㈠ 求大数据分析技术
列一大堆没用的。。。
大数据分析技术两种理解: 一种是 大数据处理涉及到技术, 一种专是 数据挖掘技术
第一种就属是数据处理流程: 也就是 数据采集 数据清洗 数据存储 数据挖掘 结果可视化展示 技术。
第二种就是具体的数据挖掘算法: 主要是 回归 分类 关联规则 聚类 异常检测 这几种
看你需要哪种?
㈡ 大数据技术架构的什么层提供基于统计学的数据
大数据技术架构的分析层提供基于统计学的数据。
大数据的四层堆栈式技术架构:
1、基础层
第一层作为整个大数据技术架构基础的最底层,也是基础层。要实现大数据规模的应用,企业需要一个高度自动化的、可横向扩展的存储和计算平台。这个基础设施需要从以前的存储孤岛发展为具有共享能力的高容量存储池。容量、性能和吞吐量必须可以线性扩展。
云模型鼓励访问数据并提供弹性资源池来应对大规模问题,解决了如何存储大量数据,以及如何积聚所需的计算资源来操作数据的问题。在云中,数据跨多个节点调配和分布,使得数据更接近需要它的用户,从而可以缩短响应时间和提高生产率。
2、管理层
要支持在多源数据上做深层次的分析,大数据技术架构中需要一个管理平台,使结构化和非结构化数据管理为一体,具备实时传送和查询、计算功能。本层既包括数据的存储和管理,也涉及数据的计算。并行化和分布式是大数据管理平台所必须考虑的要素。
3、分析层
大数据应用需要大数据分析。分析层提供基于统计学的数据挖掘和机器学习算法,用于分析和解释数据集,帮助企业获得对数据价值深入的领悟。可扩展性强、使用灵活的大数据分析平台更可成为数据科学家的利器,起到事半功倍的效果。
4、应用层
大数据的价值体现在帮助企业进行决策和为终端用户提供服务的应用。不同的新型商业需求驱动了大数据的应用。反之,大数据应用为企业提供的竞争优势使得企业更加重视大数据的价值。新型大数据应用对大数据技术不断提出新的要求,大数据技术也因此在不断的发展变化中日趋成熟。
㈢ 现在大数据的发展趋势
主要有几点发展趋势:
一是流式架构的更替,最早大数据生态没有办法统一批处理和流计算,只能采用Lambda架构,批的任务用批计算引擎,流式任务采用流计算引擎,比如批处理采用MapRece,流计算采用Storm。后来Spark试图从批的角度统一流处理和批处理,近年来纯流架构的Flink异军突起,由于其架构设计合理,生态健康,近年来发展特别快。
二是大数据技术的云化,一方面是公有云业务的成熟,众多大数据技术都被搬到了云上,其运维方式和运行环境都发生了较大变化,带来计算和存储资源更加的弹性变化,另一方面,私有部署的大数据技术也逐渐采用容器、虚拟化等技术,期望更加精细化地利用计算资源。
三是异构计算的需求,近年来在通用CPU之外,GPU、FPGA、ASIC等芯片发展迅猛,不同芯片擅长不同的计算任务,大数据技术开始尝试根据不同任务来调用不同的芯片,提升数据处理的效率。
四是兼容智能类的应用,随着深度学习的崛起,AI类的应用越来越广泛,大数据的技术栈在努力兼容AI的能力,通过一站式的能力来做数据分析和AI应用,这样开发者就能在一个工具站中编写SQL任务,调用机器学习和深度学习的算法来训练模型,完成各类数据分析的任务。
㈣ 想成为大数据开发工程师有哪些要求
大数据开发主要是基于大数据服务平台,很多大中型业务应用包括企业级应用和各类网站。能够进行构建大数据应用程序平台和开发分析应用程序
㈤ 从大数据平台到数据治理,智慧医院大数据何去何从
背景:上周看了阿里章剑锋写的一篇大数据文章,加上对健康医疗大数据相关政策的分析,想就医院大数据的建设说几点看法,毕竟国家健康大数据战略下智慧医院大数据是必然先驱,有大数据抱负的医院信息科大部分还在摸着石头找过河的路,而其他行业的经验还是很有借鉴意义的。
2019年6月,中国卫生信息与健康医疗大数据学会会长金小桃(中国卫生信息学会会长)在6月20日的2019(14th)中国卫生信息技术/健康医疗大数据应用交流大会上发布《新一代医院数据中心建设指南》(尽管找遍网络都没找到这个指南,可能还在整理中...)
而基本同一时间,国家卫健委统计信息中心初版了《医院数据治理框架、技术与实现》,对“医院大数据”明确为“医院数据”,这也是我一直在解释的名词,正符合大数据的正确引导和深度理解。
2019年的厦门CHIME,中国医院协会信息专业委员会发布了《医疗机构医疗大数据平台建设指南(征求意见稿)》。在结合2015年以来的每年一批的健康医疗大数据国家战略政策指导,大数据国家战略的决心和国家支持引导的力度可见一斑,而医院侧信息化的现阶段热点就是医院信息平台,信息平台的热方向就是医院大数据和人工智能,当然这脱离不了首先建设完备的医院信息化系统。我们再来看一个政策:
2018年4月,国家卫生健康委员会规划与信息司发布了《全国医院信息化建设标准与规范(试行)》。它是在2016年《医院信息平台应用功能指引》和2017年《医院信息建设应用技术指引(试行)》基础上,形成的较为完整的医院信息系统体系框架。在《医院信息平台应用功能指引》明确医院信息化功能和在《医院信息化建设应用技术指引》上明确了医院信息化技术。看医院信息化完整地图,云计算、大数据、物联网以及传统信息化支撑的是金字塔顶端的人工智能,最近几年AI大数据经常被一起称呼,不可能脱离信息化基础和大数据基础去建设AI的空中楼阁。所以大数据和AI找同一厂家(或者同一生态圈)建设会是最好的选择,毕竟做AI的一定先做数据,但是做数据的却不一定做得好AI,看市场上那么多数据搬运工公司就清楚了,这也是造成医院大数据前期建设重数量轻质量的主要原因。
再来看大数据的宏观发展环境,从2009年闪亮登场到2015年泡沫顶峰,已经迈过了甘特曲线的2个关键节点,现在正处于稳步发展。
大数据技术的2个维度是我觉得章剑锋最深刻的大数据概念解析,垂直的技术栈维度和水平的数据流维度,也就是垂直的平台+应用,水平的数据处理。何为大数据?这一轮数据到大数据的概念,水平维度的数据处理理论正式出现已经30年了并没有大变化(这个维度数据大数据都应该称为数据处理),而聚变的是技术栈维度:hadoop、spark、storm、flink等等,但是闪亮的hadoop不也在没落么,因为技术为业务而生,符合业务需求的才是最合理的技术。而医院大数据建设出的第二个比较大的问题就是追求新技术典型如hadoop,就医院数据体量和应用需求,hadoop真不是最佳实践,而繁杂的运维和庞大高昂的资源硬件成本可能是压垮信心的根本原因。
再来看医院大数据上云,尽管很多人觉得国内是数据隐私和数据安全比较宽松的环境,但是医院数据侧一直都比较谨慎。虽然最近国内出了政策,允许医院将患者数据对患者开发,但是把医院数据放在厂家提供的云上,对于大型三甲医院目前依然不现实。医院除了诊疗水平,最重要的资产就是医院数据,医院数据又比较敏感,医院本身是要遵从严格监管的,所以按照当前形势,更适合医院的还是数据在医院(很多医院通过免费大数据战略合作协议让医院数据上医某云)。
还是回到大数据平台,伴随着大数据概念火热,hadoop缺在逐步没落,就大数据技术栈本身,不存在hadoop架构和oracle架构的选择(在这个点上大量概念混淆,oracle和hive HDFS只是存储方案的差异,hadoop是大数据完整技术栈),只存在数据存储架构的选择,根据数据量、数据使用方式、数据分析方式决策更合理的架构,选了hadoop就不能用oracle吗?这是医院大数据平台建设里经常混淆的点。根据应用场景选择存储方案,根据数据分析需求选择技术栈,如果不清楚需求,何不来个混合架构搞个万金油?其实医院大数据,oracle是可以用的,国产化另论。如果定了oracle是不是就不能用hadoop了呢?
这里又引申到另一个问题,Hadoop、Spark、Flink等大数据技术的发展,医院大数据建设技术要求必提,但是真正建了之后会发现好像哪里不对劲,难道大数据就是这么高大上到信息科要大量学习新技能吗?能用的技术才是好技术,自己都用不了的一定有问题。其实医院信息科真正需要的不应该是Hadoop、Spark、Flink等大数据技术的堆砌,应该是信息科都可以简单上手操作做数据治理,以这些技术为基础的能解决业务问题的产品。也即真正的易操作、专业化、流程化、全链路的数据平台(绝对不是hadoop),这个平台准备后续专门介绍。
智慧医院从大数据平台的建设到数据治理平台建设,大部分是从技术栈的hadoop转向数据专业治理本身,也就是从垂直的技术栈维度转换为横向的数据流维度,还是要平台,而此平台已经不再hadoop。数据治理到底如何做呢?参见前一篇文章《如何做数据治理》,数据治理最早成熟应用是在零售业、银行业,以及运营商,现在每个AI互联网公司都会有数据部门,医院数据治理可能还是先解决自身的业务问题本身,能不能发展到数据中台,还要看医院战略,而不是各种广告中的概念。
还有一点需要补充的,中美贸易摩擦,美对中进行了严格的出口管制,无论从硬件还是软件,能支持国产化会是一个更好的选择。
最后,数据治理本身是一个重运维重交付重实施的事情,当前市场大量充斥草台班子的数据搬运,没有深度长期的价值挖掘,再好的搬运工做的也是劳民伤财的事,参考谷歌和梅奥的十年战略合作协议,这才是医院大数据真正有远见的规划。
简单总结下,智慧医院大数据发展趋势:
1. 政策会频繁颁布,医院大数据(数据)建设一定是必然,目前已经开始稳步发展;
2. 大数据平台概念会褪去,医院真正需要的一定是全产业链整合的数据管理平台;
3. 智慧医院会更加重视数据流即数据治理本身,现阶段还需要一套简单上手的平台辅助;
4. 智慧医院大数据中心依旧以私有云机房为最佳方案;
5. 智慧医院大数据中心需要兼容国产化需求;
6. 找一家AI大数据公司作为长期战略合作伙伴将更加现实,毕竟只讲大数据的大部分都是数据搬运工;
㈥ 大数据技术有哪些
大数据技术是指大数据的应用技术,涵盖各类大数据平台、大数据指数体系等大数据应用技术。大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据技术能够处理比较大的数据量。其次,能对不同类型的数据进行处理。大数据技术不仅仅对一些大量的、简单的数据能够进行处理,通能够处理一些复杂的数据,例如,文本数据、声音数据以及图像数据等等。
另外,大数据技术的应用具有密度低和价值大的效果。一些零散的,各种类型的数据,如果不能在短时间内分析出来信息所表达的含义,那么可以利用大数据分析技术,将信息中潜藏的价值挖掘出来,以便于工作研究或者其他用途的使用,便于政务的便捷化和深层次化。
大数据技术有哪些
跨粒度计算(In-DatabaseComputing)
Z-Suite支持各种常见的汇总,还支持几乎全部的专业统计函数。得益于跨粒度计算技术,Z-Suite数据分析引擎将找寻出最优化的计算方案,继而把所有开销较大的、昂贵的计算都移动到数据存储的地方直接计算,我们称之为库内计算(In-Database)。这一技术大大减少了数据移动,降低了通讯负担,保证了高性能数据分析。
并行计算(MPP Computing)
Z-Suite是基于MPP架构的商业智能平台,她能够把计算分布到多个计算节点,再在指定节点将计算结果汇总输出。Z-Suite能够充分利用各种计算和存储资源,不管是服务器还是普通的PC,她对网络条件也没有严苛的要求。作为横向扩展的大数据平台,Z-Suite能够充分发挥各个节点的计算能力,轻松实现针对TB/PB级数据分析的秒级响应。
列存储 (Column-Based)
Z-Suite是列存储的。基于列存储的数据集市,不读取无关数据,能降低读写开销,同时提高I/O 的效率,从而大大提高查询性能。另外,列存储能够更好地压缩数据,一般压缩比在5 -10倍之间,这样一来,数据占有空间降低到传统存储的1/5到1/10 。良好的数据压缩技术,节省了存储设备和内存的开销,却大大了提升计算性能。
内存计算
得益于列存储技术和并行计算技术,Z-Suite能够大大压缩数据,并同时利用多个节点的计算能力和内存容量。一般地,内存访问速度比磁盘访问速度要快几百倍甚至上千倍。通过内存计算,CPU直接从内存而非磁盘上读取数据并对数据进行计算。内存计算是对传统数据处理方式的一种加速,是实现大数据分析的关键应用技术。
㈦ 对于当今最流行的大数据技术AL人工智能技术。物联网技术。你了解多少
带你了解大数据及人工智能时代的3项关键技术
01 云计算根据美国国家标准与技术研究院(National Instituteof Standards and Technology,NIST)的定义,云计算是指能够针对共享的可配置计算资源,按需提供方便的、泛在的网络接入的模型。上述计算资源包括网络、服务器、存储、应用和服务等,这些资源能够快速地提供和回收,而所涉及的管理开销要尽可能小。具体来说,云模型包含五个基本特征、三个服务模型和四个部署模型。五个基本特征:
按需自助服务(on-demand self-service)
广阔的互联网访问(broad network access)
资源池(resource pooling)
快速伸缩(rapid elasticity)
可度量的服务(measured service)
三个服务模型:
软件即服务(Software as a Service,SaaS)
平台即服务(Platform as a Service,PaaS)
基础设施即服务(Infrastructure as a Service,IaaS)
四个部署模型:
私有云(private cloud)
社区云(community cloud)
公有云(public cloud)
混合云(hybrid cloud)
一般来说,云计算可以被看作通过计算机通信网络(例如互联网)来提供计算服务的分布式系统,其主要目标是利用分布式资源来解决大规模的计算问题。云中的资源对用户是透明的,用户无须知晓资源所在的具体位置。这些资源能够同时被大量用户共享,用户能够在任何时间、任何地点访问应用程序和相关的数据。云计算的体系结构如图1-3所示,还对三个服务模型进行了阐述。
一般来说,物联网能够在云计算的虚拟形式的无限计算能力和资源上补偿自身的技术性限制(例如存储、计算能力和通信能力)。云计算能够为物联网中服务的管理和组合提供高效的解决方案,同时能够实现利用物联网中产生的数据的应用程序和服务。对于物联网来说,云计算能够以更加分布式的、动态的方式来扩展其能处理的真实世界中物/设备的范围,进而交付大量实际生活中的场景所需要的服务。
在多数情况下,云计算能够提供物与应用程序之间的中间层,同时将实现应用程序所必需的复杂性和功能都隐藏起来,这将影响未来的应用程序开发。在未来的多云环境下,应用程序的开发面临着来自信息的收集、处理和传输等方面的新挑战。物联网在工业领域的应用涵盖了众多方面,例如自动化、优化、可预测制造、运输等。制造(manufacturing)是物联网在工业领域最大的市场,涉及软件、硬件、连通性和服务等。
随着物联网的引入,由原料、工件、机器、工具、库存和物流等组成的工业系统构成了实施制造过程的生产单元,上述这些构件之间可以互相通信。物联网提供的连通性驱动了各项操作技术(Operational Technology,OT)的实际性能的收敛性,这里的操作技术包括机械手、传送带、仪表、发电机等。在整个制造过程中,传感器、分布式控制以及安全软件发挥着“胶水”的作用。
当前,工业领域有远见的企业都将生产线和生产过程构建在了物联网之上。运输(transportation)是物联网在工业领域的第二大市场。当前,在众多城市中涌现的智能运输网络能够优化传统运输网络中的路径,生成高效、安全的路线,降低基础设施的开销并缓解交通拥塞。航空、铁路、城际等货运公司能够集成海量的数据来对需求进行实时分析,实现统筹规划和优化操作。
03 大数据随着物联网和云计算技术的发展,海量的数据以前所未有的速度从异构数据源产生,这些数据源所在的领域有医疗健康、政府机构、社交网络、环境监测和金融市场等。在这些景象的背后,存在大量强大的系统和分布式应用程序来支持与数据相关的操作,例如智能电网(smart grid)系统、医疗健康(healthcare)系统、零售业(retailing)系统、政府(government)系统等。
在大数据的变革发生之前,绝大多数机构和公司都没有能力长期保存归档数据,也无法高效地管理和利用大规模的数据集。实际上,现有的传统技术能够应对的存储和管理规模都是有限的。在大数据环境下,传统技术缺乏可扩展性和灵活性,其性能也无法令人满意。当前,针对海量的数据集,需要设计涵盖清洗、处理、分析、加载等操作的可行性方案。业界的公司越来越意识到针对大数据的处理与分析是使企业具有竞争力的重要因素。
1. 三类定义当前大数据在各个领域的广泛普及使得学界与业界对大数据的定义很难达成一致。不过有一点共识是,大数据不仅是指大量的数据。通过对现有大数据的定义进行梳理,我们总结出三种对大数据进行描述和理解的定义。1)属性型定义(attributive definition)作为大数据研究与应用的先驱,国际数据公司(International Data Corporation,IDC)在戴尔易安信(DELLEMC)公司的资助下于2011年提出了如下大数据的定义:
大数据技术描述了技术与体系结构,其设计初衷是通过实施高速的捕获、发现以及分析,来经济性地提取大量具有广泛类型的数据的价值。
该定义侧面描述了大数据的四个显著特征:数量、速度、多样化和价值。由Gartner公司分析师Doug Laney总结的研究报告中给出了与上述定义类似的描述,该研究指出数据的增长所带来的挑战与机遇是三个维度的,即显著增长的数量(Volume)、速度(Velocity)和多样化(Variety)。尽管Doug Laney关于数据在三个维度的描述最初并不是要给大数据下定义,但包括IBM、微软在内的业界在其后的十年间都沿用上述“3V”模型来对大数据进行描述。2)比较型定义(comparative definition)Mckinsey公司2011年给出的研究报告将大数据定义为:
规模超出了典型数据库软件工具的捕获、存储、管理和分析能力的数据集。
尽管该报告没有在具体的度量标准方面对大数据给出定义,但其引入了一个革命性的方面,即怎样的数据集才能够被称为大数据。3)架构型定义(architectural definition)美国国家标准与技术研究院(NIST)对大数据的描述为:
大数据是指数据的数量、获取的速度以及数据的表示限制了使用传统关系数据库方法进行有效分析的能力,需要使用具有良好可扩展性的新型方法来对数据进行高效的处理。
2. 5V以下是一些文献中关于大数据特征的描述:
数据的规模成为问题的一部分,并且传统的技术已经没有能力处理这样的数据。
数据的规模迫使学界和业界不得不抛弃曾经流行的方法而去寻找新的方法。
大数据是一个囊括了在合理时间内对潜在的超大数据集实现捕获、处理、分析和可视化的范畴,并且传统的信息技术无法胜任上述要求。
大数据的核心必须包含三个关键的方面:数量多、速度快和多样化,即著名的“3V”。
1)数量数据的数量又称为数据的规模,在大数据中,其是指在进行数据处理时所面对的超大规模的数据量。目前,海量的数据持续不断地从千百万设备和应用中产生(例如信息通信技术、智能手机、软件代码、社交网络、传感器以及各类日志)。
McAfee公司在2012年估算:在2012年的每一天中,全球都产生着2.5EB的数据,并且该数值约每40个月实现翻倍。
2013年,国际数据公司(IDC)估算全球所产生、复制和消费的数据已经达到4.4ZB,并且该数值约每两年实现翻倍。
到2015年,全球产生的数据将达到8ZB。根据IDC的研究报告,全球产生的数据将在2020年达到40ZB。
2)速度在大数据中,数据的速度是指在进行数据处理时所面对的具有高频率和高实时性的数据流。高速生成的数据应当及时进行处理,以便提取有用的信息和洞察潜在的价值。全球知名的折扣连锁店沃尔玛基于消费者的交易每小时产生2.5PB的数据。视频分享类网站(例如优酷、爱奇艺等)则是大数据高频率和高实时性特征的另一个例证。
3)多样化在大数据中,数据的多样化是指在进行数据处理时所面对的具有不同语法格式的数据类型。随着物联网技术与云计算技术的普及,海量的多源异构数据从不同的数据源以不同的数据格式持续地产生,典型的数据源有传感器、音频、视频、文档等。海量的异构数据形成各种各样的数据集,这些数据集可能包含结构化数据、半结构化数据、非结构化数据,数据集的属性可能是公开或隐私的、共享或机密的、完整或不完整的,等等。随着大数据理论的发展,更多的特征逐步被纳入考虑的范围,以便对大数据做出更好的定义,例如:
想象(vision),这里的想象是指一种目的;
验证(verification),这里的验证是指经过处理后的数据符合特定的要求;
证实(validation),这里的证实是指前述的想象成为现实;
复杂性(complexity),这里的复杂性是指由于数据之间关系的进化,海量数据的组织和分析均很困难;
不变性(immutability),这里的不变性是指如果进行妥善管理,那么经过存储的海量数据可以永久保留。
描述大数据的五个关键特征(即“5V”):
数量(Volume)
速度(Velocity)
多样化(Variety)
准确性(Veracity)
价值(Value)
4)准确性在商界,决策者通常不会完全信任从大数据中提取出的信息,而会进一步对信息进行加工和处理,然后做出更好的决策。如果决策者不信任输入数据,那么输出数据也不会获得信任,这样的数据不会参与决策过程。随着大数据中数据规模的日新月异和数据种类的多样化,如何更好地度量和提升数据可信度成为一个研究热点。
5)价值一般来说,海量的数据具有价值密度低的缺点。如果无法从数据中有效地提取出潜在的价值,那么这些数据在某种程度上就是没用的。数据的价值是决策者最关注的方面,其需要仔细且认真的研究。目前,已经有大量的人力、物力和财力投入到大数据的研究和应用中,这些投资行为都期望从海量数据中获得有价值的内容。但是,对于不同的机构和不同的价值提取方法,同样的数据集所产生的价值差异可能很大,即投入与产出并不一定成正比。
因此,对大数据价值的研究需要建立更加完善的体系。
㈧ 大数据生态技术体系有哪些
1、大数据生态技术体系——Hadoop
由Apache基金会开发的分布式系统基础设施。Hadoop框架的核心设计是HDFS和MapRece。HDFS提供海量数据的存储,MapRece提供海量数据的计算。Hadoop是一个基本框架,它可以托管许多其他东西,比如Hive。不想用编程语言开发MapRece的人可以使用Hive进行离线数据处理和分析。例如,HBase作为面向列的数据库在HDFS上运行,而HDFS缺乏读和写操作,这就是为什么HBase是一个分布式的、面向列的开源数据库。
2、大数据生态技术体系——的火花
也是一个开源项目Apache基金会的另一个重要的分布式计算系统开发的加州大学伯克利分校的实验室。最大的火花和Hadoop的区别是Hadoop使用硬盘来存储数据,而火花使用内存来存储数据,因此火花可以提供超过100次的计算速度。Spark可以通过YARN(另一个资源协调器)在Hadoop集群中运行,但是Spark现在也在进化成一个生态过程,希望通过一个技术栈实现上下游的集成。例如,Spark Shark VS Hadoop Hive, Spark Streaming VS Storm。
3、大数据生态技术体系——风暴
是一个由BackType团队作为Apache基金会孵化器开发的分布式计算系统。它提供了基于Hadoop的实时计算特性,可以实时处理大型数据流。与Hadoop和Spark不同,Storm不收集和存储数据。它通过网络直接实时接收和处理数据,然后通过网络直接实时返回结果。Storm擅长直播。例如,日志,就像网络购物的点击流一样,是连续的、连续的、永远不会结束的,所以当数据通过像Kafka一样的消息队列传入时,Storm就会发挥作用。Storm本身并不收集或存储数据,而是在数据到达时进行处理,并在运行时输出数据。
上面的模块只是基于大型分布式计算的通用框架,通常由计算引擎描述。
除了计算引擎,我们还需要IDE开发、作业调度系统、大数据同步工具、BI模块、数据管理、监控和报警等平台工具。与计算引擎一起,形成了大数据的基础平台。
在这个平台上,我们可以做基于数据的大数据处理应用,开发大数据应用产品。
大数据生态技术体系是什么?大数据工程师掌握这些就够了除了计算引擎,我们还需要一些平台工具,如IDE开发、作业调度系统、大数据同步工具、BI模块、数据管理、监控和报警等,你能处理好吗?如果您还担心自己入门不顺利,可以点击本站其他文章进行学习。
㈨ 大数据技术与应用
我也是专科生,专来业选的是大源数据,我英语不好,我家里人也反对我学这个专业。但我觉得这个专业很有前途并且很有市场。像这种技术性的专业,一出手就知道有还是没有。所以还是要好好的努力去学,并且不能局限于大专院校的课程,可以自己往深处学校习。其实只要真的努力,没什么是学不好的。