① 数据分析师如何做好职业规划
近些年,互联网公司对数据分析师岗位的需求越来越多,国家“十三五”规划将大数据确立为国家战略。
大数据的价值被越来越多的个人和企业高度认知,学习大数据、玩转大数据,成为现阶段最热谈资,也是很多企业最迫切要实现的目标。而且预计到2018年大数据分析专业人才缺口将达到1500000人甚至更多。
数据分析师是做什么的
大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。
而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。
关于数据分析师的职业发展
1、数据产品经理
数据产品经理必须了解不同的公司,在不同的阶段,需要哪些数据产品,并能够制作出来,这是此职位的核心要求。其次,数据产品经理必须有足够的数据分析能力,如果有了数据分析的思维,再跟公司业务结合就会比较容易。最后,数据产品经理是产品经理的一种,所以要同时具备产品经理的能力:了解用户,需求调研,方案设计,协调技术、测试、设计等。
2、数据运营
数据分析师常常需要通过挖掘数据背后的信息,解答市场运作的问题,指导高层的业务决策,进行精准的数据挖掘或广告投放。事实上,这也是越来越多对大数据有需求的公司招聘数据分析师的原因。心理学、经济学和统计学加持的数据分析师,拥有普通运营人无法拥有的利器,以此作为切入点做运营工作,具有后来居上的潜能。
3、管理或战略
事实上,除了公司高层,数据分析师是唯一站在高处俯视全局的人。一家互联网公司的各项工作,几乎都可以在数据上直观体现出来。强大的分析和思辨能力,使数据分析师拥有鹰一般的眼睛。深度参与公司的管理和商业行为,成为一个谋划者甚至决策者,是数据分析师可以上演的逆袭。
4、数据科学家
随着商业的发展,越来越多的行业需要处理数据的专家,互联网+正渗透到广告、量化金融等各种各样的领域。数据分析师应保持开放的心态,多多学习视野之外的领域,成为既懂技术又懂业务知识的专家。数据分析师站在数据之巅,更加有机会时刻参与到业务中去。数据背后,每一个觉醒的分析师,都可能成长为互联网公司的核心。
如何成为一个数据分析师
不是数据专业并不影响你的选择技能很重要学习能力(数据分析师需要不停学习的)圈子,能了解相互沟通招聘职业规划证书(CPDA数据分析师证书)数据分析师职业操守专业扎实行业知识很清楚业务很理解
数据分析师证书的含金量
CPDA数据分析师证书为“双向认证”(工信部+中国数据分析行业主管协会)认证,并且数据分析师证书可以在工业信息化考试中心官网查询。而且“CPDA数据分析师证书”还可以成立“数据分析师事务所”。
而且,凡在2018年度考取CPDA数据分析师证书的所有学员(含2017年第四季度考生)均可享受协会一年会籍服务。
服务内容:
享受创办数据分析师事务所的优惠政策获得我会全年会员电子特刊《中国数据分析》可在我会官网、公众号、会刊上投稿,提高个人在行业影响力参加我会2018年组织的各种会议活动,如2018年中国数据分析行业十周年庆典峰会,各类学术研讨会、公益沙龙、创业指导等享受一次执业教育,提升自身研究能力享受推荐就业服务
② 在新时期,如何利用大数据成为不可或缺的人才
感谢悟空的邀请!
在新时期,谈起大数据,相信很多人都不陌生了吧!其实大数据已经悄无声息的走入了我们的生活,大数据也是未来互联网发展的重要方向。
那么在新时期,大数据对人才的能力有何要求?如何利用大数据成为新时代不可多得的人才?下面带你详细分析下:
大家都知道,其实现在的中国市场,最缺乏的就是复合型的大数据开发人才,我认为,在新时代,要想成为大数据人才,应该从以下几方面着手:
1、大数据人才首先要拥有技术
大数据自然离不开人才,要想成为大数据不可或缺的人才 ,就必须要拥有相关大数据技能。大家都知道,大数据对人才的能力提出了更加高的要求,技术能力上大数据人才要具备java、大数据开发、大数据架构、软件开发工程等技术背景,会用大数据分析工具,了解统计模型相关知识;在一定程度上掌握Python等一类通用型编程语言,特别是编程方面一定要精通,没有哪一种大数据不需熟练掌握一门编程语言的。
2、大数据人才需要强大的跨学科学习
随着大数据向各行业的渗透,大数据从业者往往身兼数职,需要同时掌握数据技术和业务知识。一个好的大数据人才,必须具备强大的数据分析、数据挖掘的能力,而一个既能做业务数据分析,又懂机器学习和工程开发的分析师就是数据科学家。
3、 大数据人才需要坚持
任何技术的掌握都不是一朝一夕的事情,当然大数据也不例外。大数据人才对人提出了更高的需要,不仅需要掌握相关的编程语言,还需要掌握数据分析能力,这就要求我们想要全方位提升自己的大数据业务水平,必须要坚持学习,只有具备大数据知识了,我们才能投入到大数据行业添砖加瓦。
4、 坚持学习的能力
大数据人才要有较强的沟通协调能力、学习能及推动能力、善于执行和监控,有较强的组织和责任意识,还需要强大的逻辑思维能力、归纳演绎能力帮助理解业务,能快速学习全新领域的商业模式和生态。
5、心态很重要
学习大数据的时候,一定要有良好的心态,大数据学习是一个枯燥的国产。要想学有所成,心态极其重要,不是什么东西一学就会的。
总结:在新时期,目前大数据人才已经成为市场上不可或缺的人才,大数据已经悄无声息的进入到很多行业了。但学习大数据不是一朝一夕的事情,需要有规划有计划的学习、要有坚持学习的能力,只有这样,才会在新时期,成为新时代所需要的大数据不可多得的人才…
大数据是我的主要研究方向之一,同时也在带大数据、机器学习方向的研究生,所以我来回答一下这个问题。
首先,当前正处在大数据时代,大数据未来将创造出一个巨大的新价值领域,而这个领域的核心就是围绕数据价值化的一系列环节。从目前大数据领域所形成的初步产业链来看,涉及到数据采集、数据整理、数据存储、数据安全、数据分析和数据引用,目前数据分析是比较常见的落地应用之一。所以,要想利用大数据成为不可或缺的人才应该从大数据产业链入手。
对于当前没有进入职场的大学生来说,根据自身的知识结构来掌握相应的大数据技术能够在一定程度上提升自身的职场竞争力。比如具备数学基础的同学可以考虑学习一下大数据分析技术,未来对于大量的职场人来说,数据分析将是日常工作的一部分。对于动手能力比较强的同学,可以考虑学习一下大数据运维的相关技术,包括数据采集、大数据平台部署等。随着大数据逐渐开始落地到传统行业,大数据分析、大数据运维、大数据开发等岗位将有大量的人才需求。
对于当前的职场人来说,要想通过大数据成为不可或缺的人才,需要从三个方面入手,其一是掌握大数据技术;其二是把大数据技术与行业相结合;其三是能够通过大数据技术创造出源源不断的价值。
学习大数据技术要根据自身的知识结构来学习,对于职场人来说,可以从大数据分析工具开始学习,基本的学习路线是Excel、BI工具、数据库、Python编程。大数据与行业的结合有多种不同的方式,目前场景大数据分析是比较常见的落地应用。要想通过大数据技术来创造出价值,一个重要的出发点就是通过大数据完成各自决策的制定,大数据不是目的,通过大数据完成各自决策才是目的。大数据一方面是给人力岗位使用,另一方面是给智能体使用,未来智能体的应用空间将非常广阔。
我是从以前做淘宝天猫的,今年不做的。在我看来大数据有点类似淘宝的生意参谋,它会给您提供行业各种数据,只是现在应该这个数据维度更丰富了。比如这个行业同行的转化率,有些行业的转化率,进店访客等等;在电商平台都是可以看到的,但是实体以前是做不到的。
现在随着数字技术的发展,以及实体行业对消费反馈收集困难等原因,才有了大数据的概念。比如现在好多行业面临的问题是自己设计的产品,消费者不喜欢,卖不出去。可以如果有了大数据,你就知道你的客户男女比例多少,年龄分布、喜好什么价位的产品等等,让你设计的产品更精准。
其实在我看来,你成为数字化的运营高手,你就可以成为不可或缺的人才。
大数据在我看来就是“1+1=N”。
怎么说呢,比如大数据提供给您行业转化率是多少,你的实体转化率是多少?等等,你想成为不可或缺的人才,那你就要有通过这些数据知道我公司现在问题出现在什么地方了?是什么因素刺激的出现了这种情况的能力,比如这周你店铺成交额涨了多少?这是数据给您能提供的,但是为什么涨了,数据给您提供不了,这你要自己分析,是有节气,还是因为你做了一个什么活动等,并针对现有数据对下一周做出计划。
数据给你的是“1+1=N”你要做的就是把这个数据反映到实物上,并进行分析,并制定下一步公司运作计划。
比如现在是数据给你1+1=3,那你就要分析为什么是3,不是2或者1甚至0呢?是什么刺激这个数据的增长了,是因为你在某些方面优化了还是因为有节气等,下一步什么安排等,也就是说你的每一步都能从数据反映出来,并能分析数据,做出下一步的安排等。
好了就说这么多吧,说太细我怕我理解的不准确,误导人。
对于一个企业来说,大数据可以拓宽产品的销售渠道和提升服务质量。有利于获取市场的动态和了解分析用户需求体验。
大数据如何才能发挥其作用,最重要的还是得有相对应的人才为它进行分析整理。
大数据可以让业内的情况变得清晰明了,是事实的支撑,通过数据可以知道业内的最新动态,根据数据分析,及时做出方案调整 有利于企业的发展。
大数据的工作中最重要的是什么?
1. 细致精准的数据采集;
2. 同时具备逻辑性与适用性;
3. 数据标签的规划切实可行(务实);
4. 具备行业垂直度的商业性思维能力;
5. 能够做到更强的扩展性构架。
总结来说,商业化的大数据最重要的价值便是逻辑性与适用性,而扩展性也能保证在实践中更有竞争力,最后便是务实和思维能力的支撑。
任何时代的任何职业都需要面对竞争,所以能够产生的价值决定了我们被需求的程度,如想成为那个不可或缺的人,不仅要具备能力,还要具备务实的心态!
感谢悟空邀请回答。当今世界是 科技 高速发展的时代,也同样是大数据时代,竞争也是十分的激烈,要想成为大数据不可或缺的人才,必须要保证自己的专业知识过硬,这是一个看技术的活,弱者会被淘汰只有强者才能生存!
大数据可以拓宽产品的销售渠道和提升服务质量。有利于获取市场的动态和了解分析用户需求体验。
大数据如何才能发挥其作用,最重要的还是得有相对应的人才为它进行分析整理。
大数据可以让业内的情况变得清晰明了,是事实的支撑,通过数据可以知道业内的最新动态,根据数据分析,及时做出方案调整 有利于企业的发展。
③ 大数据未来的就业规划
大数据的就业前景目前来看是不错的,随着大数据往各垂直领域延伸发展,对统计学、数学专业的人才,数据分析、数据挖掘、人工智能等偏软件领域的需求加大,大数据领域从业人员薪资水平将持续增长,人才供不应求。
1大数据就业方向
1、大数据开发方向。所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
2、数据挖掘、数据分析和机器学习方向。所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
3、大数据运维和云计算方向。对应岗位:大数据运维工程师;
三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了8k以上,工作1年月薪可达到1.2w以上,具有2-3年工作经验的hadoop人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。
2大数据就业前景
从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。
从近几年招聘情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的就业机会,读研之后在岗位选择上可以重点考虑一下大数据平台开发,在5G通信的推动下,未来云计算会全面向PaaS和SaaS领域覆盖,这个过程会全面促进大数据平台的发展。
另外,由于人工智能平台的陆续推出,对于大数据平台也是一种促进。相比于大数据应用开发岗位来说,大数据平台开发岗位不仅薪资待遇更高,职业生命周期也会更长,而且未来也可以获得更多的发展机会,也会更容易进入云计算、人工智能等领域发展。
④ 应对大数据人才短缺的四种方式
应对大数据人才短缺的四种方式_数据分析师考试
在一份关于大数据增长趋势的调研报告中,IDC表示,较之其他的商业智能(BI)工具,可视化数据发现工具在市场上的增长要比前者快2.5倍;而基于云的大数据和分析(BDA)解决方案的开销增速将是其他类型的企业内部部署解决方案的三倍。
然而,在未来几年大数据领域仍将继续面临人才的严重缺乏尴尬境地。IDC预测,到2018年,仅在美国就有181000个深度数据分析师的角色 空缺,而这一空缺将是与数据管理相关或解释需要相关技能职位空缺的五倍。然而,市场缺没有足够多合格的申请者来填补这些职位空缺。
Gartner表示,今年,大数据的需求将在全球范围内创造440万个就业机会,但却只有三分之一的岗位能够招到合适的人才。
这是因为大数据分析所需要的技能不仅仅是使用仪表板监控数据流。该领域的人才需要在数据科学方面具备高水平的技能来设置相应的搜索和参数,以设 计滤波算法(filtering algorithms)。这类人才需要硕士学位甚至博士学位,没有相关的技能,无法获得相应的行业资质认证。
根据Burtch在2013年的调查发现,近九成的大数据专业人员具有诸如统计学,应用数学,运筹学或经济学等相关学科硕士以上学历。
而根据来自麦肯锡全球研究所的另一项调查显示,预计到2018年,美国将面临大约150万大数据专家的短缺。
那么,如果你企业无法招聘到具备相关高学历背景的大数据专家的话,您企业要如何应对呢?本文接下来的部分,我将为您介绍四种可供选择的方法,以帮助您企业发现、发展和留住相关的大数据人才。
1、从真正熟悉您企业业务的人开始着手
“我非常认可大数据技能非常紧缺这一评估,”Gartner信息管理研究室主任Nick Heudecker表示。“许多企业客户甚至不知道他们需要从什么技能开始着手,更不用说如何才能这些技术。他们对于自己企业将面临怎样的问题,以及亟待 解决的分析技能是无意识的。”
企业往往认为他们需要一个具有先进的数据科学或数学博士学位的专业人士,但Heudecker表示,一个替代的方法是找一个真正熟悉您企业的业务的人员,并教给这些人员相关的分析能力。
从理解您企业的业务开始要比从对于机器学习的理解开始来得更为重要。企业可以教给员工进行数据处理和统计,或找到具备编程背景学位的人。企业可以通过对这些人实施更多培训,并让这些人员加入到您企业的大数据和先进的分析团队,他说。
2、培养您企业自己的超级巨星
领先的大数据软件提供商Tamr公司的现场工程技术负责人Min Xiao说,在过去的五年里,他已经面试过大约500人,并实际招募了约40至50人,他同意找到合适的大数据分析人才是很难的,但他也有自己寻找人才的方法。
“我的诀窍是找到那些当前还不是超级巨星,但要具备潜在的成长为超级巨星潜力的人才。我尝试聘请过很多从未从事过数据科学家相关工作的年轻人, 但我可以看到他们有这方面的潜力;或是那些目前尚只有中级或中高级水平的潜力,目前也没有做过数据科学相关工作,但具备成长成为该领域实力巨匠潜力的人 才。”他说。
他所看重的潜力主要是教育,包括学历和学校。他所考察的人才主要来自统计学,计算机科学等相关专业,有时包括物理专业。当然物理专业的人才可能不会是数据分析工作岗位的首选学位,但Xiao说他跟那些人合作得都很好。
“首先,如果他们有物理学位,说明他们很聪明。他们接受过数学课程的训练,而现代物理课程还需要他们做大量的编程。所以他们即使可能没有接受过正式的计算机科学的训练,但却已经具备了数据科学家角色所需的计算机技能,他们中的许多人甚至在这方面很擅长。”他说。
他着重考察的另一方面是应聘人才的毕业院校是否强调数学和科学,诸如像麻省理工学院,卡耐基梅隆大学,斯坦福大学,布朗和约翰·霍普金斯大学。”一些院校的毕业门槛非常高,所以从这些院校毕业的人工作努力程度很高,工作的态度很好。”Xiao说。责任编辑:qxcpw24895.com
3、寻找Excel专家
The Hershey Company人才分析部门经理Jason Chavarry在另一个不寻常的领域找到了大数据人才:微软Excel用户。
“Excel可以说是一份沃土,很多人从中获得有大数据的能力,他们往往被人们请教,以帮助其他的工作,”他说。
他补充说,Excel是一个入门级的管道里的人学习,是在大数据的分析,发现其基本的功能。”每个人都是用大量的基本功能。你如何制定出一个报 告或电子表格,你创造什么样的规则。Excel穿过所有的人。你可以使用它的基础水平的统计,基本的数据分析和可视化,”他补充道。
他补充说,Excel是学习大数据分析基本功能的一款入门级的学习管道。“我们每个人一般都只是大量了其一些基本功能。例如制做出一份报告或电子表格。但其实我们可以通过其创造一些相应的规则。通过利用其基础的统计功能,实现一些基本的数据分析和可视化。”他补充道。
但Chavarry指出,针对不同规模的项目也需要不同的工具。对于有5000行数据的分析项目,采用诸如SAS或R这样的工具无疑将是矫枉过 正,但若采用Excel的将是非常完美的。而若是有20万行的数据,Excel的功能就明显不够强大了。这时,你就需要大数据软件和编程知识,但并不拘泥 于一种特定语言。
“你真的不需要特定拘泥于关心采用哪种语言。如果有员工能够用一种语言来实现,那么其必然有能力以别的语言来实现。因此,你企业寻找的是具备学习能力的人才。” Chavarry说。
4、自行培养人才
鉴于大数据人才的稀缺,大多数企业的解决方案将是采用自行培养人才的方式。据大数据软件集成公司Talend的CMO Ashley Stirrup称,该公司通过建立一个导师计划,让有经验的专家来培训年轻人才,取得了良好的结果。
“有一类人能够作为嫁接其业务部门和新兴技术之间的桥梁。”Stirrup说。“通常,企业业务部门的人员还没有意识到的新技术对于业务进展的潜力,而对于一些高科技,他们也不知道如何使用。”
不幸的是,留住人才是相当困难的。Talend公司的客户说,他们培训了一些人,让他们接受新技术,然后这个人很可能会被其他公司以50%或更高的涨薪诱惑挖走,所以他们很难找到合适的人才,也更难找针对这些人才实施培训之后,将它们留住。
那么,企业应该如何留住这些人才呢,签订短期性约束力的合同协议可能有损与员工的关系? “关键在于想让这些经过专业培训的人才展示出他们能够在您的企业充分使用并展示他们的技能,而且,他们留在您的公司会更具有价值潜力。此外,企业需要设置 一定的期望,而不要看合同,” Stirrup说。
Xiao也正遭遇同样的人才争夺的问题。他说,他所在的Tamr公司试图激发所雇佣人才的团队意识,并激励他们寻找在该公司的价值。“当他们找 到与自己有‘共同语言’的同事,员工通常会认可这便是自己在未来几年将要心甘情愿合作的团队。鉴于市场竞争是如此激烈,我们真诚的希望员工能够在外面公司 获得成功,否则我们将无法吸引到更好的人才。”他说。
Heudecker也认为公司应该鼓励人才,而不是束缚人才。“您企业可能并不需要一个博士团队。也许只需要一个拥有统计学、计算机科学和工商 管理硕士学位的人。考察一下那些可能只有本科学历的员工,看看他们是否对于数据分析方面感兴趣。公司应该提供激励性的基础训练和方法来确保将员工留在企 业,因为这些技能在现如今的需求都是如此迫切。”他说。
Heudecker说,最终,大数据将成为新的常态,而人才储备也将扩大。 “如果我们看一下大数据的基础架构,它非常类似于80年代的RDBMS市场。彼时,其还没有被广泛应用,但人们已经在部署建造它们。而同样的事情将在大数据领域发生。”
以上是小编为大家分享的关于应对大数据人才短缺的四种方式的相关内容,更多信息可以关注环球青藤分享更多干货
⑤ 大数据职业规划总结
这是我的第一篇博客,写起来还真是有些小紧张~~~还请有缘看到的朋友多指点!
打算开始写这些东西的契机是师兄给布置的学习记录作业,而我自己这方面的原因倒主要不是记录学习(写这些东西好花时间呀...),而是看到好多大神,尤其是国外的,都在贡献自己的知识,我被他们的精神感染了,也想自己贡献些东西!
大体可分为四种:
其中,平台开发(大数据工程师),基本是结合公司业务场景及需求,以现已开源的大数据组件为基础,打造公司自己的大数据平台;数据分析则是运用公司的平台,在其之上做些报表和数据变现(听师兄说大公司将平台封装的很好,基本上都是敲SQL);至于运维,自然是为前两者提供集群支持,如资源分配,组件配置优化等。
在这三者之上便是数据科学家啦!之前通过知乎Live得知,这里的数据科学家和大家传统理解的科学家不一样,就只是一个职业称呼。引用知乎上 北冥承海生 的话:
其中科学的方法论指的是坚实的理论基础;大量的数据指如行为日志这种海量数据;自动化业务决策是数据科学家的核心工作,体现 数据优先与经验,计算优先于人工 的价值观。
理论基础方面,北冥承海生推荐了几本书:
其中,最优化好像很重要,因为这些平时遇到的问题,其本质好像都可以归为一个优化问题,更一般的描述是求一个条件极值。
至于将实际问题建成数学模型,及对已知的问题提供现在未知的解决方法,北冥承海生说在学校是学不到的,需要一个大神级mentor悉心指导和经历大量的工程实践...做到这个就能年薪百万啦!当然,钱不钱的无所谓,更重要的是,这不是搬砖,这是人类创造力的体现!在此之上更高级的创造,我想可能是:导向世界(不光人类)需求,体察潜在需求,甚至创造需求!
一激动就扯远了,回归正题。当前大数据行业缺口巨大,有兴趣的朋友也可以看看下面的文章,写得比较务实。
通向大数据的巴别塔:这个完整详细的套路是否适合你?
⑥ 高校大数据实训室解决方案有么急求
四、人才培养目标
本专业主要面向大数据应用开发、大数据分析挖掘、大数据系统运维等岗位方向培养合格人才,重点培养具有大数据应用、大数据分析以及大数据系统管理与运维方向的,应用型高技能人才。
本专业方向重点培养能够为企事业单位提供大数据系统搭建、管理、和运维技术和能力的人才。通过计算机基础课程、算法语言、系统管理等专业基础知识学习,接受大数据系统和应用知识的培养,进行各种计算机系统,大数据平台系统,大数据应用系统搭建、配置、管理、及运维实训。通过大量的案例与实践操作,熟练掌握大数据系统管理所需的各种专业知识和能力,具备一定的职业素养,为从事大数据行业系统管理工作奠定坚实基础。
五、实践教学环境
新开普完美校园大数据实验室的软硬件系统配置主次分明,考虑到学生从基础理论到工程实践的各个环节,符合学生递进式的认知规律,有利于学生由浅入深的全面掌握大数据相关知识和应用。大数据实验实训室将搭建理论与实践的桥梁,为学生提供大数据技术的实验及实训平台,深化学生对大数据技术理论的理解,提高学生的操作能力,同时,利用所学知识对大数据技术进行创新性研究。具体建设内容包括:
1)物理层---硬件资源:
基于高性能计算与海量存储节点构建的运算资源池,作为云计算各项实验学习环境的主要承载平台,采用云服务器集群+虚拟主机+物理机的解决方案
2)资源池:
包含计算资源池、存储资源池、网络资源池。提供教学活动中必不可少学习资源、实验资源、项目案例。
3)业务平台层:
面向教学活动中的实验课程与项目实训业务提供流程化支撑。完美校园大数据实验室的业务平台层包含大数据教学管理平台和大数据科研平台。
4)统一管理层:
基于完美校园大数据实验室统一资源调度引擎,为用户使用业务平台层与资源平台提供便捷入口。
六、实验室功能系统模块
大数据实验室各个功能模块介绍如下:
1)云计算管理系统
完美校园大数据实验室采用云服务提供的虚机系统,云计算管理系统通过对硬件设施进行虚拟化处理,形成虚拟层面的资源池系统,该资源池系统可按需为每一套应用系统提供基础硬件资源——计算能力、存储能力和网络功能,快速适应不断变化的业务需求,实现“弹性”资源分配能力。
① 计算模块
计算模块主要提供云主机功能。而云主机提供了整个云平台中最基础的功能,即虚拟服务器从创建到销毁的全生命周期维护。此模块通过利用虚拟化技术,可将大批服务器硬件资源池化,用户仅需点击鼠标,选择期望的硬件配置、操作系统类型和网络配置等信息,即可在短时间内按需获得任意数量的云主机,模块支持云主机硬件配置在线升级、云主机热迁移、重启、暂停、创建快照等多种功能。
② 镜像模块
镜像功能模块是一套虚拟机镜像查找及检索系统,支持多种虚拟机镜像格式(AKI、AMI、ARI、ISO、QCOW2、Raw、VDI、VHD、VMDK),有创建上传镜像、删除镜像、编辑镜像基本信息的功能。
③块存储模块
块存储模块为运行实例提供稳定的数据块存储服务,即云硬盘服务。它的插件驱动架构有利于块设备的创建和管理,如创建卷、删除卷,在实例上挂载和卸载卷。它们独立于云主机的生命周期而存在,可挂载到任意运行中的云主机上,确保单台云主机故障时,数据不丢失,并具备基于云硬盘的快照创建、备份和快照回滚等功能。
④网络模块
网络模块提供云计算的网络虚拟化技术,为云平台其他服务提供网络连接服务。为用户提供接口,可以定义 Network、Subnet、Router,配置 DHCP、DNS、负载均衡、L3 服务,网络支持,GRE、VLAN。插件架构支持许多主流的网络厂家和技术,如 OpenvSwitch。
⑤安全模块
安全模块通过在计算模块中添加扩展实现,基于传统的包过滤型防火墙技术,可为用户的云主机提供细颗粒度的安全防护策略,支持 TCP/UDP/ICMP 等多种协议,支持自定义来源IP和端口范围等规则,支持用户针对不同类型云主机加载不同级别安全策略的功能。
2)大数据教学管理系统
大数据教学管理系统旨在提供统一的平台管理所有的课程教学资料、视频、讲义、实验指导手册、实验数据集、实验练习、实验报告书、实验成绩管理、用户管理(学生花名册管理、教师信息管理)。
大数据教学系统提供了5大功能模块,分别是:在线基础课程包、在线学习平台、在线练习平台、在线测试平台、在线讨论平台、数据分析平台。
① 在线基础课程包
根据岗位人才发展路径图,提供相应的学习课程资源部内容,客户根据实际情况选择适合自己的课程内容,完美校园大数据中心存储了大量教学资源。包含以下资源:
1.存储辅助性的讲解+PPT配套的视频课程,准确全面的给学生讲解相应的知识点或项目案例;
2.存储了通过CMMI4规范的真实的项目文档和案例,可以让学生在学校就能够接触到大规模科技公司的真实项目和研发流程;
3.针对不同的小练习,配合PPT视频教材,提供了详细的描述文档共学员选择不同的方式对知识点进行接纳和