导航:首页 > 网络数据 > 运营商大数据展望

运营商大数据展望

发布时间:2023-02-19 06:08:23

❶ 电信运营商转型发展如何应用大数据

因此,运营商拥有的是更加名副其实的大数据,如果将这些数据加以应用,必将为运营商带来巨大的商业价值。 大数据为电信行业带来巨大变化 Gartner预测到2020年大约75%的企业都将大数据分析融入其日常经营决策中,未来大数据分析将成为企业经营的一项基本能力。 根据Sysbase的统计分析,电信行业通过在运营中应用大数据,人均产值提升了17%,而在行业价值贡献方面更是排在了所有行业的首位。在电信行业收入增幅日趋放缓的今天,这样的产值增幅无疑是鼓舞人心的。 通过构建行业大数据分析系统让运营商具备了大数据分析处理的技能,但这只是在大数据时代获得成功的基础;运营商还需要从企业战略和经营思维层面改变,发现新的机遇和模式并付诸实施,才能真正将自己所掌握的大数据资产和大数据技能转变为企业价值。 大数据运用的四个类型 运营商运用大数据主要有四个类型。首先,在市场层面,运营商可以利用大数据对自身的产品进行服务,通过大数据分析用户行为,改进产品设计,并通过用户偏好分析,及时、准确进行业务推荐,强化客户关怀,这样就可以不断改善用户体验,增加用户的信息消费以及对运营商的粘稠度;其次,在网络层面,可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率;第三,在企业经营层面,可以通过业务、资源、财务等各类数据的综合分析,快速准确地确定公司经营管理和市场竞争策略;第四,在业务创新层面,可以在确保用户隐私不被侵犯的前提下,对数据进行深度加工,对外提供信息服务,为企业创造新的价值。这样,大数据将助力运营商实现从网络服务提供商,向信息服务提供商的转变。 由于大数据产业具有强烈互联网特征,现有的运营模式很难帮助运营商实现大数据产业的迅速发展,这是因为,对于大数据产业,运营商传统的金字塔式的组织结构已经过时,传统架构的信息系统及组织架构已无法应对海量数据和创新型应用,那种由上而下的运营模式无法更接近用户的需求,显然已经阻碍运营商自身大数据产业的纵深发展。根据市场需求,运营商必须全面转向以客户和消费者为中心的运营体系,重新梳理企业的经营模式和组织架构,这就是模式的创新,大数据产业发展要求运营商实现管理经营和市场信息系统完美对接,新型大数据应用必将助力运营商向信息服务模式转型。 面向大数据时代,运营商的及时转型成为必然,否则将有被互联网企业超越的可能性。理论上讲,运营商拥有颇具优势的大数据资源并不是完全不可替代,例如,用户的位置信息就可以通过多种APP应用获得,用户的网络使用信息也可以通过多家互联网企业合作获取,互联网企业通过泛互联网化收集更多的大数据信息。另一方面,多行业的垂直整合将成为趋势,在数据应用层面,行业企业通过多种手段搜集大量的用户数据,将更贴近用户,更理解用户,为其提供更适当的服务,大数据将成为资产更具有战略意义,各个行业及单位都在关注大数据。 根据大数据数量大、时效性要求高、数据种类及来源多样化等特征,运营商首先获取更多有用的大数据资源,例如,很多的网络运行信息,包含大量有价值的用户行为和位置信息,这样的信息可以加以利用。有了资源应该加以利用,避免大数据资源的浪费。事实上,一些运营商拥有大数据这样的金山,却似乎无奈坐看并逐渐沦为管道,在不断强化传统市场的效益考核,却好像在忽视大数据价值的流失。 直面数据分析挑战 当然,海量数据的出现、数据结构的改变,也给运营商的大数据管理及分析带来了挑战,一是由于多种业务的发展、市场需求的变化和网络规模的扩大使得运营商大数据迅速的增加,这增加了运营商大数据存储和处理的难度,使得现有数据仓库无法线性扩容,这表明传统的数据仓库无法有效存储日益增长的业务数据;二是由于新型大数据服务不同于传统通信业务分析特点,需要对内容等非结构化、大容量信息进行多用户、多应用、实时有效的分析,传统的架构和数据仓库处理已不能满足新的信息服务需求。因此,运营商需要建立新型大数据中心,来存储、分析和处理海量数据,必要的投入是必不可少的。 大数据产业出现和发展是现代信息技术与互联网时代海量信息的发展到一定阶段的必然结果,大数据应用将是海量数据、现代信息技术与各种社会应用的一次化学反应,必将对当今社会的信息技术、商业模式和相关的法律法规产生深刻的变革。

❷ 大数据时代,运营商如何应对

2010年全球数据量达到1.2ZB,2011年全球数据量达到1.8ZB,到2020年全球数据量将达到35ZB。数据密度将达到前所未有的高度,大数据时代的画卷已经展开。 随着大数据时代的到来,产业格局正在重塑,传统电信运营商面临低值化、管道化,在新的产业链中需要谋求新突破。专家认为,运营商应该跳出互联网看互联网,将大数据作为重点业务发展领域,毕竟运营商拥有的“数据矿产”资源是任何其他企业所不具备的,运营商应该基于大数据的基础发展延伸业务。面对大数据时代的潮流以及互联网企业的竞争,运营商应当利用自有数据优势提升自身数据运营能力。 首先,运营商应整合现有数据建立数据集市,利用实时处理大数据的能力,打造基于数据的实时营销解决方案,提升企业销售服务能力。大数据处理分析平台的优势在于对海量数据处理的实时性,技术优势可以有效地保障实时营销解决方案的实施。实时营销解决方案较传统营销方案具有更好的营销效果:更具时效性,一旦有实时行为数据产生,立即选定目标用户进行营销推送,保证在较短时间内送达客户,传统营销则是定期执行营销;目标客户动态选取,通过客户行为变化结合客户特征动态筛选目标客户,传统营销往往是通过长期分析挖掘客户兴趣爱好形成客户标签,在营销前预先挑选出客户。 从现有实时营销触发机制考虑,主要集中在用户行为触发、位置信息触发和热点事件触发等。用户行为触发机制是分析用户的行为偏好,如音乐、阅读和视频等,运营商可以定向推销自有增值业务;位置信息触发机制是根据用户位置轨迹信息推送自有业务或者合作商家的产品信息,如对接近某大型商场的用户推送商店优惠信息,吸引客户消费;热点事件触发机制是锁定对热点事件感兴趣的客户进行针对性营销,如锁定关注NBA总决赛的微博用户,进行相关的篮球商品推荐。 其次,运营商应当成为信息的融合者,利用自有的品牌优势打造权威指数类产品,为客户的决策提供参考依据。相较于其他行业,电信运营商的用户群体相对稳定,所采集信息较完整,而且在整个产业链中运营商的影响力较强,拥有可信品牌,数据中蕴藏着巨大的客户信息、商业信息和业务信息。因此,与其他权威指数类产品相比,电信运营商基于数据源的优势可以提供更加全面、详尽、客观的产品,对于分析中欠缺的数据可以同其他行业进行合作共同挖掘数据中隐含的价值。 电信运营商指数产品可以辐射影视、电子商务等很多行业,并且已经在一些行业进行了应用。在大数据处理分析平台中汇聚移动互联网DPI数据、IPTV使用数据和宽带互联网DPI数据,可以综合以上数据分析用户访问视频网站的偏好,包含喜爱的导演、演员、故事类型等,形成指数类分析报告,为电影生产、影院上线电影选取等提供决策依据。通过这种方式打造的热播美剧《纸牌屋》,让全世界影视业感受到了大数据的魅力。 最后,电信运营商可为智慧医疗、智能交通、智慧物流、智能制造等领域提供解决方案,提升数据价值。在大数据解决方案应用方面,IBM发展战略很值得运营商借鉴,以客户需求为导向对数据进行深度分析,提升现有数据价值。当前,医院资产运营管理也正面临诸多挑战:医疗设备资产种类繁多,产品更新速度快;管理分散、职能弱化、管控失据;统计归口不统一,管理制度不健全等。电信运营商在大数据平台建设过程中针对这些问题的解决方案积累了较多的宝贵经验,电信运营商可以将成功的经验应用到医疗行业的大数据处理平台建设中,为医疗行业提供解决方案以及咨询服务。交通管理行业在大数据时代,需要解决基于大数据及时查询、及时分析等业务需求。电信运营商可以利用如全球眼等业务和云存储方面的技术积累,提供海量交通数据的存储、分析、应用,同时利用智能管道进行交通信息的及时推送,这样可以更加有效地保障交通管理行业的及时性要求。 分析认为,马云的“大物流”计划可能会给物流行业带来又一个高速发展的机遇。电信运营商通过用户的移动互联网、宽带互联网的访问情况,分析用户的购物偏好或者购物意愿,为物流公司智能分配各个节点的仓储量及仓储产品提供数据支撑及解决方案,物流公司也可以实现公司信息化管理。另外,中国制造企业面临着巨大压力,世界工厂的地位正受到挑战。面临如此压力,制造业需要更加准确地了解市场动态,这就需要强大的企业信息化能力,但是很多中小型企业对于企业信息化建设投入有限。

❸ 大数据未来将是怎样的发展趋势

我们先来看一下大数据的定义:

大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据到底是什么,如果简单来理解大数据就是 4V 的特征:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值),即 数据体量巨大、数据类型繁多、价值密度低、处理速度快。

大数据的应用

洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

……

还有一个经典小故事,它的背后原理也是大数据的应用!

20世纪90年代,美国沃尔玛超市管理人员分析销售数据时,发现了一个令人难以理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品,会经常出现在同一个购物篮中,且大多出现在年轻的父亲身上。

分析背后原因是,在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲去超市买尿布。

父亲在购买尿布的同时,往往会顺便为自己购买啤酒。

由此,沃尔玛就在卖场尝试将啤酒与尿布摆放在相同区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物,从而极大提升商品销售收入。

大数据与我们息息相关

我们一定听过AlphaGo对战柯洁,机器人通过海量的围棋数据进行学习从而战胜了围棋高手柯洁。

但大数据更是与我们每个人的生活息息相关,来看看大数据为我们的生活带来了什么?

❹ 运营商大数据对外价值变现的十大趋势

作者 | 傅一平

来源 | 与数据同行

最近中国移动提出了DICT战略,显示其在政企市场进一步拓展的雄心,在这个背景下,重新探讨下运营商的大数据变现很有意义。虽然近半年“大数据圈”似乎有点风声鹤唳,但对于合法合规的进行大数据业务的企业来讲没有什么影响。

下面笔者就结合自身实践,给出未来2-3年运营商大数据价值变现的十个趋势判断,仅代表个人看法,希望于你有所启示。

1、行业服务边界不断拓展

依托于运营商潜力巨大的数据资源和政企市场渠道资源,经过多年的市场培育和拓展,当前运营商大数据业务从原来的金融、旅游等行业逐步拓展到政府、旅游、交通、教育、商业、招聘、医疗等各个各业。

运营商ICT业务在推进中,也孕育了不少大数据业务的商机,大数据业务则反过来促进了ICT业务的发展,因为大数据除了业务价值,还有一定的社会品牌效应,两者通过融合可以形成合力。

随着企业数字化转型的加快及产业互联网的崛起,作为未来社会基础设施的大数据,将与云计算、人工智能、物联网、区块链一起,在行业领域开疆扩土,其应用的边界几乎是无限的。

2、进入行业应用的深水区

大数据在行业领域拥有着巨大的潜力并不意味着运营商就能分得多少杯羹。虽然运营商大数据业务当前在金融、旅游等行业已经有所斩获,但这些行业低垂的果实基本要被摘光了。

以金融为例,4-5年前运营商切入的验真,失联触达等业务,当前仍然是运营商大数据变现的主力,但金融行业并未如运营商原先预料的那样,在贷前、贷中、贷后中给予运营商更多的机会,运营商很多变现业务模式的拓展基本是停滞的,起码不够快。

在大量的其他行业领域,运营商往往只能做到蜻蜓点水,而无法聚沙成塔,比如业务的复购率很低。

从定性的角度讲,运营商对于行业的理解还是比较浅的,其大量的行业应用游走在企业的核心生产流程之外,大数据似乎是奢侈品,而不是必需品,因此粘性是不够的。

以金融验真这个业务为例,其附加值并不高,且容易被替代,想想这几年对于金融行业的理解又增加了多少呢?这些都是需要反思的地方。

笔者曾经在智慧交通相关文章中提到:运营商的数据在很多领域其实是很有前途的,但必须深耕,要理解这个行业的业务,通晓这个行业的算法,不停的打磨产品,从而逼近核心。

可以这么说,运营商大数据将很快进入行业应用的深水区,为了顺应这个趋势,运营商需要建立专业化的组织去攻坚克难,挑战很大。

3、与互联网公司的竞争加剧

互联网应该没有把运营商当成主要的大数据竞争对手,但运营商进入这个领域会跟互联网公司形成事实上的竞争,无论是新零售,智慧交通等等,进入者都会感受到互联网巨头的压力。

比如运营商要为大型商超提供数据服务,但互联网公司早就捷足先登,新零售是互联网出的概念,当运营商还在进行自身渠道的艰难转型时,互联网公司线下商业的版图已经规划好了,当然也包括了大数据业务。你到商超谈,人家一开口就提XX通怎么样怎么样。

当然还不仅仅是这些。

无论是互联网公司在To G上自顶向下的推广策略,还有诸如城市大脑单一采购来源的霸气,都在说明巨型互联网公司在这些领域的影响力。

运营商要获得机会,得动用一切可用的资源,发挥自己数据的差异化价值,由点及面去寻找机会。实践证明,管道数据的价值是巨大的,但巨型互联网公司的数据也越来越好,这是不得不面对的现实。

4、从要素驱动向要素+能力驱动转型

运营商当前在大数据变现上的突破只能说摘取了低垂的果实,但这种通过简单数据加工形成的数据产品竞争力是不够的,也是不可持续的。

比如做智慧交通,如果位置精度和覆盖度不够,连速度都测不准,根本做不出高质量的数据产品。

应该来讲,运营商从来就没有现成的、高精度的、可以到用户级别的位置数据,粗精度的原始位置数据未来可能连支撑运营商自己的业务转型都不够,运营商需要充分挖掘现有位置数据的潜力,通过建模等方式把较为精准的位置模型做出来,才能有基本的大数据变现底蕴。

位置精度的提升虽然是一小步,但却是对外大数据变现的一大步。位置准了,运营商对于人们整个线下生活的理解就准了,无论是客流,路网,OD等等都不再话下。

现在运营商依靠数据资源这个要素能走出第一步是不错的,但光靠资源驱动已经不够了,能力必须过来接棒,没有能力加持的运营商大数据变现前景暗淡。

因此,运营商大数据变现未来不再是躺着挣钱,而是要从原始数据的驱动向数据+能力双驱动转型,这个能力包括人才、技术、数据、产品、运营等等,这是不容置疑的。但如果只是空喊着口号不敢探索尝试,则也许连能力提升的机会都没有。

5、持续强化大数据合作的生态

大数据变现从底向上涉及平台、数据、建模、产品、方案、渠道、咨询、运营、安全等一系列的内容,运营商无法一手包办,因此必须建立合作的生态。

从业务的角度看,缺乏渠道合作伙伴、缺乏行业解决方案对于运营商都是很现实的挑战,最大的痛苦莫过于不知道商机在哪里,不知道自己想做的这个数据或产品有没有前途。运营商不可能瞬间将现有的客户经理队伍转为数字化产品的销售队伍,毕竟知识结构的要求不一样。

虽然可以采取MVP的方式推进,但一方面试错的成本摆在那里,运营商也并没有资本为其背书,另一方面时间成本也大了点。现在很多运营商都有合作伙伴招募计划,这是很好的尝试,但符合要求的合作伙伴还是太少了。

从开放的角度看,中国移动的梦网曾经创造过辉煌,但开放这句口号不是随便喊喊的,你得建立一套标准,清晰的告诉别人你有什么能力,然后如何能方便的接入。

比如当我们在互联网大会展示城市实验室产品的时候,发现仍然有那么多的人惊讶于运营商竟然还能做这个,就说明我们在开放这条道上还有很长的路要走。

而当笔者第一次访问阿里云网站的时候,其较好的使用体验给我留下了深刻的印象,随后定期的营销推送起码说明是用心的,又比如笔者第一次使用腾讯云域名申请时,其后腾讯云客服的电话调研也是很及时的。

因此,能否跟更广泛的合作伙伴建立连接,能否建立起开放的平台,能否确保信息的安全,在很大程度上决定了运营商大数据变现的蛋糕能做多大。

6、通过集中化获得溢价能力的趋势将加强

由于历史原因运营商的大数据实际是分省存储和运营的,这跟互联网公司天然的集中统一的数据基因是完全不同的。虽然一些运营商在集中化上做了很多努力,但相对互联网公司,还是有一些差距。

各省本地化做一些产品虽然带来了灵活性,但造成了事实上的重复开发,这种模式在创新阶段其实没什么问题,但最大的问题是各个省能否有足够的资源去保证产品的持续优化,无论从数据的角度,还是从运营的角度看,我们都需要一定的集约化机制来确保高效低成本的运作。

但这还仅仅是一个方面。

另一方面,相较互联网,由于数据的割裂,运营商基于单个省的数据做出的产品溢价能力不高,往往只能服务于特定区域,在很多竞争中会处于劣势,比如当前运营商基于位置数据的应用很多,但为什么上网数据的变现却很少呢?

这个不仅仅是简单的https问题,更是因为客户对于上网数据的诉求基本是全国的,没有地域的概念,这让运营商失去了很多突破的机会。

因此,运营商的大数据在一个省创新后迅速全网复制是一直要坚持的策略,而基于集中化的数据进行创新是提升产品竞争力的一个关键。

7、运营商DICT战略将使得大数据获得更大支持

随着数字经济的发展和行业数字化的进步,传统产业转型升级的需求强劲,运营商和云服务提供商,均在强化云、网、端、边协同,推出“云+网+DICT”智能化解决方案,帮助企业实现更深层次的数字化转型。

运营商的政企2B市场是当前关注的焦点,而云+DICT(DT+CT+ICT+IDC)又是其中的关键,这意味着未来各种资源会逐步会向DICT倾斜,大数据需要抓住这个机会,通过DICT的融合来促进大数据业务的规模化发展,所谓“借势”。

另外,当前三大运营商已经宣布了5G商用,中国移动也发布了了“5G+”计划,其中包括“5G+AICDE”计划,“5G+AICDE”是将5G作为接入方式,与人工智能(AI)、物联网(IoT)、云计算(Cloud Computing)、大数据(Big Data)、边缘计算(Edge Computing)等新兴信息技术深度融合,准备打造以5G为中心的泛智能基础设施。

5G时代人和物、物和物之间的连接产生的数据类型将会更多,5G更密集的基站布点意味着更高的定位精度,5G业务形式更加多样意味着管道中的数据内容会爆发性增加,运营商对于客户行为的刻画能力将进一步加强,每项垂直5G行业应用都将会与大数据有着千丝万缕的关系,这些对于运营大数据的发展是利好。

8、日益趋紧的数据安全要求对于运营商既是挑战也是机遇

运营商虽然拥有海量的数据,但很多省公司并未实质性的开展大数据业务,很多是基于安全的考量。即使是正在开展大数据变现业务的运营商省份,合规合法经营也是其开展大数据业务的底线,运营商对于大数据的业务创新是相对保守的。

事实上,运营商当前能开展的各项大数据新业务,都需要经过内部极其严格的法律、安全多道审核,加上行业、集团、省出台的各种安全管理规范的约束,还有定期的安全检查,都让运营商大数据业务从一出生就经历着内部一轮轮的安全洗礼。

2019年持续发酵的各种信息安全事件让大数据圈似乎如履薄冰,但其打击的还是各种违法经营和黑市交易。事实上,经过新一轮的洗盘,运营商也许会面临较以往更好的商业环境,数据可能会变得更为稀缺,毕竟以前黑市的数据交易会导致良币驱逐劣币的现象,当然这也只是一种猜测。

可以肯定的是,未来国家对于信息安全管控的趋紧会使得大数据业务的创新变得更具挑战性,但合规合法的进行大数据价值挖掘,助力中国经济高质量发展始终是主流,运营商虽然会面临安全上的挑战,但也有更多的机会。

9、运营商大数据对于TO C业务的探索不会停止

互联网公司TO C业务前期是靠钱烧出来的,毕竟消费者是趋利的,拥有高体验的产品和一定基础的用户后,互联网公司才有了珍贵的海量数据,这个时候大数据才有用武之地,反过来赋能业务发展,这是互联网公司应用大数据的本质。

运营商天然就有大数据,但大数据变现的实践还是告诉我们,运营商的数据维度还是不够丰富,比如缺乏消费数据,而巨型的互联网公司通过应用的丰富不断积累着更多维度的数据。

事实上,当前运营商的数据维度拓展基本是停滞不前的,如果不加以改善,在不久的将来,运营商的数据优势会逐步变小,最终会影响到产品的竞争力。

现在运营商建立了很多专业公司,比如中国移动的咪咕,有人会质疑这些公司能否赚钱,姑且不从战略的角度思考这个问题,即使站在大数据的角度看,这些公司的拓展能够让运营商拥有更丰富的数据,这就很有价值。最近中移金科成立了,支付数据对于DT有多重要不用解释吧,因此意义是很深远的。

其实做大数据产品的,哪个没有点TO C的梦想?希望运营商能基于自己的资源优势,结合大数据的差异化特点,能够打造出真正的既卖座又叫好的TO C产品。

10、运营商对于低价值密度的大数据处理能力要求会大幅提升

运营商的DPI数据具有典型的大数据特征,有潜力但价值密度低,但这个数据是运营商除位置数据以外最珍贵的数据,很多人说这个数据在运营商变现中实际没啥应用场景,或者言必称https,那是比较业余的说法。

随着5G时代的到来,对于DPI数据的有效开采挖掘对于运营商大数据变现是核心的基础工作之一。

首先,DPI这个技术原生是为网络优化服务的,比如很多字段对于数据变现没有价值,能否考虑更高性价比的处理手段?这个就需要运营商针对性的进行研究,比如从客户洞察、精准营销和价值变现的角度去高效低成本的采集管道中的数据。

其次,5G海量、低延时、非结构数据的特点,将进一步促进数据存储、处理和分析技术的进步,即使是当前的4G,从采集到应用的时延也是比较高的,很难达到场景式营销的要求,而且保留的周期也非常有限。

最后,5G大数据的价值密度将进一 步降低,对AI的能力要求将更高,即使是针对当前的4G数据,运营商的NLP等能力储备也是不够的,因此要尽快补足短板。

当然,以上十个趋势只是笔者的个人判断,受限于自己的能力和视野,以上谈的肯定有很多不到位的地方,权当笔者抛砖引玉,如果能引发一点思考,那就更好了。

❺ 大数据时代下 运营商市场战略分析

大数据时代下 运营商市场战略分析

大数据一直是近几年的热门关键词,伴随着移动互联网、智能终端、云计算、物联网技术的发展,呈现爆炸式额增长,数据密度空前提高,大数据时代的波澜壮阔正在逐步的开展,大数据的未来上升空间空前巨大。

相较于零售业、金融证券、政府管理、制造业、医疗服务也等行业造大数据应用的尝试,电信业作为数据金矿的拥有者,具有明显的数据优势和研发基础,在面临“管道化”的当前形势下,大数据无疑成为了运营商转型的一把利刃,面对残酷的互联网化竞争提供差异化的手段。下面我们将从大数据对运营商市场工作的影响入手,来提出国内运营商大数据时代战略市场工作转型建议,以供运营商实践参考。

【大数据对运营商市场工作的影响】

调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右,成为运营商的一项战略性优势。大数据应用的主要需求包括商机挖掘、竞争情报、客户维系、收入提升、减少开支、改善运营管理等,其中有50%以上是和市场前端工作在开展息息相关。下面主要从电信运营商职能划分角度来的分析大数据对运营商市场工作的影响。

一、影响产品研发的模式

电信产品的研发更多的是以技术驱动和竞争驱动为主,电信运营商基于客户需求的研发驱动一直弱于互联网企业。

设计:分成两各模块,中间加一条竖线隔开

在大数据的时代下,一方面终端的使用偏好,如品牌、应用等可以得以分析识别,有助于电信定制机的品牌选择和功能优化;

另一方面新业务的使用反馈,包括投诉等,可以帮助新业务功能的优化或者新产品的开发。

综上我们可以看出,大数据时代为产品研发改革提供基础,以客户需求为导向的迭代开发时代即将到来。

二、影响市场营销的模式

用户画像:指基于用户终端信息、位置信息、通话行为、手机上网行为轨迹等丰富的数据,为每个用户打上人口统计学特征、消费行为、上网行为和兴趣爱好标签,并且借助数据挖掘技术进行用户的分群,完善用户的360度画像,帮助运营商深入的去了解用户的行为偏好的需求特征等;

关系链研究:指通过分析用户的通讯录、通话行为、网络社交行为以及用户资料等数据,开展交往圈子的分析与研究,并且识别圈子中的主要影响人物以及影像链等。

基于用户画像和关系链的研究可以建立用户与业务、资费套餐、终端类型、在运用网络的精准匹配上,在推送渠道、推送时机、推送方式上满足用户的需求,事先精准化营销。

三、影响渠道运营的模式

相比较而言,电子渠道比传统的实体渠道更容易记录潜在用户的消费行为、特征、路径,可以提供互联网的大量行为数据,因此大数据时代下,运营商的电子渠道的发展将会进一步的扩大。电子渠道除了销售、服务职能之外,后续将逐步的承担“大数据资源池”的重要角色。

另外,线上线下渠道协同是电信渠道体系转型的蛀牙方向,而线上线下渠道有效协同的关键诀窍就是从用户的需求出发,制定合理的线上线下渠道触点界面,为客户提供无缝全面的渠道服务,而要实现这一目标也需要大数据技术的支撑,通过现有数据挖掘不同类型用户的渠道使用路径。

四、影响客户服务的模式

目前,电信行业一直都在强调用户体验,但是却并不了解用户的真正需求,使得体验二字束之高阁。大数据时代要想提供有效路径,必须利用大数据挖掘技术,来书别用户的特征,以及用户的消费习惯,及时的消费提醒、偏好产品的发送、维系精准跟踪等个性化服务。

由此可见,大数据将为移动互联网带来全新的改革,给用户服务带来极大的想象空间和无限的发展前景,开展针对用户消费数据的分析评估,可以帮助改善运营商自身的服务质量。

五、丰富产品提供的内容

大数据可以作为对外销售的产品也已经成为了全球的共识。为了确保用户隐私不被侵犯的前提下,对数据进行深度加工,对外提供信息服务,为企业创造全新的价值体系。目前,大数据对外商业化的产品形态主要包括市场洞察报告、精准营销广告、数据监测、决策支撑等多种方式。目前,国外运营商纷纷尝试现有的数据,进行整合处理,来提供给第三方以求得全新的收益。

例如:西班牙电信,推出了“智慧足迹”,基于完全匿名和聚合的移动网络数据,帮助零售商分析顾客来源和各大商铺、展位的人流情况以及消费者特征和消费能力,并将洞察结果面向政企客户提供客流量的分析和零售店面选址的服务,目前该模式已经在国内WiFi运营领域广泛应用。

【对国内运营商战略市场工作转型建议】

一、战略上重视,组织上保证

虽然电信运营商在数据资源方面具有天然的优势,但必须承认在大数据运营方面,不管是平台研发能力还是运营能力,电信运营商的优势并不明显,和互联网企业以及一些专门做大数据平台的专业公司相比,存在较为明显的劣势。

因此,如果要做成大数据,研究院认为:

1、要公司层面足够重视,作为领导的一把手来抓;

2、大数据运营团队必须独立运作,独立核算,并辅以灵活的机制,否则新事物很难在传统的电信体制下快速孵化;

3、光靠自己的力量还不够,怎么样能够找到优势互补的合作单位协同研发运营才是大数据在电信内容发芽并壮大的关键。

二、内外兼修,市场化经营

大数据应用分为对内和对外两种形态。不鼓励过分重内,也不建议过分重外。连内部都做不好,对外营销没有说服力;只对内不对外,在不存在竞争的情况下,很难将一个产品做好做优,胎死腹中的可能性不是没有。

因此,研究院建议电信运营商在推进大数据工作时,能够内外兼修,从外部了解需求,从内部积累能力,通过完全市场化结算的方式在尽量短的时间能够形成显性效益,进而促进更多的资源投入和更快的成长。

三、循序渐进,以点带面

从目前阶段看,虽然说大数据的发展空间很大,但毕竟电信的能力和资源有限,建议从小案例做起,可选择电信数据资源优势明显,客户关系扎实、付费意愿和数据意愿共享的行业做起,通过成功标杆案例的构建,寻求规模化的复制。

从上面提及的五种产品形态看,精准营销相对容易实现,运营商可从精准营销切入,并逐步扩大形态范围。

总评:大数据对运营商而言,是蓝海,是解药,但是否能真正发挥作用,还需运营商的实践。研究院建议运营商们还是循序渐进,结合自身优势,选择合适的商业模式切入,早日打开大数据的“金矿”之门。

以上是小编为大家分享的关于大数据时代下 运营商市场战略分析的相关内容,更多信息可以关注环球青藤分享更多干货

❻ 运营商迎来大数据时代 管理和分析是大挑战

运营商迎来大数据时代:管理和分析是大挑战
大数据不是新的概念,在移动互联网发展起来后,数据增长速度加快,整个产业压力突出,传统数据库技术已无法满足运营商对大数据充分利用的需求的背景下,大数据成为近年来的热点。对运营商来说,数据爆发性增长后,带来的收入并未改观,因此,运营商面临着数据流的附加值被互联网公司赚走的挑战,同时面临沦为管道化的尴尬,如何利用好运营商手中的大数据,成为需要面对的问题。

运营商面临数据管理和分析挑战
易观国际分析师黄萌表示,大数据发展时间不长,随着云概念和3G的深入发展,运营商数据压力增大,同时IDC扩容,偏向以存储为主的云服务业务。
运营商新业务的涌现,导致数据暴增。信令数据、互联网数据其规模已经达到数百TB,甚至PB规模。此外,据EMC数据计算事业部大中国区总经理刘伟光介绍,数据的价值除了与数据规模相关,还与数据处理周期成正比关系。也就是,数据处理的速度越快、越及时,其价值越大,发挥的效能越大。而除了分析传统结构化数据外,随着新增值业务拓展,运营商对实现跨结构化、半结构化、非结构化数据进行高效分析有着愈发强烈的诉求。
而运营商面对海量数据和数据结构的变化,不仅是成本,还有管理和分析的挑战。黄萌认为,运营商相对互联网企业有优势,具有雄厚的资源和庞大的IDC集群,拥有电信级的运营网络,具有保证大数据实时、畅通传送的能力,同时具有网络资源和运营能力。而相对互联网企业劣势的地方在于上层应用,尤其是在Saas层面。
大数据有待深挖掘
南京邮电大学卢扞华教授认为,大数据时代主要是对技术的综合运用和对数据的深度挖掘。对运营商来说,大数据带来的机会大于挑战。运营商有自己的网络,积累了大量非常有价值的数据,可以进行客户分析。利用网络收集数据,对运营商运营方式的改变是个机会。
真正实现精准化营销和精细化运营的秘诀就在于如何利用好运营商手中的大数据。海量话单、信令、互联网数据本身就是一笔宝贵的财富。利用好这些数据,充分、及时地对这些数据进行深度分析挖掘,不仅可以进一步提升服务质量、提高客户忠诚度、挖掘新商机、增加收入,还可以通过优化资源配置、减少浪费来提升运营效率,有效降低运营成本。
此外,电信运营商信息化实施比较早,本身大数据积累的也多,例如以前的日志信息,包含用户信息和设备信息,可以进行挖掘使用。运营商越来越重视对数据的挖掘,可以获得未来开发业务和开拓市场的机会。另一方面,分析结果不会涉及隐私,管理好了可以更少产生法律纠纷。此外,电信运营商通过数据分析还可以提供面向社会的信息应用。[page]
卢扞华教授认为,大数据是对技术的综合应用,要有开放、融合、服务和创新的心态,大数据可以为运营商创造另一片天地。例如一个大数据的应用通过收集数据,对大量图片进行分析,最终形成一个场景图。这就是对数据分析、统计技术、图片处理技术和人工智能合成技术的综合运用。据悉,南邮正在开发这方面的应用。
据了解,目前中国三个电信运营商在业务支撑领域、网管IT支撑领域包括增值业务领域,已经随着市场的需求诞生了很多新的大数据实时分析的项目。目前,大数据主要应用在运营商的"信令"系统分析上,此外,运营商还可以通过"用户行为分析"系统,进行精准营销。运营商还提供IDC服务,通过"云"中心的方式为互联网企业提供服务。
对公市场前景巨大
黄萌表示,单批、单次数据爆发性增长,对其进行的可知的时间处理能力是关键点。对运营商来说,IDC服务在对政府和高校、企业等非个人业务市场上前景巨大;对于个人业务,运营商刚开始做,由于回收投资较慢、离散性强,现在主要是针对个人精准运营的业务。智能管道方面,运营商正在基于大数据平台进行流量分析,但是落地的项目少。
据介绍,运营商大数据战略还不太明晰,但是有了一些建树。去年十月份中国移动开始做的"大云"、数据管理系统和平台,覆盖很多园区、学校,2.0技术比1.0技术大幅提升;中国联通2010年开始对企业提供IDC服务,截至目前,营收超20亿元(人民币);中国电信2011年成立云公司,尚无实体业务,IDC托管规模相对联通小很多。
据电信专家韩少敏介绍,数据类型分为非结构化数据和媒体流,运营商开展大数据分析面对的问题主要是硬件能力。数据一方面是纵向关系,比如"信令",采用水平分隔数据的方式就可以,按照时间段分别存储分析。此外还有横向关系,需要垂直分隔,由于查询复杂,需要引入真正的算法去做。韩少敏认为,目前掌握这方面能力的人才奇缺。并且,运营商在分布式数据库方面少有进展。而从应用角度,大数据一方面用作于统计分析,建数据仓库,其次还有非文本查询,现在大多数数据库公司可以做以上两个方面,而对于关系型数据共享层面,目前还做不了。
中国联通在IDC服务方面走在三家运营商前面,其面向企业提供服务,目前通过按关系水平分隔的方式,将数据集中起来,但是一旦到关系型数据的共享层面,因为没有数据模型,找不到底层的数据库血缘,目前的方案无法解决问题。但是运营商目前做这些数据积累,可以为将来发展提供机会。
刘伟光认为,对于运营商来说,大数据等于大价值。对于IT企业,大数据等于大机遇。通信行业需求从来都是IT技术发展的重要推动力,谁能得到通信行业客户的认可,必然会在大数据领域大有作为,进而成为大数据解决方案的领先者、领导者。

❼ 企业大数据 一座值得开垦的金矿

企业大数据:一座值得开垦的金矿
虽然尚处起步阶段,但是大数据已经成为多个行业的关注热点之一。如何更好地利用大数据推动自身业务的运营发展,这是众多企业不断探索的问题,而运营商也无法忽视这个未来的大金矿。
一、现阶段大数据业务市场状况
从全球情况来看,2015年全球大数据市场规模达到421亿美元,同比增长了47.7%。以此增速进行推算,到2020年全球大数据市场规模可突破3000亿美元。

今年年初,中国信息通信研究院日前发布的《中国大数据发展调查报告(2017)》称,2016年中国大数据市场规模达168亿元,预计2017年~2020年仍将保持30%以上的增长。调查显示,目前近六成企业已成立数据分析相关部门,超过1/3的企业已经应用大数据。

对比起全球情况,中国大数据产业市场规模增长还有很大空间。
二、运营商进入大数据行业思路
运营商先天优势在于掌控大量数据中心资源,这是大数据业务硬件基础。更为重要的是运营商本身拥有大量存量客户资源和客户数据,这也是对运营商进入大数据领域一个有力支撑。
运营商大数据业务运营SWOT分析:

三、运营商大数据业务发展对比
联通
今年9月,中国联通集团正式宣布,旗下的联通大数据有限公司正式揭牌成立。中国联通大数据公司定位于中国联通大数据对外集中运营主体和大数据产业拓展的合资合作平台,全面对接国家和联通集团战略,建立专业化子公司开展市场化运营、建设全产业链大数据生态体系。此外,联通还与中国银联签署了战略合作协议,双方决定建立长期稳定的合作伙伴关系,在数据资源、技术能力、产品研发等方面开展全方位合作。
电信
早在2015年末,中国电信正式发布“天翼大数据”品牌,并推出精准营销、风险防控、区域洞察、咨询报告四类数据型产品和大数据云平台型产品,重点服务于旅游、金融、广告、政府、交通等行业。这是中国电信运营商第一个大数据业务品牌。
电信所有的大数据都是在云平台和云设施之上搭建的,2016年下半年其大数据平台建设从原来的5个省份现在扩展到31个省份,数据种类从开始的几类主要数据扩展到十几类,实效性从原来以“周”为单位到现在以“小时”为单位的延时。
移动
在今年“世界电信和信息化社会日大会”上,中国移动通信集团公司副总经理李正茂表示:“发展大数据不是简单的建设IDC,根本目的还是为了应用。大数据正在从炒作的高峰期间,向产业落地期间发展。”
中国移动在六个方面积极推动大数据加速行业转型升级:
第一,社会管理方面,大数据能够分析用户的消费、行为、位置等特征,为政府的社会治理提供保障。
第二,信息传播,大数据成为公众获取信息的新渠道。移动借助位置漫游等信息向公众发布舆情热点的分析。
第三,医疗健康领域,中国移动构建健康云平台在贵州省取得成效,一方面帮助贵州卫集委收集信息,同时为政府医疗机构提供智能审核,疾病救助,疾病预防等多方面的投入,由此为当地医疗支出节省了上千万。
第四,行业创新能力提升,大数据为传统行业打造新的能力。中国移动的大数据提供人流预警,公交道路等服务,为公交管理,游客出行提供参考。
第五,社会热点问题处理支撑,中国移动基于大数据构建了反电信网络,欺诈防范技术体系,在2-10分钟可以识别市场号码源,来源区域,受害人集中地等等,同时实现最高风险等级,影响最大的境外异常号码源时时阻断。
第六,商业模式创新,2016年,中国移动和招商局集团共同投资设立试金石信用服务有限公司。
虽然三大运营商大数据布局在实际操作上不同,但是都明确把大数据从布局转移到实行阶段,软硬件资源日益充实,并且已经打造出不少成功案例。
四、布局大数据市场
1、攻坚热点领域
智慧城市
早在2014年,国家发改委会同中央网信办等25部委组成部际协调工作组,启动新型智慧城市试点建设。2016年又明确提出了到2018年要分级分类建设100个新型示范性智慧城市。
智慧城市建设带来的商机是巨大的,而大数据恰好在智慧城市建设中扮演重要角色。可以通过方方面面渗入,如城市交通、环境监测、治安管理、卫生管理等城市生活每个细节。
当然,运营商也已经对此领域有所行动。比如联通大数据公司就有“智慧足迹”这一项业务,提供“以人为本”的群体位置数据应用,为政府和企业提供包括人流量、人流密度、职住空间分布、人口时空分布在内的位置大数据解决方案。
政务
通过IDC、ICT基础通信业务为政府部门提供服务,并且为其构建大数据管理分析平台。政府运作效率和质量提升已经不仅仅拘泥于办理业务、处理业务时间上的减少,还要做到未雨绸缪,及时发现潜在民生问题,做好预防工作:比如通过婚姻注册数据挖掘离婚率提升因素,从而地提出针对性措施;又比如通过分析注册中小企业税务数据,了解税收政策对中小企业是否存在推进作用,有消极作用的加以改善。
医疗健康
根据前瞻产业研究院发布的《2017-2022年全球健康医疗大数据行业发展前景预测与投资战略规划分析报告》显示,2010年我国健康医疗大数据行业市场规模约为171亿元,到2015年快速增长到466亿元,年均复合增长率超过20%。

可穿戴设备的出现使到个人身体健康实时监测得到硬件上的支持,而把这个契机转化为商机就需要完善的大数据平台作为支撑。

而通信运营商涉足该领域也有很合适的切入口,比如利用存量家庭业务客户进行拓展,享受低资费优惠。
2、提升自身运营
运营商本身拥有着庞大数据资源,也应该很好地利用这些资源为自身运营提供动力。
一方面通过用户数据库做好用户维系和质量提升,对高危潜在离网用户及早挽留,而对潜在需求用户可以推广增值业务提升客户价值。
另一方面,涉及到数据交互(即通过与其他行业合作,双方数据通过融合整理)发掘出的更多有价值结论,能支撑双方运营,互惠互利。
五、大数据业务营销
通过IDC建设、产品建设打好基础,进行业务营销就是下一步关键所在。进行大数据业务营销通过标杆打造+体验营销是较好选择。
由于业务属于起步阶段,要吸引到市场目光和认同,必须树立业务标杆。在硬件和软件有实力的前提下,运营商要打造专业化团队,树立行业顶尖形象,以优质案例打动潜在客户。
营销人员在向潜在客户推销产品时,需要结合案例详解、实体考察、便携式设备体验进行销售活动,以具体化、专业化的方式打动客户。
需要明确的是,大数据硬件软件方面做好后,剩下最关键一环就是在营销上打动客户。
如何打动客户?用事实说话
例如2013年,微软纽约研究院的经济学家大卫?罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。2014年罗斯柴尔德再次成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个。在这种震撼的事实面前,展现大数据的实用性和威力。
六、展望
由于各行各业各领域都能够有机会用到大数据分析为管理运营作支撑,所以大数据业务发展潜力毋容置疑。现在对运营商而言,做好硬件软件基础的同时,更要深挖市场需求,打造营收模式标杆,以点带面地实现业务快速增长。

❽ 大数据未来发展趋势如何

趋势一:数据的资源化


什么是数据的资源化,它指的是大数据成为企业和社会关注的重要战略资源,并且已经成为大家争夺的焦点。因此,企业必须要提前制定大数据营销战略计划,抢占市场先机。


趋势二:与云计算的深度结合


大数据离不开云处理,云处理能够为大数据提供弹性可拓展的基础设备,是产生大数据的平台之一。自从2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。


另外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。


趋势三:数据科学和数据联盟的成立


未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。

❾ 大数据未来的发展前景怎么样

大数据专业就业前景
1、大数据开发工程师,大数据开发主要是基于大数据服务平台,很多大中型业务应用包括企业级应用和各类网站。能够进行构建大数据应用程序平台和开发分析应用程序。
2、大数据分析师,大数据分析师主要负责数据挖掘,使用Hive,Hbase等技术,专门为从事行业数据收集、整理、分析和基于数据的专业人士进行行业研究、评估和预测。通过使用Spotifre,Qlikview和Tableau等,新数据可视化工具能够实现数据的数据可视化和数据呈现。

阅读全文

与运营商大数据展望相关的资料

热点内容
安卓系统怎么设置网络 浏览:707
win10下的文件类型选项 浏览:512
元数据修改什么意思 浏览:555
扫描pdf转word 浏览:914
行业协会如何查行业平均数据 浏览:545
什么app能长期使用 浏览:617
哪个APP可以学相声 浏览:347
程序使用代理 浏览:149
文件大小怎么调 浏览:924
javadouble经度 浏览:354
英国颁布了哪些纲领性文件 浏览:929
文件隔行选择是哪些键 浏览:395
股票的数据储存在哪里 浏览:172
微信双机同时登陆 浏览:448
vbnet网页源代码 浏览:409
ibmwin10改win7 浏览:560
windows7搭建文件服务器 浏览:358
丹麦为什么不能用中文编程 浏览:872
abap自定义工具栏 浏览:44
计算机二级c语言程序修改怎么做 浏览:440

友情链接