❶ 大数据服务器主要应用的类型大致可分为几类
(一) 直立式服务器(塔式服务器):
为可独立放置于桌面或地面的服务器,大都具有较多的扩充槽及硬盘空间。无需额外设备,插上电即可使用,因此使用最为广泛。
(二) 机架式服务器:
为可装上机柜之服务器,主要作用为节省空间,机台高度以1U为单位,1U约44mm,因空间较局限,扩充性较受限制,例如1U的服务器大都只有1到2个PCI扩充槽。此外,散热性能成为十分重要的因素,此时,各家厂商的功力就在此展现了。缺点是需要有机柜等设备,多为服务器用量较大的企业使用。
(三) 刀片服务器:
可算是比机架式服务器更节省空间的产品。主要结构为一大型主体机箱,内部可插上许多卡片,一张卡片即相当于一台服务器。当然,散热性在此非常重要,往往各家厂商都装上大型强力风扇来散热。此型服务器虽然空间较节省,但光是主体机箱部份可能就所费不赀,除大型企业外较少使用。
❷ 大数据的特征有什么
大数据的特征是什么?接下来就由小编来给大家解答。
大数据有4个特点,为别为:Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值),一般将这四个特点称之为4V。
大量:大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别。
多样:广泛的数据来源,决定了大数据形式的多样性。任何形式的数据都可以产生作用,目前应用最广泛的就是推荐系统,如淘宝,网易云音乐、今日头条等。
高速:大数据的产生非常迅速,主要通过互联网传输。生活中每个人都离不开互联网,也就是说每天个人每天都在向大数据提供大量的资料。服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。谁的速度更快,谁就有优势。
价值:这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。
以上就是小编的一些回答,希望能够有所帮助。
❸ 什么是大数据什么是大数据服务器
大数据
大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到专无法通过目前主流软属件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中[2] 大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、value(价值)
大数据服务器
一台或多台计算机和数据库管理系统软件共同构成了数据库服务器,数据库服务器为客户应用提供服务,这些服务是查询、更新、事务管理、索引、高速缓存、查询优化、安全及多用户存取控制等
小南国永生花
❹ 什么是云计算什么是大数据二者有何联系
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
(4)服务器大数据扩展阅读:
云计算常与网格计算、效用计算、自主计算相混淆。
网格计算:分布式计算的一种,由一群松散耦合的计算机组成的一个超级虚拟计算机,常用来执行一些大型任务;
效用计算:IT资源的一种打包和计费方式,比如按照计算、存储分别计量费用,像传统的电力等公共设施一样;
自主计算:具有自我管理功能的计算机系统。
事实上,许多云计算部署依赖于计算机集群(但与网格的组成、体系结构、目的、工作方式大相径庭),也吸收了自主计算和效用计算的特点。
被普遍接受的云计算特点如下:
(1) 超大规模
“云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。
(2) 虚拟化
云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。
(3) 高可靠性
“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。
(4) 通用性
云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。
(5) 高可扩展性
“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。
(6) 按需服务
“云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。
大数据特征:
1 容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
2 种类(Variety):数据类型的多样性;
3 速度(Velocity):指获得数据的速度;
4 可变性(Variability):妨碍了处理和有效地管理数据的过程。
5 真实性(Veracity):数据的质量
6 复杂性(Complexity):数据量巨大,来源多渠道
7 价值(value):合理运用大数据,以低成本创造高价值
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
❺ 两台服务器手动部署大数据平台
两台服务器手动部署大数据平台
##### 初始服务器数量
- 2台centos7
##### 建议配置
- 32G(RAM)
- 24cpu
- 10t(SATA)
### 1.环境
- 系统centos7
- jdk:1.8.0_171(64位)
- zookeeper:3.4.8
- spark-2.1.0-bin-hadoop2.6
- kafka_2.10-0.10.2.1
- hadoop-2.7.0
- hbase-1.2.6
- elasticsearch-6.3.0
### 2.系统准备
对应的安装包文件:
elasticsearch-6.3.0.tar.gz
hadoop-2.7.0.tar.gz
hbase-1.2.6-bin.tar.gz
jdk-8u171-linux-x64.tar.gz
kafka_2.10-0.10.2.1.tgz
mysql-5.7.23-1.el7.x86_64.rpm-bundle.tar
spark2.1.0hadoop2.6.tgz.gz
zookeeper-3.4.8.tar.gz
一、 配置好hosts
```
两台设备的host
ip1 hello1
ip2 hello2
关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
二、机器之间做好免密
1. 在hello1服务器中,cd /root/
2. ssh-keygen -trsa (全部按回车,走默认配置)
3. cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
4. chmod 600 ~/.ssh/authorized_keys
5. scp ~/.ssh/authorized_keys root@hello2:~/.ssh/
到此处时可以实现hello1机器上通过root账户登录到hello2中,但从hello2中无法通过免密码登录到hello1服务器。
6. 在hello2服务器中,cd /root/
7. ssh-keygen -trsa (全部按回车,走默认配置)
8. cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
9. scp ~/.ssh/authorized_keys root@hello1:~/.ssh/
到此处时可以实现hello1机器与hello2机器之间免密码互通
三、建立一个用户操作elasticsearch用户,后期所有安装软件放在该目录下(当前使用root账户安装)
1.添加用户:
useradd -m -s /bin/bash es
2.为该用户设置密码:
password es
四、安装JDK
如果系统自带openjdk,先将其卸载掉!
1.创建jdk安装路径(hello1、hello2都执行)
执行: mkdir /usr/java
2.解压缩jdk到安装目录
执行: tar -zxvf jdk-8u171-linux-x64.tar.gz -C /usr/java/
3.添加环境变量
vi /etc/profile,添加以下语句
export JAVA_HOME=/usr/java/jdk1.8.0_171
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export PATH=$PATH:$JAVA_HOME/bin
执行:source /etc/profile
4.复制安装包和数据目录到hello2
scp -r /usr/java/jdk1.8.0_171 hello2:/usr/java/
scp /etc/profile hello2:/etc/
登录到hello2上,进入/home/es目录
执行: source /etc/profile
5、验证:
两台服务器上分别执行: java -version,查看输出的版本是否与安装的版本一致。
五、安装mysql
1.如果centos系统中自带mariadb,先卸载mariadb。
2.解压mysql安装包程序
执行:tar -xvf mysql-5.7.23-1.el7.x86_64.rpm-bundle.tar
3.依次安装里面rpm包组建
rpm -ivh mysql-community-common-5.7.23-1.el7.x86_64.rpm
rpm -ivh mysql-community-libs-5.7.23-1.el7.x86_64.rpm
rpm -ivh mysql-community-client-5.7.23-1.el7.x86_64.rpm
rpm -ivh mysql-community-server-5.7.23-1.el7.x86_64.rpm
rpm -ivh mysql-community-devel-5.7.23-1.el7.x86_64.rpm
4.启动MySQL
执行: systemctl start mysqld
5.登录mysql服务器
这种方式安装好后,会再my.cnf文件中自动生成一个密码,
执行:cat /var/log/mysqld.log | grep password, 出现如下记录:
2017-09-15T01:58:11.863301Z 1 [Note] A temporary password is generated for root@localhost: m-NdrSG4ipuO
其中“m-NdrSG4ipuO”为mysql root账户的初始密码。
登录:
执行: mysql -uroot -p
输入密码: m-NdrSG4ipuO,即可进入mysql服务器。
后续可自行修改root密码,创建新账户等操作。
六、安装zookeeper
1.解压zookeeper安装包到指定目录(/home/es)
tar -zxvf zookeeper-3.4.8.tar.gz -C /home/es
2.创建程序软连接
cd /home/es/
ln -s zookeeper-3.4.8 zookeeper
3.添加执行路径环境
vi /etc/profile
添加
export ZOOKEEPER_HOME=/home/es/zookeeper
export PATH=$PATH:$ZOOKEEPER_HOME/bin
执行
source /etc/profile
4.修改配置文件
cd /home/es/zookeeper
cp conf/zoo_sample.cfg conf/zoo.cfg
在/home/data下创建对应的zookeeper数据存储目录
mkdir /home/data/zookeeper
mkdir /home/data/zookeeper/data
mkdir /home/data/zookeeper/log
修改配置文件:conf/zoo.cfg,添加以下语句
dataDir=/home/data/zookeeper/data
dataLogDir=/home/data/zookeeper/log
server.1=hello1:2888:3888
server.2=hello2:2888:3888
5.创建server表示符文件
touch /home/data/zookeeper/data/myid
echo echo 1>/home/data/zookeeper/data/myid
6.复制安装包和数据目录到hello2
scp -r /home/es/zookeeper-3.4.8 es@hello2:/home/es
scp -r /home/data/zookeeper es@hello2:/home/data
scp /etc/profile es@hello2:/etc
登录到hello2上
cd /home/es
ln -s zookeeper-3.4.8 zookeeper
echo echo 2>/home/data/zookeeper/data/myid
执行
source /etc/profile
7.两台机器上分别执行
zkServer.sh start
8.验证
jps | grep QuorumPeerMain,查看是否有该进程
zkServer.sh status,查看服务状态
六、安装kafka
1.解压kafka安装包到指定目录(/home/es)
tar -zxvf kafka_2.10-0.10.2.1.tgz -C /home/es
2.创建程序软连接
cd /home/es/
ln -s kafka_2.10-0.10.2.1 kafka
3.修改配置文件
备份:
cp config/server.properties config/server.properties.bak
创建kafka日志目录:
mkdir /home/data/kafka
mkdir /home/data/kafka/kafka-logs
修改:config/server.properties,具体对应字段如下:
broker.id=0
delete.topic.enable=true
num.network.threads=10
num.io.threads=32
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/home/data/kafka/kafka-logs
num.partitions=1
num.recovery.threads.per.data.dir=1
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
zookeeper.connect=hello1:2181,hello2:2181
zookeeper.connection.timeout.ms=6000
6.复制安装包和数据目录到hello2
scp -r /home/es/kafka_2.10-0.10.2.1 es@hello2:/home/es
scp -r /home/data/kafka es@hello2:/home/data
修改hello2中的配置
登录到hello2上,cd /home/es/kafka,修改config/server.properties中broker.id值为2.
7.启动kafka
在两台机器的/home/es/kafka中,创建一个日志存放目录:mkdir start_log,执行以下命令:
nohup bin/kafka-server-start.sh config/server.properties > start_log/kafka_start_log 2>&1 &
8.验证运行情况
jps | grep Kafka,查看进程
通过kafka命令查看topic。
七、安装hadoop
1.解压hadoop安装包到指定目录(/home/es)
tar -zxvf hadoop-2.7.0.tar.gz -C /home/es
2.创建程序软连接
cd /home/es/
ln -s hadoop-2.7.0 hadoop
3.创建数据存放目录
mkdir /home/data/hadoop
mkdir /home/data/hadoop/tmp
mkdir /home/data/hadoop/dfs
mkdir /home/data/hadoop/dfs/data
mkdir /home/data/hadoop/dfs/name
4.修改配置文件
修改/home/es/hadoop/etc/hadoop/core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hello1:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>file:/home/data/hadoop/tmp</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131702</value>
</property>
</configuration>
修改/home/es/hadoop/etc/hadoop/hdfs-site.xml
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:/home/data/hadoop/dfs/name</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/home/data/hadoop/dfs/data</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hello1:9001</value>
</property>
<property>
<name>dfs.webhdfs.enabled</name>
<value>true</value>
</property>
</configuration>
修改/home/es/hadoop/etc/hadoop/mapred-site.xml
<configuration>
<property>
<name>maprece.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>maprece.jobhistory.address</name>
<value>hello1:10020</value>
</property>
<property>
<name>maprece.jobhistory.webapp.address</name>
<value>hello1:19888</value>
</property>
</configuration>
修改/home/es/hadoop/etc/hadoop/yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>maprece_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.auxservices.maprece.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>hello1:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheler.address</name>
<value>hello1:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hello1:8031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>hello1:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>hello1:8088</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>768</value>
</property>
</configuration>
配置/home/es/hadoop/etc/hadoop目录下hadoop-env.sh、yarn-env.sh的JAVA_HOME(不设置的话,启动不了)
export JAVA_HOME=/usr/java/jdk1.8.0_171
配置/home/es/hadoop/etc/hadoop目录下的slaves,删除默认的localhost,增加2个从节点,
hello1
hello2
5、将配置好的Hadoop复制到各个节点对应位置上,通过scp传送
scp -r /home/es/hadoop-2.7.0 hello2:/home/es/
scp -r /home/data/hadoop hello2:/home/data/
登录到hello2上,进入/home/es目录
执行: ln -s hadoop-2.7.0 hadoop
6、格式化nameNode及启动hadoop
在主服务器启动hadoop,从节点会自动启动,进入/home/es/hadoop目录
初始化,输入命令,bin/hdfs namenode -format
全部启动sbin/start-all.sh,也可以分开sbin/start-dfs.sh、sbin/start-yarn.sh
输入命令,jps,可以看到相关信息
7、验证hadoop运行情况
浏览器打开http://hello1:8088/
浏览器打开http://hello1:50070/
8、添加hadoop环境变量到/etc/profile
export HADOOP_HOME=/home/es/hadoop export PATH=$PATH:$HADOOP_HOME/sbin
export PATH=$PATH:$HADOOP_HOME/bin
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"
执行: source /etc/profile
八、安装Hbase
1.解压hbase安装包到指定目录(/home/es)
tar -zxvf hbase-1.2.6-bin.tar.gz -C /home/es
2.创建程序软连接
cd /home/es/
ln -s hbase-1.2.6 hbase
3.添加hbase环境变量到/etc/profile
export HBASE_HOME=/home/es/hbase
export PATH=$HBASE_HOME/bin:$PATH
执行:source /etc/profile
4.修改HBASE配置文件
vi /home/es/hbase/conf/hbase-env.sh
增加: export JAVA_HOME=/usr/java/jdk1.8.0_171
修改: export HBASE_MANAGES_ZK=false
vi /home/es/hbase/conf/hbase-site.xml
修改类容:
<configuration>
<property>
<name>hbase.rootdir</name> <!-- hbase存放数据目录 -->
<value>hdfs://hello1:9000/hbase/hbase_db</value>
<!-- 端口要和Hadoop的fs.defaultFS端口一致-->
</property>
<property>
<name>hbase.cluster.distributed</name> <!-- 是否分布式部署 -->
<value>true</value>
</property>
<property>
<name>hbase.zookeeper.quorum</name> <!-- list of zookooper -->
<value>hello1,hello2</value>
</property>
<property><!--zookooper配置、日志等的存储位置 -->
<name>hbase.zookeeper.property.dataDir</name>
<value>/home/es/hbase/zookeeper</value>
</property>
</configuration>
配置regionservers,vi /home/es/hbase/conf/regionservers
去掉默认的localhost,加入hello1、hello2
5、将配置好的hbase复制到各个节点对应位置上,通过scp传送
scp -r /home/es/hbase-1.2.6 hello2:/home/es/
scp /etc/profile hello2:/etc/
登录到hello2上,进入/home/es目录
执行: ln -s hbase-1.2.6 hbase
source /etc/profile
6、hbase的启动
hello1中执行: start-hbase.sh
7、验证hbase运行情况
输入jps命令查看进程是否启动成功,若 hello1上出现HMaster、HRegionServer、HQuormPeer,hello2上出现HRegionServer、HQuorumPeer,就是启动成功了。
输入hbase shell 命令 进入hbase命令模式,输入status命令,查看运行状态。
在浏览器中输入http://hello1:16010就可以在界面上看到hbase的配置
注意事项:
正常安装后,创建普通不带压缩表可以正常读写,当使用snappy进行压缩创建表时,该表无法再regionServer中启动!
解决方法:
1.在hbase-site.xml文件中添加一下属性
<property>
<name>hbase.regionserver.codecs</name>
<value>snappy</value>
</property>
2.每台机器中将hadoop_native.zip解压缩到hbase安装目录的lib下,执行 unzip hadoop_native.zip $HBASE_HOME/lib/
3.在$HBASE_HOME/conf/hbase-env.sh 中添加:export HBASE_LIBRARY_PATH=/home/es/hbase/lib/native
4.重启Hbase服务即可
九、Spark安装
1.解压hbase安装包到指定目录(/home/es)
tar -zxvf spark2.1.0hadoop2.6.tgz.gz -C /home/es
2.创建程序软连接
cd /home/es/
ln -s spark2.1.0hadoop2.6 spark
3.修改配置文件
mv /home/es/spark/conf/spark-env.sh.template /home/es/spark/conf/spark-env.sh
vi /home/es/spark/conf/spark-env.sh
修改对应配置:
export JAVA_HOME=/usr/java/jdk1.8.0_171
export SPARK_MASTER_IP=hello1
export SPARK_MASTER_PORT=7077
export SPARK_LOCAL_IP=hello1
修改slaves文件
mv /home/es/spark/conf/slaves.template /home/es/spark/conf/slaves
vi /home/es/spark/conf/slaves
将localhost修改成:
hello1
hello2
5、将配置好的hbase复制到各个节点对应位置上,通过scp传送
scp -r /home/es/spark2.1.0hadoop2.6 hello2:/home/es/
登录到hello2上,进入/home/es目录
执行: ln -s spark2.1.0hadoop2.6 spark
在hello2中修改/home/es/spark/conf/spark-env.sh
export JAVA_HOME=/usr/java/jdk1.8.0_171
export SPARK_MASTER_IP=hello1
export SPARK_MASTER_PORT=7077
export SPARK_LOCAL_IP=hello2
6、启动spark
cd /home/es/spark
执行: sbin/start-all.sh
7、检测执行结果
jps | grep Worker,看是否有相应的进程。
十、安装elasticsearch
由于elasticsearch,用root账户无法启动,故该组件用es账户安装
1、切换到es账户: su es
2、解压hbase安装包到指定目录(/home/es)
tar -zxvf elasticsearch-6.3.0.tar.gz -C /home/es/
创建程序软连接
cd /home/es/
ln -s elasticsearch-6.3.0 elasticsearch
3、修改配置文件
vi /home/es/elasticsearch/config/elasticsearch.yml
# 集群的名字
cluster.name: crrc-health
# 节点名字
node.name: node-1
# 数据存储目录(多个路径用逗号分隔)
path.data: /home/data1/elasticsearch/data
# 日志目录
path.logs: /home/data1/elasticsearch/logs
#本机的ip地址
network.host: hello1
#设置集群中master节点的初始列表,可以通过这些节点来自动发现新加入集群的节点
discovery.zen.ping.unicast.hosts: ["hello1", "hello2"]
# 设置节点间交互的tcp端口(集群),(默认9300)
transport.tcp.port: 9300
# 监听端口(默认)
http.port: 9200
# 增加参数,使head插件可以访问es
http.cors.enabled: true
http.cors.allow-origin: "*"
4、创建elasticsearch数据和存储目录
mkdir /home/data1/elasticsearch
mkdir /home/data1/elasticsearch/data
mkdir /home/data1/elasticsearch/logs
5、修改linux系统的默认硬限制参数
切换至root用户: su root
vim /etc/security/limits.conf
添加:
es soft nofile 65536
es hard nofile 65536
退出es登录,重新用es账户登录,使用命令:ulimit -Hn查看硬限制参数。
vi /etc/sysctl.conf
添加:
vm.max_map_count=655360
执行:
sysctl -p
6、将配置好的elasticsearch复制到各个节点对应位置上,通过scp传送
scp -r /home/es/elasticsearch-6.3.0 hello2:/home/es/
scp -r /home/data1/elasticsearch hello2:/home/data1/
登录到hello2上,进入/home/es目录
执行: ln -s elasticsearch-6.3.0 elasticsearch-6.3.0
在hello2中修改/home/es/elasticsearch/config/elasticsearch.yml
修改: network.host: hello2
7、启动elasticsearch
使用es账户
执行:
/home/es/elasticsearch/bin/elasticsearch -d
8、验证
控制台中输入:curl http://hello1:9200