① 大数据管理与应用就业方向及前景
• 专业简介
大数据管理与应用专业以互联网+和大数据时代为背景,主要研究大数据分析理论和方法在经济管理中的应用以及大数据管理与治理方法。
• 培养目标
该专业培养知识、能力、素质全面发展,系统掌握经济管理基础理论、大数据分析方法和管理技能,具有创新意识、实践能力和国际视野的经济管理创新人才。
• 知识能力
1.掌握经济管理基础理论和现代信息管理理论;
2.掌握常用的大数据分析方法以及相关前沿理论知识;
3.熟练使用量化分析工具和商业应用软件;
4.具有良好的大数据管理能力和商业伦理道德观;
5.具备批判性思维和可持续学习能力。
考研方向
大数据技术与应用软件工程、大数据分析与应用方向工程硕士FAQ
主要课程
微观经济学、宏观经济学、管理学基础、运筹学、应用统计、计量经济学、商务数据分析、多元统计分析与R建模、时间序列分析方法、大数据基础设施、面向对象程序设计、数据库系统、数据仓库与数据挖掘、文本分析与文本挖掘、网络社会媒体营销分析、量化金融方法等。
就业方向和就业前景
该专业毕业生可继续深造,到国内外的著名高校,研究所等继续从事商业分析,数据科学等相关的研究生学习,也可以到企事业单位的,数据分析部门,商业智能部门等从事数据分析师,商业智能分析师,数据科学家,首席数据官等职位。
② 大数据时代下对实体经济和虚拟经济的未来的发展看法
随着大数据与金融业的飞速发展,实体经济与虚拟经济已形成共存。
它们两者的关系是互利互惠,又相互牵制影响。实体经济是虚拟经济的基础,忽视实体经济的发展,盲目追求虚拟经济,会造成金融泡沫,产生金融危机,对经济有巨大的伤害。
虚拟经济发展好了可成为促进实体经济发展的一种动力,实体经济一方面也会促进虚拟经济的进步。
比如说大数据把消费者的喜爱偏好,通过淘宝平台适时地推荐给消费者,会促进网络购买,购买需求达到一定数量,会导致线下实体商店或工厂如雨后春笋出现,接单后就开始生产与备货,这样而言实体经济与虚拟经济都得到了相互促进。所以我国要把这两种经济整合起来,发挥相互促进的作用,这样的话我国的经济将会得到飞速发展。
从目前来看,虽然中国虚拟经济不及西方发达国家,但是发展速度未来超过西方,指日可待。如果对虚拟经济进行适量适度的发展,能够提高经济的效率,促进现代企业制度的发展与完善。大数据的淘宝消费也是引证了这一点,你喜欢什么网络平台就给你推送什么。
未来监管虚拟经济,促进虚拟经济适度的发展,可能会加强实行以下的措施。
(1)加强金融监管
加强对金融的监管,把金融相关率控制在合理的范围之内。金融相关率是根据Gdp与m2的关系核算得到。其作用可用来表示实体经济与虚拟经济的背离程度。近几年来,虽然我国的经济在不断进步,但我国的金融相关率却一直处于上升状态,说明实体经济与虚拟经济的背离情况越来越严重,金融监管的严格管控势在必行。
(2)先发展虚拟经济来促进实体经济增长
把多种类的经济发展模式进行整合,我国的虚拟经济才会真正得到动力。相关的科技管理部门在未来会优先的发展高新技术产业,用高新技术来满足金融业发展的需求。金融机构不断突破与创新,发售相关金融产品,大力的对绿色贷款进行扶植,对低碳产业进行大规模的扶持。
【拓展资料】
虚拟与实体经济相背离一个标准,它被称为金融相关率。影响金融相关率的重要指标速度是货币化的比率。
③ 大数据对于管理理论与实践的影响
大数据对企业管理的影响:
.大数据对企业管理思想的影响
大数据时代的来临改变了企业的内外部环境,引起了企业的变革与发展。企业越来越智能化,管理实现了信息化。企业中的数据收集、传输利用需要现代管理思想的支撑。
大数据环境下的企业管理应当以人为本,在实践的基础上运用现代信息化技术,采用柔性管理,将数据当做附加资产来看待。企业运营离不开数据的支撑,企业管理当中如果不能够深刻认识到大数据的重要性,仅仅以公司短期盈利作为目标,是缺乏战略性的思考。有效的利用数据分析结果,提前进行预测,抓住市场先机、顾客需求,就能主动赢得市场,才能在企业管理与销售业绩上创造出更大的财富。
2.大数据对企业管理决策的影响
大数据背景下数据的分析利用是企业决策的关键。首先,大数据的决策需要大市场的数据。基于云计算的大数据环境影响到企业信息收集方式、决策方案选择、决策方案制定和评估等决策实施过程,对企业的管理决策产生影响。大数据决策的特点体现在数据驱动型决策,大数据环境下的管理决策对于企业不仅是一门技术,更是一种全新的决策方式、业务模式,企业必须适应大数据环境对管理决策的新挑战。
其次,大数据对决策者和决策组织提出了更高的要求。大数据时代改变了过去依靠经验、管理理论和思想的决策方式。管理决策层根据大数据分析结果发现和解决问题、预测机遇与挑战、规避风险。这就要求决策层具有较高的决策水平。由于大数据背景下需要企业全员的参与,动态变动环境下,决策权力更加分散才有利于企业做出正确的决策。这就要求企业的组织更加趋于扁平化。
3.大数据对企业人力资源管理的影响
人力资源是企业中最宝贵的资源,是企业创造核心竞争力的基础。基于大数据技术,企业将大大提高人力资源管理的效率和质量。有效的加快人力资源工作从过去的经验管理模式向战略管理模式的转变。
公司从员工招聘到绩效考核与培训,积累了大量的各类非线性数据,这些数据都是无形的资产,利用大数据技术,将这些数据进行整合分析利用,能够为企业带来巨大贡献。首先,在员工招聘上,只需将单位用人要求与员工各项能力数据相匹配,结合人力资源招聘的经验,便可轻松选出符合要求的员工。其次,在绩效考核上,进行标准化管理,将员工日常的各类数据进行分析,设定等级标准,即可得出客观公正的考核结果。这大大排除了绩效管理的主观性与不全面性。最后,根据大数据的分析结果,针对不同员工区别培训,更有效率的提高了培训水平。
4.大数据对企业财务管理的影响
大数据使财务管理的模式和工作理念颠覆性的改变。首先,财务管理更加稳健。公司将各类财务数据在大数据技术下进行发掘,提纯出更多有用的财务信息,及早的发现财务风险,为管理决策者提供重要的决策依据,做出正确的决断。其次,财务数据的处理更加及时高效。财务数据在企业日常运营当中举足轻重,企业的各项交易都依赖于财务数据的分析,企业基于大数据,通过对财务数据的分析和处理,能够改进财务管理工作的运行模式,并且是有效率的,企业资金资本运作成本降低和压缩了,利润相应提高了。企业资源最丰富的积累,最基础的财务数据,通过大数据技术进行对财务数据,整理和分析,实现了企业价值增值。
总结:
大数据时代对企业的管理提出了更高的要求。信息化时代下企业每天都在产生大量的数据,大数据时代下,这些数据影响着企业管理的方方面面,它改变着企业的管理思想与管理模式,使企业的决策更加准确高效,使人力资源管理工作更便捷,使企业财务管理稳健、绩效考核客观公正,企业管理中应加强收集分析利用这些数据,确保数据的准确与安全防护。将传统经验、理论管理与大数据管理决策想结合,适应时代发展,将企业做大做强。
④ 在互联网+及大数据时代,组织及管理者面临着哪些新的挑战和机遇
大数据泛指巨量的数据集,因可从中挖掘出有价值的信息而受到重视。《华尔街日报》将大数据时代、智能化生产和无线网络革命称为引领未来繁荣的三大技术变革。有报告指出数据是一种生产资料,大数据是下一个创新、竞争、生产力提高的前沿。世界经济论坛的报告认定大数据为新财富,价值堪比石油。因此,发达国家纷纷将开发利用大数据作为夺取新一轮竞争制高点的重要抓手。
大数据时代的来临
互联网特别是移动互联网的发展,加快了信息化向社会经济各方面、大众日常生活的渗透。有资料显示,1998年全球网民平均每月使用流量是1MB(兆字节),2000年是10MB,2003年是100MB,2008年是1GB(1GB等于1024MB),2014年将是10GB。全网流量累计达到1EB(即10亿GB或1000PB)的时间在2001年是一年,在2004年是一个月,在2007年是一周,而2013年仅需一天,即一天产生的信息量可刻满1.88亿张DVD光盘。我国网民数居世界之首,每天产生的数据量也位于世界前列。淘宝网站每天有超过数千万笔交易,单日数据产生量超过50TB(1TB等于1000GB),存储量40PB(1PB等于1000TB)。网络公司目前数据总量接近1000PB,存储网页数量接近1万亿页,每天大约要处理60亿次搜索请求,几十PB数据。一个8Mbps(兆比特每秒)的摄像头一小时能产生3.6GB数据,一个城市若安装几十万个交通和安防摄像头,每月产生的数据量将达几十PB。医院也是数据产生集中的地方。现在,一个病人的CT影像数据量达几十GB,而全国每年门诊人数以数十亿计,并且他们的信息需要长时间保存。总之,大数据存在于各行各业,一个大数据时代正在到来。
信息爆炸不自今日起,但近年来人们更加感受到大数据的来势迅猛。一方面,网民数量不断增加,另一方面,以物联网和家电为代表的联网设备数量增长更快。2007年全球有5亿个设备联网,人均0.1个;2013年全球将有500亿个设备联网,人均70个。随着宽带化的发展,人均网络接入带宽和流量也迅速提升。全球新产生数据年增40%,即信息总量每两年就可以翻番,这一趋势还将持续。目前,单一数据集容量超过几十TB甚至数PB已不罕见,其规模大到无法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理。
数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。首先,大数据反映舆情和民意。网民在网上产生的海量数据,记录着他们的思想、行为乃至情感,这是信息时代现实社会与网络空间深度融合的产物,蕴含着丰富的内涵和很多规律性信息。根据中国互联网络信息中心统计,2012年底我国网民数为5.64亿,手机网民为4.2亿,通过分析相关数据,可以了解大众需求、诉求和意见。其次,企业和政府的信息系统每天源源不断产生大量数据。根据一个公司的调研报告,全球企业的信息存储总量已达2.2ZB(1ZB等于1000EB),年增67%。医院、学校和银行等也都会收集和存储大量信息。政府可以部署传感器等感知单元,收集环境和社会管理所需的信息。2011年,英国《自然》杂志曾出版专刊指出,倘若能够更有效地组织和使用大数据,人类将得到更多的机会发挥科学技术对社会发展的巨大推动作用。
大数据应用的领域
大数据技术可运用到各行各业。宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值。印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%。制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向。有资料显示,全球零售商因盲目进货导致的销售损失每年达1000亿美元,这方面的数据分析大有作为。
在农业领域,硅谷有个气候公司,从美国气象局等数据库中获得几十年的天气数据,将各地降雨、气温、土壤状况与历年农作物产量的相关度做成精密图表,预测农场来年产量,向农户出售个性化保险。在商业领域,沃尔玛公司通过分析销售数据,了解顾客购物习惯,得出适合搭配在一起出售的商品,还可从中细分顾客群体,提供个性化服务。在金融领域,华尔街“德温特资本市场”公司分析3.4亿微博账户留言,判断民众情绪,依据人们高兴时买股票、焦虑时抛售股票的规律,决定公司股票的买入或卖出。阿里公司根据在淘宝网上中小企业的交易状况筛选出财务健康和讲究诚信的企业,对他们发放无需担保的贷款。目前已放贷300多亿元,坏账率仅0.3%。
在医疗保健领域,“谷歌流感趋势”项目依据网民搜索内容分析全球范围内流感等病疫传播状况,与美国疾病控制和预防中心提供的报告对比,追踪疾病的精确率达到97%。社交网络为许多慢性病患者提供临床症状交流和诊治经验分享平台,医生借此可获得在医院通常得不到的临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。在社会安全管理领域,通过对手机数据的挖掘,可以分析实时动态的流动人口来源、出行,实时交通客流信息及拥堵情况。利用短信、微博、微信和搜索引擎,可以收集热点事件,挖掘舆情,还可以追踪造谣信息的源头。美国麻省理工学院通过对十万多人手机的通话、短信和空间位置等信息进行处理,提取人们行为的时空规律性,进行犯罪预测。在科学研究领域,基于密集数据分析的科学发现成为继实验科学、理论科学和计算科学之后的第四个范例,基于大数据分析的材料基因组学和合成生物学等正在兴起。
报告推测,如果把大数据用于美国的医疗保健,一年产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。
大数据技术的挑战和启示
目前,大数据技术的运用仍存在一些困难与挑战,体现在大数据挖掘的四个环节中。首先在数据收集方面。要对来自网络包括物联网和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。其次是数据存储。要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。第三是数据处理。有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。第四是结果的可视化呈现,使结果更直观以便于洞察。目前,尽管计算机智能化有了很大进步,但还只能针对小规模、有结构或类结构的数据进行分析,谈不上深层次的数据挖掘,现有的数据挖掘算法在不同行业中难以通用。
大数据技术的运用前景是十分光明的。当前,我国正处在全面建成小康社会征程中,工业化、信息化、城镇化、农业现代化任务很重,建设下一代信息基础设施,发展现代信息技术产业体系,健全信息安全保障体系,推进信息网络技术广泛运用,是实现四化同步发展的保证。大数据分析对我们深刻领会世情和国情,把握规律,实现科学发展,做出科学决策具有重要意义,我们必须重新认识数据的重要价值。
为了开发大数据这一金矿,我们要做的工作还很多。首先,大数据分析需要有大数据的技术与产品支持。发达国家一些信息技术(IT)企业已提前发力,通过加大开发力度和兼并等多种手段,努力向成为大数据解决方案提供商转型。国外一些企业打出免费承接大数据分析的招牌,既是为了练兵,也是为了获取情报。过分依赖国外的大数据分析技术与平台,难以回避信息泄密风险。有些日常生活信息看似无关紧要,其实从中也可摸到国家经济和社会脉搏。因此,我们需要有自主可控的大数据技术与产品。美国政府2012年3月发布《大数据研究与发展倡议》,这是继1993年宣布“信息高速公路”之后又一重大科技部署,联邦政府和一些部委已安排资金用于大数据开发。我们与发达国家有不少差距,更需要国家政策支持。
中国人口居世界首位,将会成为产生数据量最多的国家,但我们对数据保存不够重视,对存储数据的利用率也不高。此外,我国一些部门和机构拥有大量数据却不愿与其他部门共享,导致信息不完整或重复投资。政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,应重视数据挖掘。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。例如,提供各地天气与航班延误的关系,推动航空公司提升正点率。
大数据的挖掘与利用应当有法可依。去年底全国人大通过的加强网络信息保护的决定是一个好的开始,当前要尽快制定“信息公开法”以适应大数据时代的到来。现在很多机构和企业拥有大量客户信息。应当既鼓励面向群体、服务社会的数据挖掘,又要防止侵犯个体隐私;既提倡数据共享,又要防止数据被滥用。此外,还需要界定数据挖掘、利用的权限和范围。大数据系统本身的安全性也是值得特别关注的,要注意技术安全性和管理制度安全性并重,防止信息被损坏、篡改、泄露或被窃,保护公民和国家的信息安全。
大数据时代呼唤创新型人才。预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。预测美国到2018年需要深度数据分析人才44万—49万,缺口14万—19万人;需要既熟悉本单位需求又了解大数据技术与应用的管理者150万,这方面的人才缺口更大。中国是人才大国,但能理解与应用大数据的创新人才更是稀缺资源。
大数据是新一代信息技术的集中反映,是一个应用驱动性很强的服务领域,是具有无穷潜力的新兴产业领域;目前,其标准和产业格局尚未形成,这是我国实现跨越式发展的宝贵机会。我们要从战略上重视大数据的开发利用,将它作为转变经济增长方式的有效抓手,但要注意科学规划,切忌一哄而上。
⑤ 大数据时代的管理信息系统发展趋势
“人类正从IT时代走向DT时代,”2014年三月在北京举行的一场大数据产业推介会上,阿里巴巴集团创始人马云在主题演讲中发表了他的这一最新观点。这个被视为商界传奇的中国电子商务创始人,同时透露了阿里巴巴未来将加大在无线客户端和大数据平台及人才的投入意向。
“阿里巴巴是大数据的红利获得者。”在演讲开头,马云就为阿里巴巴集团从去年开始推出余额宝等互联网金融产品而引发世界关注做出了战略“解密”——这源起于阿里巴巴从五年前开始推出的大数据、云计算战略。“从五年前开始,我们在云计算上面押了很多宝,才诞生了互联网金融,如果没有数据支持,互联网金融是不可想象的。”
马云提出,人类已经从IT时代走向DT时代,IT时代是以自我控制、自我管理为主,而DT(Datatechnology)时代,它是以服务大众、激发生产力为主的技术。这两者之间看起来似乎是一种技术的差异,但实际上是思想观念层面的差异。
“未来的竞争不再将按照电力等能源拥有对区域竞争进行划分,今后拼的是人才和创新价值的能力,拼的是你的数据能够给社会创造多少价值,用数据挣钱才是未来真正核心所在,靠控制成本做生意,我估计以后这样的生意做不好,做不大。”业界分析认为,从马云此番表态以及阿里巴巴现有的产业布局来看,未来,包括数据处理、综合处理、语音识别、商业智能软件等在内的线下数据采集整合,将成为阿里巴巴的下一步发展重点。
随着大数据技术的快速发展, 企业和政府部门开始已经开始运用大数据来进行业务的分析、预测和决策。最近国家相关部门就实施国家大数据战略进行第二次集体学习,体现了国家对大数据的重视。那么,在即将到来的2018年,大数据将有哪些发展趋势呢?
1、 机器学习继续成为智能分析核心技术
近年来,机器学习已经开始渗透到生活各个领域:客服机器人、垃圾邮件过滤、人脸识别、语音识别、个性化推荐……随着大数据分析能力的不断提高,2018年机器学习将继续在智能分析方面发挥重要作用。
2、 多种科技和学科交叉融合
大数据技术的发展不仅能够将网络计算中心、移动网络技术和物联网、云计算等新型尖端网络技术充分地融合成一体,促进不同科学技术的交叉融合,同时还能够促进多学科的交叉融合,充分发挥出交叉学科和边缘学科在新时代的新功能与效用。
3、政府大数据将迅速发展
近日,国家相关部门就实施国家大数据战略进行第二次集体学习,指出将推动实施国家大数据战略,加快完善数字基础设施,推进数据资源整合和开放共享,保障数据安全,加快建设数字中国,更好服务我国经济社会发展和人民生活改善。因此,2018年政府将步入大数据建设快速发展的新阶段。
4、物联网、云技术、大数据和网络安全深度融合
数据管理技术,如数据质量控制、数据准备、数据分析以及数据整合等方面的融合程度将在2018年达到新的高度。当我们对智能设备的依赖程度增加时,互通性以及机器学习将会成为保护资产免遭网络安全危害的重要手段。
5、基于知识图谱的大数据应用将成为热门应用场景
知识图谱的应用场景非常广泛,比如搜索、问答、推荐系统、反欺诈、不一致性验证、异常分析、客户管理等。2018年,基于知识图谱的大数据应用将衍生出更多热门应用场景。
6、隐私的保护与大数据的安全备受关注
大数据应用在带来便利的同时,也暴露了一系列问题,人们开始担心个人信息的安全,骚扰电话、账户盗用、地址泄露……如何保护隐私大数据也将提上日程。
综上所述,大数据持续上升的发展趋势已经不可阻挡,更多的企业和人都在逐步逐步重视这块。
⑥ 大数字管理和经济与金融哪个发展前景更好
大数据管理和经济与金融,发展前景都不错的。
大数据管理是以互联网+和大数据时代为背景,主要研究大数据分析理论和方法在经济管理中的应用以及大数据管理与治理方法。
主要专业方向有商务数据分析、商务智能、电子健康、大数据金融、数据挖掘、大数据管理与治理等。
该专业旨在培养掌握管理学基本理论,熟悉现代信息管理技术与方法,善于利用商务数据去定量化分析,并能最终实现智能化商业决策的综合型人才。本专业将坚持“厚基础、宽知识、重思想、重创新、重实战”的培养理念,采取因材施教的模式,采用全新的课程教学体系,培养具有国际视野、创新意识、创新能力及领导潜质的高级管理人才。
经济与金融是一门普通高等学校本科专业,属金融学类专业,基本修业年限为四年,授予经济学学士学位。
专业要求学生掌握经济学和金融学复合型专业知识体系,并且有一定的科研能力和创新精神。毕业后可以进入国家经济管理部门,服务于证券公司、投资银行、商业银行、保险公司、各类投资基金及管理公司等金融机构,以及在管理与财务咨询公司和大型工商企业就业,或者选择在国内外高校继续深造。
该专业旨在培养经济与金融专业方面的知识及理论,能应用所学知识进行相关工作的能力,能在经济和金融活动中进行实际工作的高层次金融人才。
⑦ 大数据管理与应用是做什么的
大数据管理与应用主要是做数据的定量化分析,并能最终实现智能化商业决策的版。
大数据管理与权应用以互联网+和大数据时代为背景,主要研究大数据分析理论和方法在经济管理中的应用以及大数据管理与治理方法。主要专业方向有:商务数据分析、商务智能、电子健康、大数据金融、数据挖掘、大数据管理与治理等。
(7)大数据时代与经济管理的前沿扩展阅读:
大数据管理与应用的主干课程:
微观经济学、宏观经济学、管理学、会计学、统计学、概率论与数理统计、Python程序设计、程序设计语言、算法与数据结构、数据库原理与应用、离散数学 、数据挖掘、统计分析方法、大数据创新实践、机器学习、大数据分析实训、Hadoop基础、数据采集与分析、Nosql数据库、数字化运营、数据可视化、大数据商业分析、自然语言处理、互联网理论与应用、计算机视觉、人工智能导论、大数据行业案例、Hbase数据库等。
⑧ 大数据时代的治理转型
大数据时代的治理转型
大数据技术在商业领域已经显示出提供“解决方案”的惊人能力,同样可以在国家治理、政府治理、社会治理中运用
国务院通过的《关于促进大数据发展的行动纲要》为未来中国的大数据发展指明了方向。然而,与全球主要发达国家相比,中国仍处于大数据发展的初级阶段。如何构筑大数据时代的国家竞争发展优势将具有深远的战略意义。
大数据时代的国际竞争格局
当前,大数据正焕发出变革的力量,并正在改变各国综合国力增速,重塑未来国际战略格局,主要表现在以下方面。
首先,大数据成为经济社会发展新的驱动力。随着物联网、云计算、移动互联网等网络新技术的应用和发展,社会信息化进程进入数据时代,海量数据的产生与流转成为常态。未来20年,全球50亿人将实现联网,这将使全球数据量呈几何式快速增长。预计到2020年,全球数据使用量将达到约40ZB(1ZB=10亿TB),将成为新的重要驱动力。
其次,大数据将成为重要的战略资源和核心资产。世界各国对数据的依赖快速上升,国家竞争焦点已经从资本、土地、人口、资源的争夺转向了对大数据的争夺,制信(数)权成为继制陆权、制海权、制空权之后的新制权。大数据使得数据强国与数据弱国的区分不再以经济规模和经济实力论英雄,而是决定于一国大数据能力的优劣。
第三,大数据将改变国家治理的架构和模式。大数据不仅是一场技术和经济革命,更是一场国家治理的变革。大数据可以通过对海量、动态、高增长、多元化、多样化数据的高速处理,快速获得有价值信息,提高公共决策能力。另外,数据主权的提出也使政府、企业和个人的角色发生转变,使国家治理结构逐步实现从国家独大的治理结构转向多元共治,从封闭性治理结构转向开放性结构,从政府配置资源模式转向市场配置资源模式的转变,作为基础设施的大数据和作为基础性制度的大数据同时存在。
最后,大数据安全已经成为国家最重要的战略安全之一。借助大数据革命,美国等发达国家全球数据监控能力升级,确保自身在网络空间和数据空间的主导地位。各种国家信息基础设施和重要机构所承载着的庞大数据信息,如由信息网络系统所控制的石油和天然气管道、水、电力、交通、银行、金融、商业和军事等,都有可能成为被攻击的目标,大数据安全已经上升成为国家安全极为关键的组成部分。
主要国家大数据战略在行动
当前,世界各国纷纷利用大数据提升国家竞争能力和战略能力。
1.美国大数据战略的全球领导力。美国政府最先对大数据技术革命做出战略反应,利用大数据提升国家治理水平和国家竞争优势。迄今为止,美国政府在大数据方面实施了三轮政策行动。
第一轮是2012年3月,白宫发布《大数据研究和发展计划》,并成立“大数据高级指导小组”,该计划有两个目标:一是用大数据技术系统改造传统国家治理手段和治理体系;二是形成新的经济增长业态和板块。
第二轮是2013年11月,白宫推出“数据-知识-行动”(Data to Knowledge to Action)计划,进一步细化了利用大数据改造国家治理、促进前沿创新、提振经济增长的路径。这是美国向数字治国、数字经济、数字城市、数字国防转型的重要举措。
第三轮是2014年5月,美国总统办公室提交《大数据:把握机遇,维护价值》政策报告,强调政府部门和私人部门紧密合作,利用大数据最大限度地促进增长和利益,减少风险。
2.欧盟“数据驱动经济战略”框架初显。欧盟在2014年发布了《数据驱动经济战略》,有望近期内成为欧盟经济单列行业,为欧盟恢复经济增长和扩大就业,做出巨大贡献。欧盟在大数据方面的活动主要涉及两方面内容:(1)研究数据价值链战略计划;(2)资助“大数据”和“开放数据”领域的研究和创新活动。数据价值链战略计划包括开放数据、云计算、高性能计算和科学知识开放获取四大战略。主要原则是:高质量数据的广泛获得性,包括公共资助数据的免费获得;作为数字化单一市场的一部分,欧盟内的数据自由流动;寻求个人潜在隐私问题与其数据再利用潜力之间的适当平衡,同时赋予公民以其希望形式使用自己数据的权利。
3.亚太地区国家纷纷抢占大数据战略制高点。亚洲一些国家在大数据发展中紧追其后。日本积极谋划利用大数据改造国家治理体系,对冲经济下行风险。2013年6月,安倍内阁正式公布新IT战略《创建最尖端IT国家宣言》,以开放大数据为核心的IT国家战略,把大数据和云计算衍生出的新兴产业群视为提振经济增长、优化国家治理的重要抓手。
韩国科学技术政策研究院2011年正式提出“大数据中心战略”以及“构建英特尔综合数据库”。同时,韩国社会专职部门制定应对大数据时代计划。2012年,韩国国家科学技术委员会就大数据未来发展环境发布重要战略规划。2013年,在朴槿惠总统“创意经济”的新国家发展战略指引下,韩国未来创造科学部提出“培养大数据、云计算系统相关企业1000个”的国家级大数据发展计划以及《第五次国家信息化基本计划(2013-2017)》等多项大数据发展战略。
总体来看,国外政府大数据政策措施体现出如下明显特征:一是颁布战略规划进行整体布局,抢占大数据先机;二是注重构建配套政策,包括人才培养、产业扶持、资金保障、数据开放共享等,为本国大数据发展构筑良好的生态环境。
中国准备好了吗
大数据对于中国的战略意义毋庸置疑。2013年,中国大数据产业市场规模为34.3亿元,同比增长率超100%。然而,与国外先进国家相比,中国大数据发展却面临非常严峻的风险与挑战。
1.大数据战略储备能力不足,尚缺乏国家顶层设计。从主要发达国家的大数据发展经验看,美国等国持续强化国家战略的顶层设计,重点关注大数据对创新能力、国家安全能力、产业竞争力等国家竞争优势的重构,持续推出大数据国家战略规划。目前,中国明确大数据发展战略的中央部门和政府部门较少,更多是产业界和学术界的探讨,大数据战略的国家顶层设计尚未进入议事日程。此外,大数据治理不是技术问题,而是具有系统性、全局性的战略问题,需要有全面推动大数据战略实施的权力部门和核心决策机构。而这些机制设计,中国都明显缺失和缺位。
2.条块分割体制壁垒和“信息孤岛”,阻碍数据开放和共享。据统计,中国政府掌握着80%以上的数据,政府作为政务信息的采集者、管理者和占有者,具有其他社会组织不可比拟的信息优势。但由于信息技术、条块分割的体制等限制,各级政府部门之间的信息网络往往自成体系、相互割裂,相互之间的数据难以实现互通共享,导致目前政府掌握的数据大都处于割裂和休眠状态。同时,由于政府部门业务管理信息系统开发和建设的“部门化”,政府信息系统出现“系统林立”和分裂状态,政府公共信息资源重复采集现象严重,信息摩擦和治理成本偏高。总体而言,政府开放数据的程度远远落后于世界领先国家。
3.传统治理思维和治理体制在大数据时代出现明显的不适应,并引发新的难题。大数据正在重构政府、市场、社会三者之间关系模式,然而,现有国家治理思维和治理体制已经明显不适应这种大数据时代新趋势的变化。特别是如果经济体制、行政体制和社会管理体制改革不能有效跟进,既得利益主体很可能将大数据技术带来的国家治理契机转化为既得利益的手段和工具,可能引发新的“权力寻租”、新的“数字鸿沟”等问题。
4.法治建设滞后,维护“数据主权”的法律法规标准及配套政策严重缺失。目前,中国大数据法治建设明显滞后,用于规范、界定“数据主权”的相关法律缺失,缺乏有效的大数据法律框架。
一是对于政府、商业组织和社会机构的数据开放、信息公开的相关法律法规尚待进一步完善,尤其缺乏企业和应用程序中关于搜集、存储、分析、应用数据的相关法规。
二是没有对保护本国数据、限制数据跨境流通等做出明确规定。金融、证券、保险等重要行业在华开展业务的外国企业将大量敏感数据传输、存储至其国外的数据中心,存在不可控风险。
三是大数据技术应用与产业发展刚刚起步,缺乏与之相配套的法律法规及政策。
将大数据发展规划上升为全面的国家战略
大数据引发的经济社会革命才刚刚开始,需要全面提升大数据在国家经济发展和治理方面的重要战略地位。
1.完善大数据发展的国家顶层设计。要在“行动纲要”基础上,加快形成大数据国家战略,包括中长期路线图与实施重点、目标、路径。统筹布局,加快大数据发展核心技术研发;推进大数据开放、共享以及安全方面的相关立法与标准制定;抢抓全球科技革命和产业革命战略机遇,重构国家综合竞争优势。
一是把数据主权纳入国家核心利益的战略范畴,加快大数据立法、法律法规和标准的制定。
二是规划重点领域的大数据研究计划,布局关键技术研发方向,强化大数据基础设施建设和人才培养,加强对大数据产业的扶持,做好体制机制、资金、法规标准等方面的保障,为后期专项政策制定、项目规划等提供依据。
三是借鉴国外政府大数据战略经验,制定符合中国国情的大数据配套政策路线图,注重从战略技术能力储备和战略应用实施两个角度,释放大数据发展的潜能。
2.构建国家大数据仓库。应加快G2G(政府与政府之间)、G2B(政府与企业之间)、G2C(政府与公民之间)的大数据开放与共享,盘活大数据资产。
一是加强大数据基础设施建设。全面推进实施“宽带中国”战略,持续支持下一代互联网、第四代移动通信、公共无线网络、电子政务网、行业专网和物联网等网络基础设施建设,建立政府“云平台”,统筹监测数据管理平台、公众民情采集与服务数据管理平台、公共安全与应急管理数据管理平台、政府管理绩效考评数据管理平台、资源统筹与经济预警监测数据管理平台。
二是加强基础数据整合。一方面,整合来自于政府职能部门及业务部门的数据信息资源,推动和规范诚信机构建设,提供完整、准确、及时的企业和个人诚信信息,推进大数据征信体系建设;另一方面,推动国家基础数据开放共享进程,打造透明、智慧政府,推动国家、省、市、县四级大数据交换共享,打通信息横向和纵向的共享渠道,推进跨地区、跨部门信息资源共享和业务协同,并在此基础上最终建成国家大数据仓库。
3.运用大数据,全面提升公共服务水平。从全球领先国家经验看,社会治理体系和公共服务体系是运用大数据进行改造提升的最有潜力领域。
一是将大数据更广泛实践于污染防治、城市规划、交通、医疗健康、教育、国家安全、社会舆情、军事等重要领域,在智能交通、智慧医疗、智慧教育、智慧军工、国防等方面实现重大模式创新。
二是利用大数据加快政府自身革命,制定政府大数据开发与利用的负面清单、权力清单和责任清单。
三是利用大数据实施监管和反腐。大数据给网络问政、网络监督和技术反腐提供了强大的技术支撑,可以利用大数据建立国民满意度指数、腐败指数以及清廉指数等。
4.利用大数据创新政府决策方案。大数据技术在商业领域已经显示出提供“解决方案”的惊人能力,同样可以在国家治理、政府治理、社会治理方面中运用。以通信网、互联网、移动互联网、物联网四张网为支撑,可以提出大数据智慧城市解决方案、大数据新农村建设解决方案、大数据金融解决方案、大数据智能终端解决方案、大数据位置服务解决方案、大数据教育解决方案、大数据文化创意解决方案、大数据环境解决方案、大数据制造解决方案、大数据生物健康解决方案、大数据中小企业数据中心解决方案、大数据服务平台解决方案、大数据信息安全解决方案等,为大数据战略真正落地找到突破口。
5.充分挖掘释放大数据变革、创新经济的潜能。首先,通过大数据实现制造业数字化、智能化及下一代信息技术的深度融合。要做好大数据与工业宽带建设的对接,率先将工业宽带的传输、工业大数据采集、数据中心的计算应用等环节整合起来,建立完善的工业互联网体系和中国的工业4.0体系。
其次,鉴于目前中国的人口要素红利在“退潮”,土地、资源、环境等生产要素日益紧张,要将大数据作为新的战略性生产要素释放出来,建立多元参与的协同创新联盟,增强产学研合作集成研发能力,激励基于大数据资源的创新创业,推动经济实现高质量增长。
再次,利用大数据研判,预测宏观经济形势,开发“经济增长形势判断预测系统”、“物价变化高频判断系统”、“金融市场信心判断系统”、“房地产景气判断系统”等,增强对经济形势判断的科学性、精准性。
6.开展全球大数据交流合作。全球主要国家都已提出本国大数据国家战略,特别是美国、日本等国的数据量非常庞大。中国可通过大数据外交,与之展开国际合作,特别是在应对气候变化、粮食安全、疾病灾害、恐怖主义等领域,以及在“一带一路”战略推进过程中,丰富公共外交领域的大数据建设。
此外,可利用大数据技术掌握全球性数据情报和全球焦点事件发展态势。建议实施中国版“全球脉动”(Global Pusle)项目。联合国于2009年推出“全球脉动”项目,提出大数据是纳米技术和量子计算之后的一个颠覆性变化,用这个技术对Twitter和Facebook等互联网数据和文本信息开展实时分析监测,使用语言解密软件对互联网世界进行“情绪分析”,可以对疾病、动乱、种族冲突提供早期预警。中国可以实施类似的大数据全球情报智能监测项目,对全球重大趋势进行早期预警,切实维护和保障国家安全。
⑨ 怎样理解计量经济学的重要作用
线性假设是线性模型最基础也是最重要的假设。而之前我们也有提及所谓的简单线性回归也就是指模型仅包含两个变量X和Y。这里的X,Y和观测值并没有关系,只是根据线性模型刻画出的变量之间的关系:Y可以被看作成是一个关于X的单元函数 (比如说小树苗的高度,可以看成是受到施肥量的一个单元函数)。
这一讲比较重要,会涉及一些模型识别的本质,和计量经济的基础概念,可能会讲得比较长一些。我决定把识别估计篇分为两部分,第一部分主要讲识别,第二部分主要讲估计,今天模型识别这一部分主要分为一下几块:
识别的基本概念;
如何理解识别;
存在性;
唯一性;
识别估计篇(一)
识别的概念:
线性假设给模型提供了识别的基础,这里不可避免地我们就要来讲一下识别这个词到底是什么概念。识别这个词可以说是贯穿整个计量经济学的研究,识别这个词许多学过统计的人都有接触过,但是真的问到识别究竟是什么许多人也很难说出一个所以然来,甚至可能许多人会混淆模型“识别”的概念,最常见的两种混淆是:
“模型识别与“模型估计”混淆;
“模型识别”与实证中我们常说的“因果识别”混淆;
“模型识别”究竟是什么?在数理统计中,一旦我们对所观测到的现象建立了概率参数模型,参数模型一旦确定,我们就可以判断模型是否“可识别”。而这里所谓的“可识别”,指的就是不可能存在两组不同的参数使得在两组不同的参数下,我们观察到“等价”的观测值。
⑩ 大数据管理与应用专业就业方向及前景分析,未来好就业吗
大数据管理与应用专业就业方向及前景分析如下:该专业培养知识、能力、素质全面发展,系统掌握经济管理基础理论、大数据分析方法和管理技能,具有创新意识、实践能力和国际视野的经济管理创新人才。该专业毕业生可继续深造,到国内外的著名高校,研究所等继续从事商业分析,数据科学等相关的研究生学习,也可以到企事业单位的,数据分析部门,商业智能部门等从事数据分析师,商业智能分析师,数据科学家,首席数据官等职位。
大数据管理与应用专业以互联网+和大数据时代为背景,主要研究大数据分析理论和方法在经济管理中的应用以及大数据管理与治理方法。
1.掌握经济管理基础理论和现代信息管理理论;
2.掌握常用的大数据分析方法以及相关前沿理论知识;
3.熟练使用量化分析工具和商业应用软件;
4.具有良好的大数据管理能力和商业伦理道德观;
5.具备批判性思维和可持续学习能力。