中小企业自己开发大数据系统是有难度的,不过可以使用现场的大数据现场成平台,我们公司就是有的,同时也可以提供大数据系统软件开发。
搭建大数据系统平台一般的流程为:
(1)操作系统的选择。
操作系统一般使用开源版的RedHat、Centos或者Debian作为底层的构建平台,要根据大数据平台所要搭建的数据分析工具可以支持的系统,正确的选择操作系统的版本。
(2)搭建Hadoop集群。
(3)选择数据接入和预处理工具面对各种来源的数据。
(4)数据存储。
(5)选择数据挖掘工具。
(6)数据的可视化以及输出。
② hadoop是什么意思与大数据有什么关系
一、hadoop是什么意思?
Hadoop是具体的开源框架,是工具,用来做海量数据的存储和计算的。
二、hadoop与大数据的关系
首先,大数据本身涉及到一个庞大的技术体系,从学科的角度来看,涉及到数学、统计学和计算机三大学科,同时还涉及到社会学、经济学、医学等学科,所以大数据本身的知识量还是非常大的。
从当前大数据领域的产业链来看,大数据领域涉及到数据采集、数据存储、数据分析和数据应用等环节,不同的环节需要采用不同的技术,但是这些环节往往都要依赖于大数据平台,而Hadoop则是当前比较流行的大数据平台之一。
Hadoop平台经过多年的发展已经形成了一个比较完善的生态体系,而且由于Hadoop平台是开源的,所以很多商用的大数据平台也是基于Hadoop搭建的,所以对于初学大数据的技术人员来说,从Hadoop开始学起是不错的选择。
当前Hadoop平台的功能正在不断得到完善,不仅涉及到数据存储,同时也涉及到数据分析和数据应用,所以对于当前大数据应用开发人员来说,整体的知识结构往往都是围绕大数据平台来组织的。随着大数据平台逐渐开始落地到传统行业领域,大数据技术人员对于大数据平台的依赖程度会越来越高。
当前从事大数据开发的岗位可以分为两大类,一类是大数据平台开发,这一类岗位往往是研发级岗位,不仅岗位附加值比较高,未来的发展空间也比较大,但是大数据平台开发对于从业者的要求比较高,当前有不少研究生在毕业后会从事大数据平台开发岗位。
另一类是大数据应用开发岗位,这类岗位的工作任务就是基于大数据平台(Hadoop等)来进行行业应用开发,在工业互联网时代,大数据应用开发岗位的数量还是比较多的,而且大数据应用开发岗位对于从业者的要求也相对比较低。
③ 如何搭建大数据分析平台
1、 搭建大数据分析平台的背景
在大数据之前,BI就已经存在很久了,简单把大数据等同于BI,明显是不恰当的。但两者又是紧密关联的,相辅相成的。BI是达成业务管理的应用工具,没有BI,大数据就没有了价值转化的工具,就无法把数据的价值呈现给用户,也就无法有效地支撑企业经营管理决策;大数据则是基础,没有大数据,BI就失去了存在的基础,没有办法快速、实时、高效地处理数据,支撑应用。 所以,数据的价值发挥,大数据平台的建设,必然是囊括了大数据处理与BI应用分析建设的。
2、 大数据分析平台的特点
数据摄取、数据管理、ETL和数据仓库:提供有效的数据入库与管理数据用于管理作为一种宝贵的资源。
Hadoop系统功能:提供海量存储的任何类型的数据,大量处理功率和处理能力几乎是无限并行工作或任务
流计算在拉动特征:用于流的数据、处理数据并将这些流作为单个流。
内容管理特征:综合生命周期管理和文档内容。
数据治理综合:安全、治理和合规解决方案来保护数据。
3、 怎样去搭建大数据分析平台
大数据分析处理平台就是整合当前主流的各种具有不同侧重点的大数据处理分析框架和工具,实现对数据的挖掘和分析,一个大数据分析平台涉及到的组件众多,如何将其有机地结合起来,完成海量数据的挖掘是一项复杂的工作。我们可以利用亿信一站式数据分析平台(ABI),可以快速构建大数据分析平台,该平台集合了从数据源接入到ETL和数据仓库进行数据整合,再到数据分析,全部在一个平台上完成。
亿信一站式数据分析平台(ABI)囊括了企业全部所需的大数据分析工具。ABI可以对各类业务进行前瞻性预测分析,并为企业各层次用户提供统一的决策分析支持,提升数据共享与流转能力。
④ 怎么搭建大数据分析平台
未至科技数据中心解决方案是以组织价值链分析模型为理论指导,结合组织战略规版划和面向对象权的方法论,对组织信息化战略进行规划重造立足数据,以数据为基础建立组织信息化标准,提供面向数据采集、处理、挖掘、分析、服务为组织提供一整套的基础解决方案。未至数据中心解决方案采用了当前先进的大数据技术,基于Hadoop架构,利用HDFS、Hive、Impala等大数据技术架构组件和公司自有ETL工具等中间件产品,建立了组织内部高性能、高效率的信息资源大数据服务平台,实现组织内数亿条以上数据的秒级实时查询、更新、调用、分析等信息资源服务。未至数据中心解决方案将,为公安、教育、旅游、住建等各行业业务数据中心、城市公共基础数据库平台、行业部门信息资源基础数据库建设和数据资源规划、管理等业务提供了一体化的解决方案。
⑤ 大数据工程师进行数据平台建设 有哪些方案
【导语】数据平台其实在企业发展的进程中都是存在的,在进入到数据爆发式增加的大数据时代,传统的企业级数据库,在数据管理应用上,并不能完全满意各项需求。就企业自身而言,需求更加契合需求的数据平台建设方案,那么大数据工程师进行数据平台建设,有哪些方案呢?下面就来细细了解一下吧。
1、敏捷型数据集市
数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。
2、常规数据仓库
数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。
3、Hadoop分布式系统架构
当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、Facebook、网络、淘宝等国内外大企,最初都是基于Hadoop来展开的。
Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。
4、MPP(大规模并行处理)架构
进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop
MapRece框架以及MPP计算框架,都是基于这一背景产生。
MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。
关于大数据工程师进行数据平台建设方案的有关内容,就给大家介绍到这里了,中国社会发展至今,大数据的应用正在逐渐普及,所以未来前景不可估量,希望想从事此行业的人员能够合理选择。
⑥ 如何创建一个大数据平台
所谓的大数据平台不是独立存在的,比如网络是依赖搜索引擎获得大数据并开展业务的,阿里是通过电子商务交易获得大数据并开展业务的,腾讯是通过社交获得大数据并开始业务的,所以说大数据平台不是独立存在的,重点是如何搜集和沉淀数据,如何分析数据并挖掘数据的价值。
我可能还不够资格回答这个问题,没有经历过一个公司大数据平台从无到有到复杂的过程。不过说说看法吧,也算是梳理一下想法找找喷。
这是个需求驱动的过程。
曾经听过spotify的分享,印象很深的是,他们分享说,他们的hadoop集群第一次故障是因为,机器放在靠窗的地方,太阳晒了当机了(笑)。从简单的没有机房放在自家窗前的集群到一直到现在复杂的数据平台,这是一个不断演进的过程。
对小公司来说,大概自己找一两台机器架个集群算算,也算是大数据平台了。在初创阶段,数据量会很小,不需要多大的规模。这时候组件选择也很随意,Hadoop一套,任务调度用脚本或者轻量的框架比如luigi之类的,数据分析可能hive还不如导入RMDB快。监控和部署也许都没时间整理,用脚本或者轻量的监控,大约是没有ganglia、nagios,puppet什么的。这个阶段也许算是技术积累,用传统手段还是真大数据平台都是两可的事情,但是为了今后的扩展性,这时候上Hadoop也许是不错的选择。
当进入高速发展期,也许扩容会跟不上计划,不少公司可能会迁移平台到云上,比如AWS阿里云什么的。小规模高速发展的平台,这种方式应该是经济实惠的,省了运维和管理的成本,扩容比较省心。要解决的是选择平台本身提供的服务,计算成本,打通数据出入的通道。整个数据平台本身如果走这条路,可能就已经基本成型了。走这条路的比较有名的应该是netflix。
也有一个阶段,你发现云服务的费用太高,虽然省了你很多事,但是花钱嗖嗖的。几个老板一合计,再玩下去下个月工资发布出来了。然后无奈之下公司开始往私有集群迁移。这时候你大概需要一群靠谱的运维,帮你监管机器,之前两三台机器登录上去看看状态换个磁盘什么的也许就不可能了,你面对的是成百上千台主机,有些关键服务必须保证稳定,有些是数据节点,磁盘三天两头损耗,网络可能被压得不堪重负。你需要一个靠谱的人设计网络布局,设计运维规范,架设监控,值班团队走起7*24小时随时准备出台。然后上面再有平台组真的大数据平台走起。
然后是选型,如果有技术实力,可以直接用社区的一整套,自己管起来,监控部署什么的自己走起。这个阶段部署监控和用户管理什么的都不可能像两三个节点那样人肉搞了,配置管理,部署管理都需要专门的平台和组件;定期Review用户的作业和使用情况,决定是否扩容,清理数据等等。否则等机器和业务进一步增加,团队可能会死的很惨,疲于奔命,每天事故不断,进入恶性循环。
当然有金钱实力的大户可以找Cloudera,Hortonworks,国内可以找华为星环,会省不少事,适合非互联网土豪。当然互联网公司也有用这些东西的,比如Ebay。
接下去你可能需要一些重量的组件帮你做一些事情。
比如你的数据接入,之前可能找个定时脚本或者爬log发包找个服务器接收写入HDFS,现在可能不行了,这些大概没有高性能,没有异常保障,你需要更强壮的解决方案,比如Flume之类的。
你的业务不断壮大,老板需要看的报表越来越多,需要训练的数据也需要清洗,你就需要任务调度,比如oozie或者azkaban之类的,这些系统帮你管理关键任务的调度和监控。
数据分析人员的数据大概可能渐渐从RDBMS搬迁到集群了,因为传统数据库已经完全hold不住了,但他们不会写代码,所以你上马了Hive。然后很多用户用了Hive觉得太慢,你就又上马交互分析系统,比如Presto,Impala或者SparkSQL。
你的数据科学家需要写ML代码,他们跟你说你需要Mahout或者Spark MLLib,于是你也部署了这些。
至此可能数据平台已经是工程师的日常工作场所了,大多数业务都会迁移过来。这时候你可能面临很多不同的问题。
比如各个业务线数据各种数据表多的一塌糊涂,不管是你还是写数据的人大概都不知道数据从哪儿来,接下去到哪儿去。你就自己搞了一套元数据管理的系统。
你分析性能,发现你们的数据都是上百Column,各种复杂的Query,裸存的Text格式即便压缩了也还是慢的要死,于是你主推用户都使用列存,Parquet,ORC之类的。
又或者你发现你们的ETL很长,中间生成好多临时数据,于是你下狠心把pipeline改写成Spark了。
再接下来也许你会想到花时间去维护一个门户,把这些零散的组件都整合到一起,提供统一的用户体验,比如一键就能把数据从数据库chua一下拉到HDFS导入Hive,也能一键就chua一下再搞回去;点几下就能设定一个定时任务,每天跑了给老板自动推送报表;或者点一下就能起一个Storm的topology;或者界面上写几个Query就能查询Hbase的数据。这时候你的数据平台算是成型了。
当然,磕磕碰碰免不了。每天你都有新的问题和挑战,否则你就要失业了不是?
你发现社区不断在解决你遇到过的问题,于是你们架构师每天分出很多时间去看社区的进展,有了什么新工具,有什么公司发布了什么项目解决了什么问题,兴许你就能用上。
上了这些乱七八糟的东西,你以为就安生了?Hadoop平台的一个大特点就是坑多。尤其是新做的功能新起的项目。对于平台组的人,老板如果知道这是天然坑多的平台,那他也许会很高兴,因为跟进社区,帮忙修bug,一起互动其实是很提升公司影响力的实情。当然如果老板不理解,你就自求多福吧,招几个老司机,出了问题能马上带路才是正道。当然团队的技术积累不能不跟上,因为数据平台还是乱世,三天不跟进你就不知道世界是什么样了。任何一个新技术,都是坑啊坑啊修啊修啊才完善的。如果是关键业务换技术,那需要小心再小心,技术主管也要有足够的积累,能够驾驭,知道收益和风险。
⑦ hadoop课程设计
1. 大数据专业课程有哪些
首先我们要了解java语言和linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
2. hadoop视频教程下载
其实这个课程讲的“微博”项目是《HBase in action》中的例子。其中的源代码都放在 github 上面。
3. 请问哪位有《深入浅出Hadoop实战开发》的视频教程
Hadoop是什么,为什么要学习Hadoop?
Hadoop是一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop带有用Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。本课程的讲解是采用linux平台进行模拟讲解,完全基于真实场景进行模拟现实
亮点一:技术点全面,体系完善
本课程在兼顾Hadoop课程知识体系完善的前提下,把实际开发中应用最多、最深、最实用的技术抽取出来,通过本课程,你将达到技术的新高点,进入云计算的美好世界。在技术方面你将彻底掌握基本的Hadoop集群;Hadoop HDFS原理;Hadoop HDFS基本的命令;Namenode的工作机制;HDFS基本配置管理;MapRece原理; HBase的系统架构;HBase的表结构;HBase如何使用MapRece;MapRece高级编程;split的实现详解;Hive入门;Hive结合MapRece;Hadoop的集群安装等众多知识点。
亮点二:基础+实战=应用,兼顾学与练
课程每阶段都安排了实战应用项目,以此方便学生能更快的掌握知识点的应用,如在第一阶段,课程结合HDFS应用,讲解了图片服务器的设计、以及如何利用Java API去对HDFS操作、在第二阶段;课程结合HBase实现微博项目的各种功能,使学员可以活学活用。在第三阶段:HBase和MapRece结合时下了实现话单查询与统计系统,在第四阶段,Hive实战部分,通过实战数据统计系统,使学员在最短的时间内掌握Hive的高级应用。
亮点三:讲师丰富的电信集团云平台运作经验
讲师robby拥有丰富的电信集团工作经验,目前负责云平台的各方面工作,并拥有多年的企业内部培训经验。讲课内容完全贴近企业需求,绝不纸上谈兵。
更多技术亮点参考课程大纲:(本大纲以章节形式命名要为防止某些章节1章节内容超过1课时)
第1章节:
> Hadoop背景
> HDFS设计目标
> HDFS不适合的场景
> HDFS架构详尽分析
> MapRece的基本原理
第2章节
> Hadoop的版本介绍
> 安装单机版Hadoop
> 安装Hadoop集群
第3章节
> HDFS命令行基本操作
> Namenode的工作机制
> HDFS基本配置管理
第4章节
> HDFS应用实战:图片服务器(1) - 系统设计
> 应用的环境搭建 php + bootstrap + java
> 使用Hadoop Java API实现向HDFS写入文件
第5章节
> HDFS应用实战:图片服务器(2)
> 使用Hadoop Java API实现读取HDFS中的文件
> 使用Hadoop Java API实现获取HDFS目录列表
> 使用Hadoop Java API实现删除HDFS中的文件
第6章节
> MapRece的基本原理
> MapRece的运行过程
> 搭建MapRece的java开发环境
> 使用MapRece的java接口实现WordCount
第7章节
> WordCount运算过程分析
> MapRece的biner
> 使用MapRece实现数据去重
> 使用MapRece实现数据排序
> 使用MapRece实现数据平均成绩计算
第8章节
> HBase详细介绍
> HBase的系统架构
> HBase的表结构,RowKey,列族和时间戳
> HBase中的Master,Region以及Region Server
第9章节
> 使用HBase实现微博应用(1)
> 用户注册,登陆和注销的设计
> 搭建环境 struts2 + jsp + bootstrap + jquery + HBase Java API
> HBase和用户相关的表结构设计
> 用户注册的实现
第10章节
> 使用HBase实现微博应用(2)
> 使用session实现用户登录和注销
> “关注"功能的设计
> “关注"功能的表结构设计
> “关注"功能的实现
第11章节
> 使用HBase实现微博应用(3)
> “发微博"功能的设计
> “发微博"功能的表结构设计
> “发微博"功能的实现
> 展现整个应用的运行
第12章节
> HBase与MapRece介绍
> HBase如何使用MapRece
第13章节
> HBase应用实战:话单查询与统计(1)
> 应用的整体设计
> 开发环境搭建
> 表结构设计
第14章节
> HBase应用实战:话单查询与统计(2)
> 话单入库单设计与实现
> 话单查询的设计与实现
第15章节
> HBase应用实战:话单查询与统计(3)
> 统计功能设计
> 统计功能实现
第16章节
> 深入MapRece(1)
> split的实现详解
> 自定义输入的实现
> 实例讲解
第17章节
> 深入MapRece(2)
> Rece的partition
> 实例讲解
第18章节
> Hive入门
> 安装Hive
> 使用Hive向HDFS存入结构化数据
> Hive的基本使用
第19章节
> 使用MySql作为Hive的元数据库
> Hive结合MapRece
第20章节
> Hive应用实战:数据统计(1)
> 应用设计,表结构设计
第21章节
> Hive应用实战:数据统计(2)
> 数据录入与统计的实现
4. 哪个课程题库有hadoop的题
这是在一个平衡Hadoop集群中,为数据节点/任务追踪器提供的规格:
在一个磁盘阵列中要有12到24个1~4TB硬盘
2个频率为2~2.5GHz的四核、六核或八核CPU
64~512GB的内存
有保障的千兆或万兆以太网(存储密度越大,需要的网络吞吐量越高)
名字节点角色负责协调集群上的数据存储,作业追踪器协调数据处理(备用的名字节点不应与集群中的名字节点共存,并且运行在与之相同的硬件环境上。)。Cloudera客户购买在RAID1或10配置上有足够功率和级磁盘数的商用机器来运行名字节点和作业追踪器。
NameNode也会直接需要与群集中的数据块的数量成比列的RAM。一个好的但不精确的规则是对于存储在分布式文件系统里面的每一个1百万的数据块,分配1GB的NameNode内存。于在一个群集里面的100个DataNodes而言,NameNode上的64GB的RAM提供了足够的空间来保证群集的增长。我们也把HA同时配置在NameNode和JobTracker上,
这里就是为NameNode/JobTracker/Standby NameNode节点群的技术细节。驱动器的数量或多或少,将取决于冗余数量的需要。
4–6 1TB 硬盘驱动器 采用 一个 JBOD 配置 (1个用于OS, 2个用于文件系统映像[RAID 1], 1个用于Apache ZooKeeper, 1个用于Journal节点)
2 4-/16-/8-核心 CPUs, 至少运行于 2-2.5GHz
64-128GB 随机存储器
Bonded Gigabit 以太网卡 or 10Gigabit 以太网卡
记住, 在思想上,Hadoop 体系设计为用于一种并行环境。
5. 大数据的课程都有哪些
大数据本身属于交叉学科,涵盖计算机、统计学、数学三个学科的专业知识。所以大数据的课程内容,基本上也是围绕着三个学科展开的。
数理统计方面:数学分析、统计学习、高等代数、离散数学、概率与统计等课程是基本配置。
计算机专业课程:数据结构、数据科学、程序设计、算法分析与设计、数据计算智能、数据库系统、计算机系统基础、并行体系结构与编程、非结构化大数据分析等,也是必备课程。
而想要真正找到工作的话,大数据主流技术框架,也要去补充起来,这才是找工作当中能够获得竞争力的加分项。
6. hadoop 集群教程
要教程?不明白你这个啥意思
7. 有哪些好的hadoop学习资料
1."Hadoop.Operations.pdf.zip"//vdisk.weibo/s/vDOQs6xMAQH62
2."Hadoop权威指南(中文版)(带书签).pdf"Hadoop权威指南(中文版)(带书签).pdf
3."[Hadoop权威指南(第2版)].pdf"[Hadoop权威指南(第2版)].pdf
4."hadoop权威指南第3版2012.rar"hadoop权威指南第3版2012.rar
5.《Hadoop技术内幕:深入解析HadoopCommon和HDFS.pdf"《Hadoop技术内幕:深入解析Hadoop Common和HDFS.pdf
6."Hadoop技术内幕:深入解析MapRece架构设计与实现原理.pdf"Hadoop技术内幕:深入解析MapRece架构设计与实现原理.pdf
7."Hadoop实战.pdf"Hadoop实战.pdf
8."Hadoop实战-陆嘉恒(高清完整版).pdf"Hadoop实战-陆嘉恒(高清完整版).pdf
9."Hadoop实战(第2版).pdf"Hadoop实战(第2版).pdf
10."HadoopinAction.pdf"Hadoop in Action.pdf
11"Hadoop in practice.pdf"Hadoop in practice.pdf
12"HadoopThe.Definitive.Guide,3Ed.pdf"Hadoop The.Definitive.Guide,3Ed.pdf
13."O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf"O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf
14."hadoop入门实战手册.pdf"hadoop入门实战手册.pdf
15."Hadoop入门手册.chm"Hadoop入门手册.chm
16."windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解.doc"windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解.doc
17"在Windows上安装Hadoop教程.pdf"在Windows上安装Hadoop教程.pdf
18."Hadoop源代码分析(完整版).pdf"Hadoop源代码分析(完整版).pdf
19."hadoop-api.CHM"hadoop-api.CHM
20."HBase-Hadoop@小米.pptx" HBase-Hadoop@小米.pptx
21."但彬-Hadoop平台的大数据整合.pdf"但彬-Hadoop平台的大数据整合.pdf
22."QCon2013-罗李-Hadoop在阿里.pdf"QCon2013-罗李
23."网络hadoop计算技术发展.pdf"网络hadoop计算技术发展.pdf
24."QCon-吴威-基于Hadoop的海量数据平台.pdf"QCon-吴威-基于Hadoop的海量数据平台.pdf
25."8步安装好你的hadoop.docx"8步安装好你的hadoop.docx
26."hadoop运维经验分享.ppsx"hadoop运维经验分享.ppsx
27."PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践.rar"PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践.rar
28."Hadoop2.0基本架构和发展趋势.pdf"Hadoop 2.0基本架构和发展趋势.pdf
29."Hadoop与大数据技术大会PPT资料.rar"Hadoop与大数据技术大会PPT资料.rar
30."Hadoop2011云计算大会.rar"Hadoop2011云计算大会.rar
⑧ 搭建大数据分析平台,哪家公司做的比较好
随着大数据应用成熟,越来越多的公司可以进行大数据平台的搭建,我们公司就是其回中之一答,那么应该如何搭建呢?
(1)操作系统的选择
操作系统一般使用开源版的RedHat、Centos或者Debian作为底层的构建平台,要根据大数据平台所要搭建的数据分析工具可以支持的系统,正确的选择操作系统的版本。
(2)搭建Hadoop集群
Hadoop作为一个开发和运行处理大规模数据的软件平台,实现了在大量的廉价计算机组成的集群中对海量数据进行分布式计算。
(3)选择数据接入和预处理工具
面对各种来源的数据,数据接入就是将这些零散的数据整合在一起,综合起来进行分析。
(4)数据存储
除了Hadoop中已广泛应用于数据存储的HDFS,常用的还有分布式、面向列的开源数据库Hbase
(5)选择数据挖掘工具
Hive可以将结构化的数据映射为一张数据库表,并提供HQL的查询功能,它是建立在Hadoop之上的数据仓库基础架构,是为了减少MapRece编写工作的批处理系统。
(6)数据的可视化以及输出API
⑨ hadoop集群搭建(Hadoop 3.1.3 /Hive 3.1.2/Spark 3.0.0)
完全分布式HA
服务器规划
技术栈包含
hdfs
hive on spark
presto
doris
superset
azkaban
kafka
fluent\flume
sqoop\kettle\flink-cdc
atlas
禁用swap/selinux
修改 IP/修改主机名/及主机名和 IP 地址的映射
时间同步/设置时区/自动时间同步
关闭防火墙
关闭SELINUX
新建用户
免密登录(先升级openssh)
发送密钥(dw01上执行)
授权
Tencent Kona v8.0.8-GA
腾讯开源的konaJDK,针对大数据场景下优化
解压并重命名至安装地址:/usr/local/java/
zookeeper-3.5.9
解压并重命名至安装地址:/usr/local/zookeeper
apache-hadoop-3.1.3 解压至安装地址:/usr/local/hadoop
修改环境变量
/usr/local/zookeeper/conf
启动zookeeper集群(每台执行)
三台服务器启动
格式化namenode(dw01执行)
启动namenode(dw01上执行)
在[nn2]和[nn3]上分别执行,同步 nn1 的元数据信息
启动nn2 nn3,分别执行
所有节点上启动datanode
将[nn1]切换为 Active
查看状态
配置yarn-site.xml
配置mapred-site.xml
分发配置文件,启动yarn(dw03 启动)
dw03节点
dw01节点
dw01执行
dw03执行
测试样例
启动脚本
HA切换namenode手动
修改yarn显示log的bug
⑩ 大数据平台建设有哪些步骤以及需要注意的问题
大数据平台的搭建步骤:
1、linux系统安装
一般使用开源版的Redhat系统--CentOS作为底层平台。为了提供稳定的硬件基础,在给硬盘做RAID和挂载数据存储节点的时,需要按情况配置。
2、分布式计算平台/组件安装
国内外的分布式系统的大多使用的是Hadoop系列开源系统。Hadoop的核心是HDFS,一个分布式的文件系统。在其基础上常用的组件有Yarn、Zookeeper、Hive、Hbase、Sqoop、Impala、ElasticSearch、Spark等
使用开源组件的优点:1)使用者众多,很多bug可以在网上找的答案(这往往是开发中最耗时的地方)。2)开源组件一般免费,学习和维护相对方便。3)开源组件一般会持续更新,提供必要的更新服务『当然还需要手动做更新操作』。4)因为代码开源,若出bug可自由对源码作修改维护。
3、数据导入
数据导入的工具是Sqoop。用它可以将数据从文件或者传统数据库导入到分布式平台『一般主要导入到Hive,也可将数据导入到Hbase』。
4、数据分析
数据分析一般包括两个阶段:数据预处理和数据建模分析。
数据预处理是为后面的建模分析做准备,主要工作时从海量数据中提取可用特征,建立大宽表。这个过程可能会用到Hive SQL,Spark QL和Impala。
数据建模分析是针对预处理提取的特征/数据建模,得到想要的结果。这一块最好用的是Spark。常用的机器学习算法,如朴素贝叶斯、逻辑回归、决策树、神经网络、TFIDF、协同过滤等,都已经在ML lib里面,调用比较方便。
5、结果可视化及输出API
可视化一般式对结果或部分原始数据做展示。一般有两种情况,行数据展示,和列查找展示。要基于大数据平台做展示,会需要用到ElasticSearch和Hbase。Hbase提供快速『ms级别』的行查找。 ElasticSearch可以实现列索引,提供快速列查找。
大数据平台搭建中的主要问题
1、稳定性 Stability
理论上来说,稳定性是分布式系统最大的优势,因为它可以通过多台机器做数据及程序运行备份以确保系统稳定。但也由于大数据平台部署于多台机器上,配置不合适,也可能成为最大的问题。
2、可扩展性 Scalability
如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。