导航:首页 > 网络数据 > facebook大数据构架

facebook大数据构架

发布时间:2023-02-18 02:05:23

Ⅰ 如何正确建立大数据结构

如何正确建立大数据结构
大数据各行各业的企业都提供了潜力。正确使用这些大数据信息可能将增加商业价值,帮助您的企业从市场竞争中脱颖而出。如下是几个企业成功应用大数据的案例:
大数据的例子
汽车制造商已经开始使用大数据来了解汽车何时需要返回到车库进行维修。使用汽车发动机的数百个传感器,可以为汽车制造商发送实时的数据信息,这使得制造商甚至比驾驶汽车的司机还要提前知道汽车何时会出现故障。卡车制造商开始使用大数据,基于实时交通条件和客户的需求来改进他们的路由,从而节约燃料和时间。
零售业也开始越来越多的使用大数据,鉴于越来越多的产品均有一个RFID标签能帮助零售商跟踪产品,知道很少某种产品库存缺货,并及时向供货商订购新产品。沃尔玛便是这正确利用大数据这方面的一个很好的例子。当零售商开始识别他们的客户时,就能够更好地建立商店,更好的满足客户的需求。
当然,上述这些只是几个浅显的例子,大数据的可能性几乎是无止境的。不久的将来,我们将讨论在大数据平台上的最佳实践。知道大数据能够提供商业价值是一回事;而企业要知道如何创建正确的架构则又是另一回事了。
大数据结构
大数据有三个特征,使得大数据不同于现有的数据仓库和商业智能。大数据的这三大特点是:
数据量庞大:大数据的数据量相当庞大,更多的时候大数据的数据量可以达到比数TB到PB级字节。
高速度传递:所有这些TB和PB字节的数据能够实时交付,数据仓库每天都需要应付如此高速的数据流。
种类繁杂:大数据比使用现有的商业智能中正常数据的种类更繁杂。大数据还包括非结构化社交数据,如Twitter或Facebook网的社会信息、日志文件、电子邮件等。
根据这些特性,建立您企业的体系结构是非常重要的。一个很好的出发点是以企业现有的数据仓库为基础。高密度数据的数据仓库,其中包含用于当前商业智能的仪表板。重要的是,该企业是为了之后再移动到大数据。把大数据转移到您的企业有如下四个步骤:
1)进一步分析当前的数据:从仪表板和ad-hoc查询,到诸如空间分析和图形分析或更高级先进的分析。您可以专注于客户忠诚度、客户流失率、分析本地情况(如何接近您的客户),并开始建立社交网络(与您的客户建立社交联系)。这些分析将为您的企业带来更多的商业价值。
2)建立正确的架构,用于存储数据的种类和数量:这一切大数据是如何存储在您的企业的。把这些原始数据直接转化到数据仓库中,每兆字节以低成本优化存储大量低密度数据是十分重要的。这便是Hadoop本身已被证明是非常有效的。Hadoop是开源的,与现有的数据库兼容。它集合了所有可用的数据,您可以用它来寻找新的关系和新的潜在的商业价值。
3)为数据传输速度建立体系结构:一旦您有合适的设备来存储大量的不同的数据,您就可以开始实时处理数据。例如如果您有数据流从传感器传输而来,存储在Hadoop,您想看看正在发生的事件,并需要确定是否需要采取行动。您可以使用一切历史数据,以确定在实时条件下进行预期(预测分析),您可以创建模型反应发生模式。如果您已经建立了一个智能的基础设施,您将能够实时响应事件,并进行实时的决策。
4)开始探索新的模式:利用所有可用的数据,您可以在您的数据中发现新的模式。从Hadoop与其他可用的数据汇总数据相匹配。有不同的大数据初创公司开发的工具,在这个平台上分析,可以帮助您可视化,寻求新的关系。我们的目标是找到您要解决的下一个问题,最大限度地帮助您从数据中获取商业价值。
正确发展大数据结构可谓是一个挑战,同时可能成本是相当昂贵的。然而,结果必将物超所值的让您成功收回投资。

Ⅱ 数据平台建设的方案有哪几种

1、常规数据仓库


数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。


2、敏捷型数据集市


数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。


3、MPP(大规模并行处理)架构


进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop MapRece框架以及MPP计算框架,都是基于这一背景产生。


MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。


4、Hadoop分布式系统架构


当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、Facebook、网络、淘宝等国内外大企,最初都是基于Hadoop来展开的。


Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。


关于数据平台建设的方案有哪几种,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅲ 如何架构大数据系统 hadoop

Hadoop在可伸缩性、健壮性、计算性能和成本上具有无可替代的优势,事实上已成为当前互联网企业主流的大数据分析平台。本文主要介绍一种基于Hadoop平台的多维分析和数据挖掘平台架构。作为一家互联网数据分析公司,我们在海量数据的分析领域那真是被“逼上梁山”。多年来在严苛的业务需求和数据压力下,我们几乎尝试了所有可能的大数据分析方法,最终落地于Hadoop平台之上。
1. 大数据分析大分类
Hadoop平台对业务的针对性较强,为了让你明确它是否符合你的业务,现粗略地从几个角度将大数据分析的业务需求分类,针对不同的具体需求,应采用不同的数据分析架构。
按照数据分析的实时性,分为实时数据分析和离线数据分析两种。
实时数据分析一般用于金融、移动和互联网B2C等产品,往往要求在数秒内返回上亿行数据的分析,从而达到不影响用户体验的目的。要满足这样的需求,可以采用精心设计的传统关系型数据库组成并行处理集群,或者采用一些内存计算平台,或者采用HDD的架构,这些无疑都需要比较高的软硬件成本。目前比较新的海量数据实时分析工具有EMC的Greenplum、SAP的HANA等。
对于大多数反馈时间要求不是那么严苛的应用,比如离线统计分析、机器学习、搜索引擎的反向索引计算、推荐引擎的计算等,应采用离线分析的方式,通过数据采集工具将日志数据导入专用的分析平台。但面对海量数据,传统的ETL工具往往彻底失效,主要原因是数据格式转换的开销太大,在性能上无法满足海量数据的采集需求。互联网企业的海量数据采集工具,有Facebook开源的Scribe、LinkedIn开源的Kafka、淘宝开源的Timetunnel、Hadoop的Chukwa等,均可以满足每秒数百MB的日志数据采集和传输需求,并将这些数据上载到Hadoop中央系统上。
按照大数据的数据量,分为内存级别、BI级别、海量级别三种。
这里的内存级别指的是数据量不超过集群的内存最大值。不要小看今天内存的容量,Facebook缓存在内存的Memcached中的数据高达320TB,而目前的PC服务器,内存也可以超过百GB。因此可以采用一些内存数据库,将热点数据常驻内存之中,从而取得非常快速的分析能力,非常适合实时分析业务。图1是一种实际可行的MongoDB分析架构。

图1 用于实时分析的MongoDB架构
MongoDB大集群目前存在一些稳定性问题,会发生周期性的写堵塞和主从同步失效,但仍不失为一种潜力十足的可以用于高速数据分析的NoSQL。
此外,目前大多数服务厂商都已经推出了带4GB以上SSD的解决方案,利用内存+SSD,也可以轻易达到内存分析的性能。随着SSD的发展,内存数据分析必然能得到更加广泛的应用。
BI级别指的是那些对于内存来说太大的数据量,但一般可以将其放入传统的BI产品和专门设计的BI数据库之中进行分析。目前主流的BI产品都有支持TB级以上的数据分析方案。种类繁多,就不具体列举了。
海量级别指的是对于数据库和BI产品已经完全失效或者成本过高的数据量。海量数据级别的优秀企业级产品也有很多,但基于软硬件的成本原因,目前大多数互联网企业采用Hadoop的HDFS分布式文件系统来存储数据,并使用MapRece进行分析。本文稍后将主要介绍Hadoop上基于MapRece的一个多维数据分析平台。
数据分析的算法复杂度
根据不同的业务需求,数据分析的算法也差异巨大,而数据分析的算法复杂度和架构是紧密关联的。举个例子,Redis是一个性能非常高的内存Key-Value NoSQL,它支持List和Set、SortedSet等简单集合,如果你的数据分析需求简单地通过排序,链表就可以解决,同时总的数据量不大于内存(准确地说是内存加上虚拟内存再除以2),那么无疑使用Redis会达到非常惊人的分析性能。
还有很多易并行问题(Embarrassingly Parallel),计算可以分解成完全独立的部分,或者很简单地就能改造出分布式算法,比如大规模脸部识别、图形渲染等,这样的问题自然是使用并行处理集群比较适合。
而大多数统计分析,机器学习问题可以用MapRece算法改写。MapRece目前最擅长的计算领域有流量统计、推荐引擎、趋势分析、用户行为分析、数据挖掘分类器、分布式索引等。
2. 面对大数据OLAP大一些问题

OLAP分析需要进行大量的数据分组和表间关联,而这些显然不是NoSQL和传统数据库的强项,往往必须使用特定的针对BI优化的数据库。比如绝大多数针对BI优化的数据库采用了列存储或混合存储、压缩、延迟加载、对存储数据块的预统计、分片索引等技术。

Hadoop平台上的OLAP分析,同样存在这个问题,Facebook针对Hive开发的RCFile数据格式,就是采用了上述的一些优化技术,从而达到了较好的数据分析性能。如图2所示。
然而,对于Hadoop平台来说,单单通过使用Hive模仿出SQL,对于数据分析来说远远不够,首先Hive虽然将HiveQL翻译MapRece的时候进行了优化,但依然效率低下。多维分析时依然要做事实表和维度表的关联,维度一多性能必然大幅下降。其次,RCFile的行列混合存储模式,事实上限制死了数据格式,也就是说数据格式是针对特定分析预先设计好的,一旦分析的业务模型有所改动,海量数据转换格式的代价是极其巨大的。最后,HiveQL对OLAP业务分析人员依然是非常不友善的,维度和度量才是直接针对业务人员的分析语言。
而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
使用Hadoop进行多维分析,首先能解决上述维度难以改变的问题,利用Hadoop中数据非结构化的特征,采集来的数据本身就是包含大量冗余信息的。同时也可以将大量冗余的维度信息整合到事实表中,这样可以在冗余维度下灵活地改变问题分析的角度。其次利用Hadoop MapRece强大的并行化处理能力,无论OLAP分析中的维度增加多少,开销并不显著增长。换言之,Hadoop可以支持一个巨大无比的Cube,包含了无数你想到或者想不到的维度,而且每次多维分析,都可以支持成千上百个维度,并不会显著影响分析的性能。


而且目前OLAP存在的最大问题是:业务灵活多变,必然导致业务模型随之经常发生变化,而业务维度和度量一旦发生变化,技术人员需要把整个Cube(多维立方体)重新定义并重新生成,业务人员只能在此Cube上进行多维分析,这样就限制了业务人员快速改变问题分析的角度,从而使所谓的BI系统成为死板的日常报表系统。
3. 一种Hadoop多维分析平台的架构
整个架构由四大部分组成:数据采集模块、数据冗余模块、维度定义模块、并行分 析模块。

数据采集模块采用了Cloudera的Flume,将海量的小日志文件进行高速传输和合并,并能够确保数据的传输安全性。单个collector宕机之后,数据也不会丢失,并能将agent数据自动转移到其他的colllecter处理,不会影响整个采集系统的运行。如图5所示。

数据冗余模块不是必须的,但如果日志数据中没有足够的维度信息,或者需要比较频繁地增加维度,则需要定义数据冗余模块。通过冗余维度定义器定义需要冗余的维度信息和来源(数据库、文件、内存等),并指定扩展方式,将信息写入数据日志中。在海量数据下,数据冗余模块往往成为整个系统的瓶颈,建议使用一些比较快的内存NoSQL来冗余原始数据,并采用尽可能多的节点进行并行冗余;或者也完全可以在Hadoop中执行批量Map,进行数据格式的转化。

维度定义模块是面向业务用户的前端模块,用户通过可视化的定义器从数据日志中定义维度和度量,并能自动生成一种多维分析语言,同时可以使用可视化的分析器通过GUI执行刚刚定义好的多维分析命令。
并行分析模块接受用户提交的多维分析命令,并将通过核心模块将该命令解析为Map-Rece,提交给Hadoop集群之后,生成报表供报表中心展示。
核心模块是将多维分析语言转化为MapRece的解析器,读取用户定义的维度和度量,将用户的多维分析命令翻译成MapRece程序。核心模块的具体逻辑如图6所示。

图6中根据JobConf参数进行Map和Rece类的拼装并不复杂,难点是很多实际问题很难通过一个MapRece Job解决,必须通过多个MapRece Job组成工作流(WorkFlow),这里是最需要根据业务进行定制的部分。图7是一个简单的MapRece工作流的例子。

MapRece的输出一般是统计分析的结果,数据量相较于输入的海量数据会小很多,这样就可以导入传统的数据报表产品中进行展现。

Ⅳ 大数据课程基础内容都应该包含哪些

数学,英语!来
基础阶自段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop maprece hadoop,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
数据分析:python,R
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。

Ⅳ 大数据和大数据开发有什么区别

大数据指纯粹的大量数据;大数据开发指从大量数据中找到有用的信息加以开发利用。

Ⅵ 外行人的大数据五问 带你了解大数据

外行人的大数据五问 带你了解大数据
大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据集合的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据有什么特点?来源有哪些?又应用于哪些方面等等。接下来小编带您一起了解大数据。
>>>>>大数据概念
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
网络知道—大数据概念
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
互联网周刊—大数据概念
"大数据"的概念远不止大量的数据(TB)和处理大量数据的技术,或者所谓的"4个V"之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力
研究机构Gartner—大数据概念
"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。 亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。 研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。 大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
>>>>>大数据分析
众所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
>>>>>大数据技术
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
>>>>>大数据特点
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。
当下我国大数据研发建设应在以下四个方面着力
一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。
二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。
三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。
四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。
>>>>>大数据作用
大数据时代到来,认同这一判断的人越来越多。那么大数据意味着什么,他到底会改变什么?仅仅从技术角度回答,已不足以解惑。大数据只是宾语,离开了人这个主语,它再大也没有意义。我们需要把大数据放在人的背景中加以透视,理解它作为时代变革力量的所以然。
变革价值的力量
未来十年,决定中国是不是有大智慧的核心意义标准(那个"思想者"),就是国民幸福。一体现在民生上,通过大数据让有意义的事变得澄明,看我们在人与人关系上,做得是否比以前更有意义;二体现在生态上,通过大数据让有意义的事变得澄明,看我们在天与人关系上,做得是否比以前更有意义。总之,让我们从前10年的意义混沌时代,进入未来10年意义澄明时代。
变革经济的力量
生产者是有价值的,消费者是价值的意义所在。有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。这就是启动内需的原理。
变革组织的力量
随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。大数据将推动网络结构产生无组织的组织力量。最先反映这种结构特点的,是各种各样去中心化的WEB2.0应用,如RSS、维基、博客等。
大数据之所以成为时代变革力量,在于它通过追随意义而获得智慧。
>>>>>大数据处理
大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。
大数据处理的流程
具体的大数据处理方法确实有很多,但是根据笔者长时间的实践,总结了一个普遍适用的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,最后是数据挖掘。
大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
>>>>>大数据应用与案例分析
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是我整理的关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
[1] Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
[2] 在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
[3] 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
[1] 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
[2] 维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
[1] XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
[2] 电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
[3] 中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
[4] NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
大数据应用案例之:零售业
[1] "我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。
[2] 零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例

Ⅶ 大数据时代发展历程是什么

可按照时间点划分大数据的发展历程。

Ⅷ 大数据的预测功能是增值服务的核心

大数据的预测功能是增值服务的核心
从走在大数据发展前沿的互联网新兴行业,到与人类生活息息相关的医疗保健、电力、通信等传统行业,大数据浪潮无时无刻不在改变着人们的生产和生活方式。大数据时代的到来,给国内外各行各业带来诸多的变革动力和巨大价值。
最新发布的报告称,全球大数据市场规模将在未来五年内迎来高达26%的年复合增长率——从今年的148.7亿美元增长到2018年的463.4亿美元。全球各大公司、企业和研究机构对大数据商业模式进行了广泛地探索和尝试,虽然仍旧有许多模式尚不明朗,但是也逐渐形成了一些成熟的商业模式。
两种存储模式为主
互联网上的每一个网页、每一张图片、每一封邮件,通信行业每一条短消息、每一通电话,电力行业每一户用电数据等等,这些足迹都以“数据”的形式被记录下来,并以几何量级的速度增长。这就是大数据时代带给我们最直观的冲击。
正因为数据量之大,数据多为非结构化,现有的诸多存储介质和系统极大地限制着大数据的挖掘和发展。为更好地解决大数据存储问题,国内外各大企业和研究机构做了许许多多的尝试和努力,并不断摸索其商业化前景,目前形成了如下两种比较成熟的商业模式:
可扩展的存储解决方案。该存储解决方案可帮助政府、企业对存储的内容进行分类和确定优先级,高效安全地存储到适当存储介质中。而以存储区域网络(SAN)、统一存储、文件整合/网络连接存储(NAS)的传统存储解决方案,无法提供和扩展处理大数据所需要的灵活性。而以Intel、Oracle、华为、中兴等为代表的新一代存储解决方案提供商提供的适用于大、中小企业级的全系存储解决方案,通过标准化IT基础架构、自动化流程和高扩展性,来满足大数据多种应用需求。
云存储。云存储是一个以数据存储和管理为核心的云计算系统,其结构模型一般由存储层、基础管理、应用接口和访问层四层组成。通过易于使用的API,方便用户将各种数据放到云存储里面,然后像使用水电一样按用量进行收费。用户不用关心数据的存储介质、网络状况以及安全性的管理,只需按需向提供方购买空间。
源数据价值水涨船高
在红红火火的大数据时代,随着数据的累积,数据本身的价值也在不断升值,这种情况很好地反应了事物由量变到质变的规律。例如有一种罕见的疾病,得病率为十万分之一,如果从小样本数据来看非常罕见,但是扩大到全世界70亿人,那么数量就非常庞大。以前技术落后,不能将该病情数字化集中研究,所以很难攻克。但是,我们现在把各种各样的数据案例搜集起来统一分析,我们很快就能攻克很多以前想象不到的科学难题。类似的例子,不胜枚举。
正是由于可以通过大数据挖掘到很多看不见的价值,源数据本身的价值也水涨船高。一些掌握海量有效数据的公司和企业找到了一条行之有效的商业路径:对源数据直接或者经过简单封装销售。在互联网领域,以Facebook、twitter、微博为代表的社交网站拥有大量的用户和用户关系数据,这些网站正尝试以各种方式对该源数据进行商业化销售,Google、Yahoo!、网络[微博]等搜索公司拥有大量的搜索轨迹数据以及网页数据,他们可以通过简单API提供给第三方并从中盈利;在传统行业中,中国联通[微博](3.44, 0.03, 0.88%)、中国电信[微博]等运营商拥有大量的底层用户资料,可以通过简单地去隐私化,然后进行销售盈利。
各大公司或者企业通过提供海量数据服务来支撑公司发展,同时以免费的服务补偿用户,这种成熟的商业模式经受住了时间的考验。但是对于任何用户数据的买卖,还需处理好用户隐私信息,通过去隐私化方式,来保护好用户隐私。
预测是增值服务的核心
在大数据基础上进行深度挖掘,所衍生出来的增值服务,是大数据领域最具想象空间的商业模式。大数据增值服务的核心是什么?预测!大数据引发了商业分析模式转变,从过去的样本模式到现在的全数据模式,从过去的小概率到现在的大概率,从而能够得到比以前更准确的预测。目前形成了如下几种比较成熟的商业模式。
个性化的精准营销。一提起“垃圾短信”,大家都很厌烦,这是因为本来在营销方看来是有价值的、“对”的信息,发到了“错”的用户手里。通过对用户的大量的行为数据进行详细分析,深度挖掘之后,能够实现给“对”的用户发送“对”的信息。比如大型商场可以对会员的购买记录进行深度分析,发掘用户和品牌之间的关联。然后,当某个品牌的忠实用户收到该品牌打折促销的短信之后,一定不是厌烦,而是欣喜。如优捷信达、中科嘉速等拥有强大数据处理技术的公司在数据挖掘、精准广告分析等方面拥有丰富的经验。
企业经营的决策指导。针对大量的用户数据,运用成熟的数据挖掘技术,分析得到企业运营的各种趋势,从而给企业的决策提供强有力的指导。例如,汽车销售公司,可以通过对网络上用户的大量评论进行分析,得到用户最关心和最不满意的功能,然后对自己的下一代产品进行有针对性的改进,以提升消费者的满意度。
总体来说,从宏观层面来看,大数据是我们未来社会的新能源;从企业微观层面来看,大数据分析和运用能力正成为企业的核心竞争力。深入研究和积极探索大数据的商业模式,对企业的未来发展有至关重要的意义。

Ⅸ 大数据架构究竟用哪种框架更为合适

大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

一、大数据建设思路

1)数据的获得

通过大数据的引入和部署,可以达到如下效果:

1)数据整合

·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;

·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;

·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。

2)数据质量管控

·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;

·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。

3)数据共享

·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;

·以实时或准实时的方式将整合或计算好的数据向外系统提供。

4)数据应用

·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;

·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;

·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。

四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。

阅读全文

与facebook大数据构架相关的资料

热点内容
美图m6微信铃声怎么改 浏览:206
输出的json数据 浏览:552
xp关闭打开文件安全警告 浏览:905
win10用cad哪个版本好 浏览:883
文件从电脑传送到手机 浏览:396
安卓系统怎么设置网络 浏览:707
win10下的文件类型选项 浏览:512
元数据修改什么意思 浏览:555
扫描pdf转word 浏览:914
行业协会如何查行业平均数据 浏览:545
什么app能长期使用 浏览:617
哪个APP可以学相声 浏览:347
程序使用代理 浏览:149
文件大小怎么调 浏览:924
javadouble经度 浏览:354
英国颁布了哪些纲领性文件 浏览:929
文件隔行选择是哪些键 浏览:395
股票的数据储存在哪里 浏览:172
微信双机同时登陆 浏览:448
vbnet网页源代码 浏览:409

友情链接