷的创造活力。
历史上,善于激发右脑潜能的成功典范俯拾即是。着名科学家爱因斯坦曾经说:“我思考问题时,不是用语言进行思考,而是用活动的跳跃的形象进行思考。当这种思考完成以后,我要花很大力气把它们转换成语言。”另一位科学家笛卡尔更是强调:“没有图形就没有思考。”1940年,善用右脑功能的丘吉尔下令撤出在法英军,成就了二战经典——代号“发电机计划”的敦刻尔克大撤退。福特善于发挥右脑深度潜能,在重大经营项目上时常作出创造性决策,终成享誉世界的“汽车大王”;乔布斯从不追捧市场,强调产品内外极致追求的他,成就了“苹果”的辉煌。所以,在当今的信息网络时代、在智慧地球的创新时代,我们切莫丧失了右脑思维的跳跃性、形象性和创造性。
外军研究表明,开发右脑功能,可以在设计感、故事感、娱乐感以及交响能力、舆情能力、探寻能力等6种能力方面作出新探索。最新研究昭示我们,面对大数据时代的挑战,必须善于全面把握信息化战场联合作战多源目标感知的特殊性,不断增强实时动态的数据处理能力,充分发掘右脑蕴藏的创造性能量,把大数据转化为可供决策的创造力,让能打仗、打胜仗的设计图景与打赢信息化战争的实战图景实现完美的结合。
⑨ 《大数据时代》:别把参考答案当做最终答案
因为周边总是充斥着“大数据”、“云计算”的字眼,望着说着术语的人们眼里野心勃勃的光芒,我不禁有些急躁的想弄明白什么是大数据,到底我们可以从大数据里挖掘到什么样的财富。不得不说,我选了一本好书,全篇脉络分明,逻辑缜密,穿插着数量繁复的案例,让人在兴致盎然之际就能通俗理解。
第一部分 大数据时代的思维变革
大数据时代的来临,最先要颠覆的是我们的思维模式:1、不是随机样本,而是全体数据;2、不是精确性,而是混杂性;3、不是因果关系,而是相关关系。
坦率的说,这个部分给我的感悟很深,相信很多工作涉及到做数据报告的人,都会从中获益不少。浅显的说,大数据时代是让我们把思维聚焦引向发散的变革。传统意义上,甚至人们日常生活的惯性里,都本能的需求一种因果关系。例如发生了一件事情,人们会立刻寻找一个简单的原因去说服自己。也就是“因为……所以……”这种逻辑思维是根深蒂固的。
在大数据时代,在拥有几乎完整的数据时,我们不再刻意追求数据中彼此之间的目的性,从相关性出发,我们无法说清楚为什么,但我们总知道就是这样。相关性的概念将会引申更多的创意思维,相信未来的工种也会因此更加细分,甚至会出现更多的新兴行业。
第二部分 大数据时代的商业变革
这是每个人都深有体会的:1、一切皆可量化;2、取之不尽,用之不竭的数据创新;3、数据、技术与思维的三足鼎立。
全书最核心或者说我本人最想了解的答案就在这里了。搜索引擎,导航工具,微博,微信记录着我们一切的行为记录,我们的情绪起伏都能被量化。这对商界是笔巨大的财富,他们可以根据这些数据定制独一无二的消费计划,也可以从中的相关关系中避免许多不必要的损失。
于是数据时代的价值链诞生:
1、基于数据本身的公司。 这类公司拥有大量的数据或者可以收集到大量数据。他们以出售数据盈利。当然大数据时代的后期,他们也开始逐渐转型,收购分析团队,将数据更大限度的价值化,以获取更高的盈利。
2、基于技能的公司。 咨询公司就是此类公司的典型代表,天睿,尼尔森这些都是数据分析的佼佼者,甚至四大现在也在积极开拓咨询业务。
3、基于思维的公司。 创新思维应该属于大数据时代最宝贵的财富。FlightCaster、Facebook、滴滴等等这些都是创新思维的典范。
我们要想从大数据时代挖掘金矿也可以顺着这条价值链下手。本人更倾向于第三种思维的风暴。有趣的是,这类公司的发起人甚至这些被我们趋之若鹜的应用都是创始人无聊逗乐的作品。显然,热爱生活,为生活提供更多便利和快乐,仿佛都是创新思维创造需求所必须的。
第三部分 大数据时代的管理变革
风险: 除开我们平常喜欢网购,消费习惯被搜索引擎记录在外,导航系统记录着我们的行动轨迹,甚至是我们的心情,通过微信朋友圈和微博,也都一一被监控中。我们仿佛生活在一双看不见的眼睛里,想想都觉得不寒而栗。
更可怕的是,当人们过于依赖大数据去做决策的时候,我们的社会终将有一天会演变为预测行为更替事实行为的悲剧。最简单的例子:警察可能从大数据监控的一系列行为中分析得到结论某人会谋杀他的妻子,而这个人也许什么都没做,而警察却名正言顺的将此人逮捕。因为大数据预测分析他一定会做,而警察的行为只是阻止了的悲剧的发生。完全磨灭了他可能真的不会犯罪的可能性。
掌控: 让数据的使用者承担责任,是相对保护个人隐私的有效方式。避免了个人信息数据被过度曝光,又给与了数据分析者极大的开发使用空间。另外大数据时代更要避免数据独裁时代。谷歌曾要求员工测试41种蓝色的阴影效果中,哪种被人们使用最频繁,从而决定网页工具栏的颜色。这种数据独裁曾在谷歌一度到达顶峰,同时也激起了强烈反抗。
数据的盲目崇拜总让人会遗忘数据总有固有的局限性,数据导向的答案是参考答案不是最终答案。不为数据而数据,才是大数据时代最好的态度,才能将大数据的功能最大化。