导航:首页 > 网络数据 > 道路与大数据库

道路与大数据库

发布时间:2023-02-20 21:52:37

大数据技术在电子政务领域的应用

大数据技术在电子政务领域的应用
随着科学技术在社会各领域的不断渗透, 为人们的生活带来了巨大改变, 其中, 以大数据技术为代表的现代电子信息技术的广泛使用, 将人们带入了“大数据时代”。本文以大数据技术在电子政务领域的应用为研究内容, 在分析大数据技术特征的基础上, 这一技术在电子政务领域的实际应用加以介绍, 从而使人们更加深入的了解大数据技术。
近年来, 我国在计算机网络技术研究领域取得了显著成绩, 大数据技术、云计算技术、物联网技术等在社会各领域得到了较为广泛的应用。在此过程中, 为提高政府部门办事效率, 以大数据技术为核心的电子政务系统应运而生, 并且, 融入了大数据技术的电子政务系统在数据的获取、处理、分析等方面的效率显著提高, 为政府相关工作的高效开展奠定了基础。
1、大数据技术的特征概述
相比较传统数据处理技术来说, 大数据技术的主要特征包括以下四个方面:
(1) 大数据技术涉及到的数据量极为庞大, 在计算机网络快速发展的今天, 网络上的数字信息呈现出几何指数增长的趋势, 经过一定时期的积累, 这一数据量将达到惊人的数量, 为此, 只有大数据技术才能够对此类规模的数据进行有效的处理。
(2) 大数据技术所涉及数据类型众多, 除常见的文本、声音、图像、音频等数据外, 还包括一些特殊的文件形式, 并且, 不同类型的文件形式其作用自然也就存在着明显的差异。
(3) 大数据技术有着较快的数据处理数度, 凭借分布式计算机技术的使用, 能够在最短的时间内完成一定规模数据的处理任务, 并且, 最终得到的结果是有效的。
(4) 大数据技术所处理的数据虽然数据密度较低, 但是, 当密度较低的数据被收拢在一起后, 通过科学的数据处理分析方法, 从零星的数据中寻找有用的信息, 并对该信息的价值进行深入挖掘。
2 、大数据技术的关键
所谓大数据, 是指在短时间通过网络嗅探的方式, 快速搜集各种类型的网络数据, 并在相关数据中获取有价值的信息。大数据技术的实现需要通过大规模并行处理数据库技术、数据挖掘技术、分布式数据库技术、云计算基础构架平台等技术, 为更好的研究大数据技术, 应对其关键技术进行深入分析。
2.1 大规模并行处理数据库技术
为保证大数据技术中庞大数据的存储与处理, 则需要利用大规模并行处理数据库技术对相关数据进行集群管理。这一技术能够以最快的速度对数据处理命令进行相应, 并具有较低的延迟读写速度, 并且, 在云计算平台的配合下, 大规模并行处理数据库的成本也相对较低, 在正常工作过程中, 能够实现多个副本故障检测与转移机制, 在长时间工作的状态下, 出现故障的几率较低。
2.2 分布式数据库技术
所谓分布式数据库技术, 则区别于云存储数据库的形式, 他是利用互联网的空间特性, 将物理空间相对独立的存储单元进行连接, 通过一定的算法进行逻辑上的统一, 形成具有超大规模的数据库, 并具有较高的数据处理能力和数据存储能力。
从信息安全的角度分析, 这种分布式的数据库技术能够实现对数据资源的有效保护, 即便出现大规模的计算机病毒事件, 基于分布式数据的存储优势, 相关病毒对部分计算机的影响, 并不能对全部计算机中的数据造成毁灭性的破坏。
2.3 分布式存储技术
在大数据技术的实际应用中, 为满足用户一定规模数据存储的需求, 则充分利用了分布式存储技术所具有的纵向、横向扩展的优势, 将数据进行分割后存储与多台服务器、存储设备上, 从而有效降低了单一存储器的数据存储压力, 并且, 这种分布式存储技术, 还实现了系统可用性、可靠性的提高, 以及保证数据存取的高速进行。
2.4 云计算技术
对于大数据技术来说, 为了实现对一定规模数据的收集、分析和处理的能力, 则充分利用了云计算技术所搭建的平台, 从而为大数据技术的应用奠定了坚实的硬件基础。基于传统存储技术在速度、空间上的有限性, 无法为大数据技术提供足够的支持, 云计算技术则将传统计算机的存储、运算功能转移至云端, 以一种更加高效的方式, 为大数据技术在众多领域的拓展提供可靠的技术平台。
3、大数据技术在电子政务领域的应用
基于大数据技术的诸多优势, 在电子商务领域, 大数据技术主要用于网站数据进行分析, 社会诚信系统的构建, 信息共享平台与电子政务系统等。
3.1 大数据技术支持下的政府网站大数据分析
为准确掌握网站的浏览情况, 大多数网站都会对用户的日常浏览情况进行数据分析, 相关分析要素包括用户访问的路径、不同网页的停留时间、浏览网页的具体时间等, 通过对以上要素的研究, 能够对用户需求、习惯进行准确分析, 并能够对后期网站缺陷的具体调整提供指导性意见。
以某政府网站为例, 由于网页设计不合理, 以至于在用户打开某一页面时, 长期处于等待状态, 如此一来, 用户对这一网页的实际浏览次数将为0。针对这一情况, 网站管理人员通过对某一周期内的网站浏览情况进行分析, 由于一定周期内浏览网站用户的数量较大, 且相关要素成倍增加, 所以, 在处理以上信息的过程中就用到了大数据技术。对于网页访问次数出入较大的数据, 则需要进行深入分析, 在排除网页的可链接性之后, 检查网页内的相关信息, 却保网页内信息的可靠、安全。
通过用户浏览网站后留下的大量信息, 网站一方可以将用户信息存入数据库中, 并利用大数据技术对相关信息进行分类, 以实现网站信息向用户的精准推送。并且, 经过大数据处理后的数据信息, 逐渐成为政府行政决策的重要依据, 并能够在一定程度上保证行政决策的有效性和科学性。
3.2 大数据技术支持下的信用平台建设
为更好的掌握居民信用信息, 建立以个人为单位的信用数据库, 则需要以大数据技术为依托, 收集相关部门所掌握的居民信用资料, 并通过大数据技术进行对比、整合, 进而得出准确的个人信用情况。例如, 在购房贷款过程中, 商业银行往往需要用户提供《个人征信档案》, 在《个人征信档案》中, 不仅包括用户的基本身份信息, 还包括用户在所有金融机构办理的各种信用卡情况, 以及是否存在不良信用记录等, 这些信息的存在, 就意味着政府机构与金融机构之间实现了以大数据技术为核心的信息共享, 通过对比用户身份信息, 将属于同一用户的信用信息进行整合, 并重新存储与数据库之中。
政府行为的信用平台建设, 旨在掌握用户的个人诚信资料, 并为基于个人行为的政府服务工作提供数据支撑, 打击社会范围内长期存在的老赖等现象。大数据技术支持下的信用平台建设, 能够实现社会范围内道德诚信体系的不断加强, 促进社会道德水平的提升。
3.3 大数据交换共享平台与电子政务
随着政府部门事务性工作的不断增加, 仅依靠人工对相关数据进行收集、分类、整合、处理等工作不仅效率低, 速度慢, 且容易出现人为性差错, 数据结果的人为性因素较大。在此情况下, 依托大数据技术在多元数据收集、处理方面的优势, 以及计算机网络技术下的信息共享平台建设, 能够帮助政府通过网络获取社会各领域的相关数据, 并对数据资源进行有效整合, 形成庞大的数据库资源。
然而, 对于数据库来说, 只有得到利用才能体现其价值, 在情况下, 政府部门就充分利用了大数据交换共享平台的优势, 建立以政府事物为中心的社会基础数据库, 为政府相关工作的开展提供横向、纵向信息的全方位共享。在区域间政府工作交流方面, 大数据共享交换平台能够突破传统政务工作的空间限制, 进而促进跨地区政府部门信息资源整合与交流下的业务开展。
为更好的发挥电子政务的优势, 在大数据交换共享平台的建设方面, 需要对这一平台的信息资源目录体系进行完善, 制定政府间统一的大数据交换共享平台使用标准, 规范政府在使用大数据交换共享平台的各种行为, 以实现对数据资源的合理、高效利用。所以, 大数据交换共享平台的使用, 不仅便于政府工作的开展, 也促进了社会管理工作有条不紊的展开, 社会环境的稳定得以实现。
3.4 电子政务决策系统中的大数据技术
在实际使用过程中, 大数据技术并不仅仅是简单的对多元数据的收集、整合、分析、处理, 对于大数据技术的使用方来说, 庞大的数据价值还在于能够辅助政府决策。
利用计算机软件技术, 通过对庞大数据中有关数据的筛选、分析, 经过计算机软件的处理之后, 能够得到更加准确的计算结果, 政府部门依据这一结果, 就可以完成一系列的政府决策, 从而实现了政府办事效率的快速提高。
例如, 在市政建设方面, 对于城市内部交通拥堵问题, 可以借助交通系统长期提供的大数据信息, 了解城市内交通拥堵的主要路段、时间, 以及在庞大数据信息的支持下, 通过建模的方式, 采取多种治堵方式, 并利用大数据技术对每一种方式的实际效果进行综合评估, 最终选择效果最好的治堵方式。
对于政府决策的客观性、准确性等, 使用大数据技术辅助决策有着极大的优势, 但是, 基于大数据技术缺乏人类情感因素的介入, 以至于相关决策并不能够完全突出“以人为本”的政府工作理念, 所以, 政府部门应慎重对待大数据技术下的电子政务决策, 根据相关内容的实际情况, 做出最佳的决策选择。
4、大数据技术在电子政务中应用的不足之处分析
通过对地方政府电子政务系统的实际使用情况调查研究后发现, 即便在我国电子信息技术得到快速发展的情况下, 大多数地区政府在电子政务系统建设方面依然存在不足, 即便是已经施行电子政务管理的地区, 政府部门对于大数据技术的实际应用却有着较为明显的不足, 以至于大数据技术的优势无法得到有效发挥。
4.1“数据孤岛”现象的存在
大数据技术的核心在于对数据信息的共享, 然而, 有地方政府对大数据技术的认识不足, 以至于在数据共享方面存在政策性的理解偏差, 使得以政府为核心的相关数据无法被其它行业所利用, 大数据技术的优势也就失去。例如, A省与B省协商开通省际公交专线, 然而, 为了更好的安排公交车的运行时间表, 则需要A、B两省之间的人员往来数据进行分析, 并能够预估公交线路的实际载客风险, 从而适当的调整公交车的运营次数和时间, 但是, 在实际操作过程中, A、B两省间的客流数据无法实现共享, 以至于在公交车的实际安排下依然无法解决道路拥堵的实际问题。
地方政府所体现出来的在大数据技术应用方面的这一问题, 是传统政务管理工作中各自为政思想的延续, 一旦数据无法实现共享, 也就造成了所谓的“数据孤岛。大数据共享的问题在于两个方面, 首先, 政府部门之间有着严格的管理秩序, 优势存在上下级关系的政府部门, 下级向上级申请差异数据库中的内容, 多无法得到上机政府部门的许可, 以至于大数据技术在电子政务领域的使用存在着明显的“数据孤岛”现象。
导致“数据孤岛”现象的原因还包括大数据技术的本身, 由于我国大数据技术的应用并未得到普及, 在电子政务领域也只是部分地区完成了大数据技术的初步使用。数据作为政府管理的稀缺资源, 以及从保密的角度分析, 相关数据并不能进行过度披露, 否则, 将造成社会性的事件。所以, 这也就不难解释除政府部门间数据信息的相对独立以外, 广大市民同样无法通过大数据技术支持下的电子政务平台获得真实的数据信息。在这一“数据孤岛”现象的影响下, 地方电子政务平台的实际效果也就有着明显的降低。
4.2 电子政务领域常见的数据资源“过剩”与“闲置”问题
单从地区政府发展的角度来看, 地区政府在大数据技术方面投入的多少, 能够直接反映出该地区经济发展的实际情况, 两者之间存在着显著的正相关关系。然而, 当地区政府在大数据技术方面的投入与实际数据需求偏低时, 也就出现了所谓的数据资源“过剩”的问题。不仅如此, 在大数据技术投入不足的情况下, 政府部门无法对社会中存在的大量数据加以利用时, 也就形成了另一种形式的数据资源“闲置”。
(1) 以南京地区为例, 作为我国南方较为重要的经济主体, 南京市政府在大数据技术与电子政务方面投入了大量人力、物力和财力, 经过近几年的发展, 已经形成了较为完备的电子政务平台, 在实际使用中也到了广大市民的欢迎。然而, 相对于南京的区域地位来说, 受上海的影响, 作为上海市的经济辐射范围, 南京市的发展受到了一定的影响, 经济中心明显向上海地区便宜, 为此, 基于大数据技术的电子政务平台所整合的数据, 也就无法在更大的空间中发挥其作用, 这就是数据资源“过剩”。
(2) 在我国西北、西南部分地区, 由于经济发展较为落后, 以至于在全国范围内进行大数据技术支持下的电子政务系统建设过程中, 无法进行大范围的电子政务系统建设。以贵州省为例, 大数据技术下电子政务系统依然停留在商业层面的应用, 对于其它领域的电子政务系统建设并未涉及, 因此造成了贵州省内相关数据信息无法全面获取, 这也就是资源“闲置”的直接表现。
5、关于大数据技术在电子政务领域应用的建议
针对当前大数据技术发展的实际情况, 以及电子政务作为信息化时代下政府事务性工作改革的重要内容, 有着较为积极的意义。因此, 为推动大数据技术在电子政务领域的中的应用, 则需要做到以下三个方面。
(1) 地方政府应结合大数据技术与电子政务的结合, 推动地区大数据技术产业的发展, 通过各种优惠政策, 吸引高新技术企业入驻, 建立以大数据技术为核心的产业发展模式, 从而带动地区经济发展。
(2) 提高政府方面对大数据技术的认识, 在社会发展过程中, 大数据技术的优势越发明显, 尤其是在传统事务性工作的处理方面, 借助专业的数据分析软件, 能够完成从数据的收集、整理、分类, 直至得出数据分析结果, 实现了政府办事效率的显著提高。如此一来, 大数据技术的优势得以体现, 政府方面对于大数据的认识进一步提高, 进而促进了大数据技术在电子政务领域的普及。
(3) 加快大数据技术相关硬件、软件的研发。目前, 大数据技术涉及到的硬件、软件成本较高, 导致了部分经济欠发达地区无法实现大数据技术支持下的电子政务系统的全面推广。以大数据技术使用较为广泛的数据中心机房来说, 由于要使用到高速计算机和服务器到等昂贵的信息设备, 对于缺乏条件的地方政府来说, 可以利用云计算技术, 通过网络服务器的模式, 解决这一问题。
总的来说, 大数据技术在电子政务领域的应用实现了我国政务处理的信息化改革, 对于我国现代化社会管理制度体系的建立打下了坚实的基础。并且, 通过大数据思维在政务领域的渗透, 有助于大数据技术的应用效率提高。
6、总结
尽管, 我国电子政务系统的建设时间并不长, 相关领域依然有待完善。随着大数据技术在电子政务领域的不断渗透, 基于多元数据收集、整合、分类、处理的大数据信息交换共享平台建设, 为政府各项事务的有效开展奠定了坚实的基础。然而, 由于技术与认识上的不足, 电子政务系统中的大数据技术应用仍然集中于纵向政务业务领域, 这并不符合当前社会发展的趋势。因此, 为推广以大数据技术的应用个, 则需要加快大数据技术支持下的电子政务系统的设计, 推动电子政务系统中大数据技术的应用, 打造“数字化政府”。

② 企业利用大数据的重要性是什么

1,企业领导层对大数据的认知
随着时代的变迁,商业模式已经发展过度到了数据时代,相较于以前营销为王的商业模式,大数据更能给现代企业创造价值,正所谓火车跑的快,全靠车头带,企业各部门领导者,甚至是老板本人,能对大数据应用有一个正确的认识,则更能把握企业发展前进的方向与命脉。
2,公众才是企业的决策者
在中国,许多的企业都是一人掌天下,老板往往把握着企业的命运和未来,但在大数据时代里,企业将慢慢树立以社会公众为决策主体的观念,决策的理念由狭隘的企业领导层转移到社会公众上,通过媒体、社交网络等平台收集社会公众的意见和观念,形成内外双向的大数据挖掘和分析,以提高决策的广泛性,合理性,正确性。
3,打造好信息化的基础,才能挖掘积累出大数据库
企业以信息化为基础,才能实现大数据挖掘,积累和分析,企业所有的产品数据、运营数据、供应链数据和外部数据都是来自于信息化系统,因此打好信息化基础就变的尤为重要了,完善信息化基础,让数据来源更真实和可靠。
4,便捷高效的大数据分析系统
大数据是一个海量的资源池,甚至如汪洋大海一般让人望而生畏,那么这样一个海量的资源池,企业怎样才能充分且高效的去吸收它的营养呢?这就需要一个高效率的云计算系统才能很好的完成这个任务,一个高效的云计算系统,可以使大数据里的资源合理分配,充分利用,给且的分析研究部门带来便捷,让工作效率得到显著的提升。
在未来大数据将成为最重要的经济资产,谁掌握了它便是掌握了竞争力,企业应与时俱进,敞开胸怀迎接大数据,重视大数据,利用大数据,在茫茫商海,乘风破浪,驶向远方。

③ 大型数据库高性能技术体现在哪些方面

对于数据库系统而言,绝大多数情况下影响数据库性能的三个要素是:专数据运算能力、数属据读写时延和数据吞吐带宽,简称计算、时延、吞吐。计算指的是CPU的运算能力,时延是数据从存储介质跑到CPU所需的时间长短,吞吐则是数据从存储介质到CPU的道路宽度。一般情况下,关注计算和时延是比较多的,但是在数据量越来越多的情况下,吞吐也成为影响数据库性能的重要因素。如果吞吐带宽不够,会造成计算等待队列的增加,CPU占用率虚高不下。这种情况下,即使增加再多的计算资源也于事无补,相当于千军万马挤独木桥,马再好也是枉然。一个高性能的数据库平台,一定是计算、时延、吞吐三方面的能力齐头并进,相互匹配。

④ 大数据处理的五大关键技术及其应用

作者 | 网络大数据

来源 | 产业智能官

数据处理是对纷繁复杂的海量数据价值的提炼,而其中最有价值的地方在于预测性分析,即可以通过数据可视化、统计模式识别、数据描述等数据挖掘形式帮助数据科学家更好的理解数据,根据数据挖掘的结果得出预测性决策。其中主要工作环节包括:

大数据采集 大数据预处理 大数据存储及管理 大数据分析及挖掘 大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

大数据采集一般分为:

大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

完成对已接收数据的辨析、抽取、清洗等操作。

抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

四、大数据分析及挖掘技术

大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

机器学习中,可细分为归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法。

数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。

数据挖掘的计算复杂度和灵活度远远超过前两类需求。一是由于数据挖掘问题开放性,导致数据挖掘会涉及大量衍生变量计算,衍生变量多变导致数据预处理计算复杂性;二是很多数据挖掘算法本身就比较复杂,计算量就很大,特别是大量机器学习算法,都是迭代计算,需要通过多次迭代来求最优解,例如K-means聚类算法、PageRank算法等。

从挖掘任务和挖掘方法的角度,着重突破:

可视化分析。数据可视化无论对于普通用户或是数据分析专家,都是最基本的功能。数据图像化可以让数据自己说话,让用户直观的感受到结果。 数据挖掘算法。图像化是将机器语言翻译给人看,而数据挖掘就是机器的母语。分割、集群、孤立点分析还有各种各样五花八门的算法让我们精炼数据,挖掘价值。这些算法一定要能够应付大数据的量,同时还具有很高的处理速度。 预测性分析。预测性分析可以让分析师根据图像化分析和数据挖掘的结果做出一些前瞻性判断。 语义引擎。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。语言处理技术包括机器翻译、情感分析、舆情分析、智能输入、问答系统等。 数据质量和数据管理。数据质量与管理是管理的最佳实践,透过标准化流程和机器对数据进行处理可以确保获得一个预设质量的分析结果。

预测分析成功的7个秘诀

预测未来一直是一个冒险的命题。幸运的是,预测分析技术的出现使得用户能够基于历史数据和分析技术(如统计建模和机器学习)预测未来的结果,这使得预测结果和趋势变得比过去几年更加可靠。

尽管如此,与任何新兴技术一样,想要充分发挥预测分析的潜力也是很难的。而可能使挑战变得更加复杂的是,由不完善的策略或预测分析工具的误用导致的不准确或误导性的结果可能在几周、几个月甚至几年内才会显现出来。

预测分析有可能彻底改变许多的行业和业务,包括零售、制造、供应链、网络管理、金融服务和医疗保健。AI网络技术公司Mist Systems的联合创始人、首席技术官Bob fridy预测:“深度学习和预测性AI分析技术将会改变我们社会的所有部分,就像十年来互联网和蜂窝技术所带来的转变一样。”。

这里有七个建议,旨在帮助您的组织充分利用其预测分析计划。

1.能够访问高质量、易于理解的数据

预测分析应用程序需要大量数据,并依赖于通过反馈循环提供的信息来不断改进。全球IT解决方案和服务提供商Infotech的首席数据和分析官Soumendra Mohanty评论道:“数据和预测分析之间是相互促进的关系。”

了解流入预测分析模型的数据类型非常重要。“一个人身上会有什么样的数据?” Eric Feigl - Ding问道,他是流行病学家、营养学家和健康经济学家,目前是哈佛陈氏公共卫生学院的访问科学家。“是每天都在Facebook和谷歌上收集的实时数据,还是难以访问的医疗记录所需的医疗数据?”为了做出准确的预测,模型需要被设计成能够处理它所吸收的特定类型的数据。

简单地将大量数据扔向计算资源的预测建模工作注定会失败。“由于存在大量数据,而其中大部分数据可能与特定问题无关,只是在给定样本中可能存在相关关系,”FactSet投资组合管理和交易解决方案副总裁兼研究主管Henri Waelbroeck解释道,FactSet是一家金融数据和软件公司。“如果不了解产生数据的过程,一个在有偏见的数据上训练的模型可能是完全错误的。”

2.找到合适的模式

SAP高级分析产品经理Richard Mooney指出,每个人都痴迷于算法,但是算法必须和输入到算法中的数据一样好。“如果找不到适合的模式,那么他们就毫无用处,”他写道。“大多数数据集都有其隐藏的模式。”

模式通常以两种方式隐藏:

模式位于两列之间的关系中。例如,可以通过即将进行的交易的截止日期信息与相关的电子邮件开盘价数据进行比较来发现一种模式。Mooney说:“如果交易即将结束,电子邮件的公开率应该会大幅提高,因为买方会有很多人需要阅读并审查合同。”

模式显示了变量随时间变化的关系。“以上面的例子为例,了解客户打开了200次电子邮件并不像知道他们在上周打开了175次那样有用,”Mooney说。

3 .专注于可管理的任务,这些任务可能会带来积极的投资回报

纽约理工学院的分析和商业智能主任Michael Urmeneta称:“如今,人们很想把机器学习算法应用到海量数据上,以期获得更深刻的见解。”他说,这种方法的问题在于,它就像试图一次治愈所有形式的癌症一样。Urmeneta解释说:“这会导致问题太大,数据太乱——没有足够的资金和足够的支持。这样是不可能获得成功的。”

而当任务相对集中时,成功的可能性就会大得多。Urmeneta指出:“如果有问题的话,我们很可能会接触到那些能够理解复杂关系的专家” 。“这样,我们就很可能会有更清晰或更好理解的数据来进行处理。”

4.使用正确的方法来完成工作

好消息是,几乎有无数的方法可以用来生成精确的预测分析。然而,这也是个坏消息。芝加哥大学NORC (前国家意见研究中心)的行为、经济分析和决策实践主任Angela Fontes说:“每天都有新的、热门的分析方法出现,使用新方法很容易让人兴奋”。“然而,根据我的经验,最成功的项目是那些真正深入思考分析结果并让其指导他们选择方法的项目——即使最合适的方法并不是最性感、最新的方法。”

罗切斯特理工学院计算机工程系主任、副教授shanchie Jay Yang建议说:“用户必须谨慎选择适合他们需求的方法”。“必须拥有一种高效且可解释的技术,一种可以利用序列数据、时间数据的统计特性,然后将其外推到最有可能的未来,”Yang说。

5.用精确定义的目标构建模型

这似乎是显而易见的,但许多预测分析项目开始时的目标是构建一个宏伟的模型,却没有一个明确的最终使用计划。“有很多很棒的模型从来没有被人使用过,因为没有人知道如何使用这些模型来实现或提供价值,”汽车、保险和碰撞修复行业的SaaS提供商CCC信息服务公司的产品管理高级副总裁Jason Verlen评论道。

对此,Fontes也表示同意。“使用正确的工具肯定会确保我们从分析中得到想要的结果……”因为这迫使我们必须对自己的目标非常清楚,”她解释道。“如果我们不清楚分析的目标,就永远也不可能真正得到我们想要的东西。”

6.在IT和相关业务部门之间建立密切的合作关系

在业务和技术组织之间建立牢固的合作伙伴关系是至关重要的。客户体验技术提供商Genesys的人工智能产品管理副总裁Paul lasserr说:“你应该能够理解新技术如何应对业务挑战或改善现有的业务环境。”然后,一旦设置了目标,就可以在一个限定范围的应用程序中测试模型,以确定解决方案是否真正提供了所需的价值。

7.不要被设计不良的模型误导

模型是由人设计的,所以它们经常包含着潜在的缺陷。错误的模型或使用不正确或不当的数据构建的模型很容易产生误导,在极端情况下,甚至会产生完全错误的预测。

没有实现适当随机化的选择偏差会混淆预测。例如,在一项假设的减肥研究中,可能有50%的参与者选择退出后续的体重测量。然而,那些中途退出的人与留下来的人有着不同的体重轨迹。这使得分析变得复杂,因为在这样的研究中,那些坚持参加这个项目的人通常是那些真正减肥的人。另一方面,戒烟者通常是那些很少或根本没有减肥经历的人。因此,虽然减肥在整个世界都是具有因果性和可预测性的,但在一个有50%退出率的有限数据库中,实际的减肥结果可能会被隐藏起来。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。

在我国,大数据将重点应用于以下三大领域:商业智能 、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

⑤ 大数据系统体系建设规划包括以下哪些内容

城市现状图、市域城镇体系规划图、道路交通规划图、各项专业规划图及近期建设规划图

⑥ 智能大屏机导航下载什么导航好用

1、高德地图

阿里巴巴旗下的电子地图,不仅有精准的GPS定位能力,也有不容小觑的导航能力。贷款地图不断进行大数据库更新,可以随时随地根据城市路况为大众提供更便捷的行车路线,在路线规划时更为智能,导航人性化。高德地图的导航优点在于真正融入了城市文化,不仅可以为人们导航路线,也可以通过生动的图标方式帮助人们标记道路两旁的店铺、商户、景点等。另外为了增加导航的趣味性,高德地图还推出了各种特色化明显的语音导航包,让选择高德地图导航的人在行车之路上不无聊。

2、网络地图

这是一款大众较为熟悉的地图导航软件,界面清爽使用方便,除了可以按图寻路之外,也可以通过目的地的输入让电脑云端帮助直接进行路线规划并逐步导航。该款地图主要是借助了GPS定位方式+软件运营商基站定位+移动端网络定位,对于使用者位置进行定位与修正,并准确地判断行进方向,做出合理的导航引导。另外,这款地图也可以尊重用户的个人意愿,按照用户规定的路线进行导航。该款软件有AR实景导航功能,对于一些看不懂电子地图的人也可借助AR实景导航更快速的辨别方向。

3、腾讯地图

这款地图的界面风格与网络地图导航界面风格相类似,并且在功能方面也有一些重叠,增加了实时公交推荐功能,方便不同人群在出行时使用。腾讯地图不仅能够提供城市导航,也可以提供尽早导航、景区导航等。该款地图投入大量资金进行数据更新,减少了导航的错误概率。该地图导航系统十分关注城市基建改善,便于对禁止通行的城市道路进行信息收集,城市导航做到了实时更新、时时变通。

阅读全文

与道路与大数据库相关的资料

热点内容
安卓系统怎么设置网络 浏览:707
win10下的文件类型选项 浏览:512
元数据修改什么意思 浏览:555
扫描pdf转word 浏览:914
行业协会如何查行业平均数据 浏览:545
什么app能长期使用 浏览:617
哪个APP可以学相声 浏览:347
程序使用代理 浏览:149
文件大小怎么调 浏览:924
javadouble经度 浏览:354
英国颁布了哪些纲领性文件 浏览:929
文件隔行选择是哪些键 浏览:395
股票的数据储存在哪里 浏览:172
微信双机同时登陆 浏览:448
vbnet网页源代码 浏览:409
ibmwin10改win7 浏览:560
windows7搭建文件服务器 浏览:358
丹麦为什么不能用中文编程 浏览:872
abap自定义工具栏 浏览:44
计算机二级c语言程序修改怎么做 浏览:440

友情链接