1. 大数据金融-第一章 大数据金融概论
1.大数据与小数据
2.大数据的内涵
(1) 数据类型方面
(2) 技术方法方面
(3) 分析应用方面
3.大数据的特征
多样性:随着互联网的发展和传感器种类的增多,诸如网页、图片、音频、视频、微博类的未加工的半结构化和非结构化数据越来越多,以数量激增、类型繁多的非结构化数据为主。非结构化数据相对于结构化数据而言更加复杂,数据存储和处理的难度增大。
时效性:大数据的时效性是指在数据量特别大的情况下,能够在一定的时间和范围内得到及时处理,这是大数据区别于传统数据挖掘最显著的特征。只有对大数据做到实时创建、实时存储、实时处理和实时分析,才能及时有效的获得高价值的信息。
价值型:包含很多深度的价值,大数据分析挖掘和利用将带来巨大的商业价值。
4.大数据与传统数据的区别
5.大数据的产生背景
1.按照大数据结构分类
2. 按照大数据获取处理方式分类
3.按照其他方式分类
1.销售机会增多
0. 商业大数据的来源
1. 客户
2. 市场
3. 商品
4. 供应链
0. 数据来源
2. 市场与精准营销
3. 客户关系管理
4. 企业运营管理
5. 数据商业化
0. 数据来源
2. 付款定价
3. 研发
4. 新的商业模式
5. 公共健康
1. 营销
2. 服务
3. 运营
4. 风控
大数据金融是指运用 大数据技术和大数据平台 开展 金融活动和金融服务 ,对金融行业 积累的大数据以及外部数据 进行云计算等信息化处理,结合传统金融,开展资金融通、创新金融服务。
1. 呈现方式网络化
大量的金融产品和服务通过网络呈现。
2. 风险管理有所调整
风险管理理念 ——财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。
风险定价方式 ——更注重将交易行为的真实性、信用的可信度通过数据来呈现。
对客户的评价 ——全方位、立体的/活生生的。
风险管理的主要手段 ——基于数据挖掘对客户进行识别和分类。
3. 信息不对称降低
4. 金融业务效率提高
在合适的时间、合适的地点,把合适的产品以合适的方式提供给合适的消费者。
5. 金融企业服务边界扩大
由于效率提升,其经营成本必然随之下降,最适合扩大经营规模。
金融从业人员个体服务对象会更多。
6. 产品是可控的、可受的
通过网络化呈现的金融产品,对消费者而言,其收益或成本、产品的流动性是可以接受的,其风险是可控的。
7. 普惠金融
大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。
1. 放贷快捷,精准营销个性化服务
立足长期大量的信用及资金流的大数据基础之上,在任何时点都可以通过计算得出信用评分,并采用网上支付方式,实时根据贷款需要及其信用评分等数据进行放贷。
2. 客户群体大,运营成本低
大数据金融是以大数据云计算为基础,以大数据自动计算为主,不需要大量人工,成本较低,整合了碎片化的需求和供给,服务领域拓展至更多的中小企业和中小客户。
3. 科学决策,有效风控
根据交易借贷行为的违约率等相关指标估计信用评分,运用分布式计算做出风险评估模型,解决信用分配、风险评估、授权实施以及欺诈识别等问题,有效地降低了不良贷款率。
基于 电商平台基础 上形成的网上交易信息与网上支付形成的金融大数据,利用云计算等先进技术对数据进行处理分析而形成的信用或订单融资模式。
典型代表有 阿里小贷 ,基于对电商平台的 交易数据、社交网络的用户交易与交互信息和购物行为习惯 等的大数据通过 云计算 来实时计算得分和分析处理,形成网络商户在电商平台中的累积信用数据,通过电商所构建的网络信用评级体系和金融风险计算模型及风险控制体系,来实时向网络商户发放订单贷款或者信用贷款,例如,阿里小贷可实现数分钟之内发放贷款。
企业利用自身所处的 产业链上下游 (原料商、制造商、分销商、零售商),充分整合供应链资源和客户资源,提供金融服务而形成的金融模式。
京东商城、苏宁易购是供应链金融的典型代表。
在供应链金融模式当中, 电商平台只是作为信息中介提供大数据金融 ,并不承担融资风险及防范风险等。—— 渠道商为核心企业。
2. 大数据怎样影响着金融业
大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。
正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。
中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。
首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。
其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。
一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。
二是大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患。
三是大数据的技术选择存在决策风险。当前,大数据还处于运行模式的探索和成长期,分析型数据库相对于传统的事务型数据库尚不成熟,对于大数据的分析处理仍缺乏高延展性支持,而且它主要仍是面向结构化数据,缺乏对非结构化数据的处理能力。在此情况下,金融企业相关的技术决策就存在选择错误、过于超前或滞后的风险。大数据是一个总体趋势,但过早进行大量投入,选择了不适合自身实际的软硬件,或者过于保守而无所作为都有可能给金融机构的发展带来不利影响。
应该怎样将大数据应用于金融企业呢?
尽管大数据在金融企业的应用刚刚起步,目前影响还比较小,但从发展趋势看,应充分认识大数据带来的深远影响。在制订发展战略时,董事会和管理层不仅要考虑规模、资本、网点、人员、客户等传统要素,还要更加重视对大数据的占有和使用能力,以及互联网、移动通讯、电子渠道等方面的研发能力;要在发展战略中引入和践行大数据的理念和方法,推动决策从“经验依赖”型向“数据依靠”型转化;要保证对大数据的资源投入,把渠道整合、信息网络化、数据挖掘等作为向客户提供金融服务和创新产品的重要基础。
(一)推进金融服务与社交网络的融合
我国金融企业要发展大数据平台,就必须打破传统的数据源边界,注重互联网站、社交媒体等新型数据来源,通过各种渠道获取尽可能多的客户和市场资讯。首先要整合新的客户接触渠道,充分发挥社交网络的作用,增强对客户的了解和互动,树立良好的品牌形象。其次是注重新媒体客服的发展,利用各种聊天工具等网络工具将其打造成为与电话客服并行的服务渠道。三是将企业内部数据和外部社交数据互联,获得更加完整的客户视图,进行更高效的客户关系管理。四是利用社交网络数据和移动数据等进行产品创新和精准营销。五是注重新媒体渠道的舆情监测,在风险事件爆发之前就进行及时有效的处置,将声誉风险降至最低。
(二)处理好与数据服务商的竞争、合作关系
当前各大电商平台上,每天都有大量交易发生,但这些交易的支付结算大多被第三方支付机构垄断,传统金融企业处于支付链末端,从中获取的价值较小。为此,金融机构可考虑自行搭建数据平台,将核心话语权掌握在自己的手中。另一方面,也可以与电信、电商、社交网络等大数据平台开展战略合作,进行数据和信息的交换共享,全面整合客户有效信息,将金融服务与移动网络、电子商务、社交网络等融合起来。从专业分工角度讲,金融机构与数据服务商开展战略合作是比较现实的选择;如果自办电商,没有专业优势,不仅费时费力,还可能丧失市场机遇。
(三)增强大数据的核心处理能力
首先是强化大数据的整合能力。这不仅包括金融企业内部的数据整合,更重要的是与大数据链条上其他外部数据的整合。目前,来自各行业、各渠道的数据标准存在差异,要尽快统一标准与格式,以便进行规范化的数据融合,形成完整的客户视图。同时,针对大数据所带来的海量数据要求,还要对传统的数据仓库技术,特别是数据传输方式ETL(提取、转换和加载)进行流程再造。其次是增强数据挖掘与分析能力,要利用大数据专业工具,建立业务逻辑模型,将大量非结构化数据转化成决策支持信息。三是加强对大数据分析结论的解读和应用能力,关键是要打造一支复合型的大数据专业团队,他们不仅要掌握数理建模和数据挖掘的技术,还要具备良好的业务理解力,并能与内部业务条线进行充分地沟通合作。
(四)加大金融创新力度,设立大数据实验室
可以在金融企业内部专门设立大数据创新实验室,统筹业务、管理、科技、统计等方面的人才与资源,建立特殊的管理体制和激励机制。实验室统一负责大数据方案的制定、实验、评价、推广和升级。每次推行大数据方案之前,实验室都应事先进行单元试验、穿行测试、压力测试和返回检验;待测试通过后,对项目的风险收益作出有数据支撑的综合评估。实验室的另一个任务是对“大数据”进行“大分析”,不断优化模型算法。在“方法论上。
(五)加强风险管控,确保大数据安全。
大数据能够在很大程度上缓解信息不对称问题,为金融企业风险管理提供更有效的手段,但如果管理不善,“大数据”本身也可能演化成“大风险”。大数据应用改变了数据安全风险的特征,它不仅需要新的管理方法,还必须纳入到全面风险管理体系,进行统一监控和治理。为了确保大数据的安全,金融机构必须抓住三个关键环节:一是协调大数据链条中的所有机构,共同推动数据安全标准,加强产业自我监督和技术分享;二是加强与监管机构合作交流,借助监管服务的力量,提升自身的大数据安全水准;三是主动与客户在数据安全和数据使用方面加强沟通,提升客户的数据安全意识,形成大数据风险管理的合力效应。
3. 金融大数据是什么
金融大数据是指收集海量非结构化数据,分析挖掘客户的交易和消费信息,掌握客户的消费习惯,准确预测客户的行为,提高金融机构的服务、营销和风控能力。
1、大数据金融主要体现在三个方面:一是数据客观准确匹配;二是交易成本低,客户群大;最后,数据及时有效,有助于控制风险。
2、大数据金融通过大数据技术收集客户交易信息、在线社区交流行为、资金流动趋势等数据。大数据金融了解客户的消费习惯,针对不同的客户推出不同的营销和广告,或分析客户的信用状况。
拓展资料:
1)因为大数据金融数据是根据客户自己的行为收集的大数据金融是客观真实的。因此,大数据金融为客户制定的回售方案和偏好推荐也能精准大数据金融匹配度高。大数据金融基于云计算技术 云计算是一种超大规模分布式计算技术,通过预设程序,大数据金融云计算可以搜索、计算和分析各类客户数据,无需人工参与。
2)大数据金融云计算技术降低了收集和分析数据的成本,不仅整合了碎片化的需求和供应,而且大大降低了大数据金融交易的成本,实现了跨区域的信息流动和交换,客户群也随之增长。在大数据金融模型中,互联网公司设置了各种风险指标,如违约率、延迟交货率、售后投诉率等,大数据金融收集的客户数据是实时的,因为其信用评价也是实时的。时间,有利于数据需求方及时分析对方的信用状况,控制和防范交易风险。
3)大数据,或称海量数据,是指所涉及的海量数据,无法通过主流软件工具进行检索、管理、处理和整理成信息,帮助企业在合理的时间内做出更积极的业务决策。 “大数据”研究院Gartner给出了这样的定义。 “大数据”需要一种新的处理模式,具有更强的决策力、洞察力和发现力和流程优化能力,以适应海量、高增长率和多样化的信息资产。
4. 服贸会金融服务专题展亮点纷呈 金融机构助力“六稳”“六保”各显身手
作为2020年服贸会八大专题展之一,金融服务专题展吸引了150余家国内外金融机构参加线上线下展览。在展会上,三大政策性银行、商业银行、保险公司、信托公司、证券公司等金融机构,就落实“六稳”“六保”要求、增加金融精准供给、助力外贸基本盘稳定、发力金融 科技 等各显身手,充分展现了中国金融业服务保障经济发展的强大力量。
为企业复工复产按下“加速键”
在展会上,各家金融机构围绕提升融资可得性、降低融资成本等,纷纷晒出助企“成绩单”。
政策性银行显担当,夯实制造业根基。进出口银行设置的落实“六稳”“六保”要求板块显示,该行聚焦制造业贷款投放,设立了首期500亿元专项纾困资金。截至今年6月末,该行制造业贷款余额较年初增长12.23%,纳入纾困名单企业过百家,投放纾困资金超过200亿元。
国有大行充分发挥“头雁”作用,助力企业复工复产。此次展会上,建设银行北京市分行专门设置了“同心抗疫”专区,展示该行支持实体经济、服务“六稳”“六保”大局的一系列举措和成果。今年上半年,该行累计为制造业、基础设施项目、民营企业等客户投放贷款2253亿元,并持续向小微企业减费让利。截至6月末,该行新发放普惠小微企业贷款年利率较年初下降51个基点,累计减免小微企业利息0.77亿元,减免评估、保险等费用1000余万元。
“中小微企业的融资更应该通过股权投资的方式加以解决。在这方面,信托具备一定优势。”光大信托党委书记、董事长闫桂军表示,目前光大信托正在创设天使投资基金、创业投资基金、产业投资基金、高 科技 企业的孵化基金等,希望以此帮助中小微企业解决融资“痛点”。
跨境金融助外贸企业“出海”
2019年末,建设银行率先推出“全球撮合家”智能撮合平台,支持跨境项目、服务和商品的商机发布及精准匹配。今年年初突发疫情,“全球撮合家”大展身手。建行北京市分行通过该平台发布了713家注册企业的各类进出口信息1690条,成功撮合海外急需的防疫物资848万件、交易金额超过1亿元。此外,还配套提供支付、结算等在内的一揽子综合化金融服务解决方案,帮助企业扩展全球“朋友圈”,稳定外贸增长。
跨境服务是中国银行的“金字招牌”。在本届展会上,参观者可以近距离了解中行跨境金融业务的优势与特色。对于资金压力大、受疫情影响严重的小微外贸企业,中行跨境撮合服务通过构建全球中小企业投资合作与交流的信息化平台,解决了中小企业引进技术或出口产品销路等问题,帮助中小企业更好地走向国际,融入全球价值链。
为助力外贸企业探寻转型升级新路径、新模式,金融机构使出了“十八般武艺”。在本次展会上,金融机构展出的跨境金融业务吸引观众驻足观看。
在展会现场,交通银行全景式展示了该行近200项跨境金融产品、创新方案和亮点服务。其中,“交银跨境e金融”为涉外企业创新打造了一站式跨境金融旗舰平台。该行相关负责人表示,与同业电子平台相比,“交银跨境e金融”除了一般网银功能外,还集成了离岸业务、自贸区业务,平台还为进出口贸易、跨境投融资、自贸区、境外企业四大类客群设立了通道。
为解决单据流转慢、虚假贸易背景难甄别、信息不对称等业务“痛点”,工商银行搭建了全国自贸区首个基于多式联运“一单制”的跨境贸易区块链平台,实现了物流、银行、企业等多方数据共享和互信互认,全流程监控跨境贸易,为支持中小企业普惠融资发挥了积极作用。
科技 架起金融服务“高速路”
科技 感、未来感、互动感,这是来自现场观众的切身感受。在本次展会上,人工智能、虚拟现实、区块链等技术不再是“高大上”的概念,LED视频、多媒体互动、VR展示等多元化呈现方式,让观众获得沉浸式金融服务新体验。工行、农行、中行、建行、交行等国有大行以及蚂蚁金服、腾讯、京东数科等众多金融 科技 企业同台亮相,尽显助企纾困的 科技 力量。
在“ 科技 引领金融服务创新”板块,北京银行展示了其特色产品“京信链”。该供应链产品在金融线上化、数字化、场景化等方面的创新,满足了企业“无接触”的融资需求,以金融 科技 手段推动“稳企业保就业”切实落地。
交通银行“智慧金服平台”通过“金融+场景”孵化,快速推出物业管家、医药管家、养老管家、宗教管家、智慧园区、收费管家等20余种互联网行业金融产品,上线各类对公客户突破4000家。建设生物识别平台,将人脸、指纹、声纹等多模认证手段接入120多个业务场景。
进出口银行则结合大数据创新小微企业金融服务,并针对小微企业聚集的开发区、外贸综合服务平台, 探索 设计直贷类产品,不断扩展小微企业直贷业务试点。截至2020年6月末,该行小微企业转贷款余额较年初增加432亿元,惠及企业4.6万余户;年内新发放小微企业贷款利率和小微企业终端用款利率实现“双下降”。
金融 科技 的深度应用也让全球金融市场更加紧密结合。“金融 科技 的发展推动了金融开放,金融业应在服务贸易领域纵横深耕,培育中国金融服务贸易的国际竞争优势。”北京市地方金融监督管理局党组书记、局长霍学文表示,未来,充分发挥金融 科技 在跨境金融服务中的作用,将促进全球金融市场的互联互通。
5. 大数据技术在金融行业有哪些应用前景
大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融行业。预计未来5到回10年,金答融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。
6. 国内将首现金融大数据平台
成立不足半年的北京金融控股集团(以下简称“北京金控集团”)于近日开启成立以后的首次大动作。2月28日,在北京市金融 科技 促进民营小微企业融资工作会上,北京金控集团宣布发起设立全国首家普惠型金融大数据公司,旨在解决民营和小微企业的融资难题。
设立北京金融大数据公司
公开数据显示,北京金控集团为首批五家金控集团监管试点之一,成立于2018年10月19日,并于今年1月24日核准。由北京国有资本经营管理中心100%持股,注册资本120亿元。银保监会原国际部主任范文仲担任公司的法定代表人及董事长。此外,孟振全担任董事一职。
苏宁金融研究院金融 科技 研究中心主任孙扬也认为,在数据运用和操作流程方面,与传统金融机构不同的是,金融大数据公司应该具有数据开放平台、数据实验室等供外部合作伙伴联合建模和数据实验测试。同时,金融大数据公司应该会对外提供民营企业和小微企业客户的数据验证服务,通过API交互方式进行,输入一个数据,返回一个验证结果。因此,基本上该公司会通过在线方式对机构提供数据服务。
致力解决小微融资难题
事实上,作为北京金控集团成立以来的首秀,设立普惠型金融大数据公司这一动作的发生也早有端倪。今年1月,范文仲在接受媒体采访时就曾表示,近期将推出小微企业金融服务平台,以解决小微融资难题。
就当前民营小微企业在融资方面存在的难题,范文仲曾在2月22日召开的北京市促进民营、小微、科创企业融资工作座谈会上指出,由于信用风险大,小微企业经营的规范性相对较差,轻资产特征明显,抵质押物缺乏;同时交易成本较高,小微企业单笔融资规模小,对金融机构的利润贡献度低,但金融机构所付出的人力成本、运营成本等与发放一笔大规模贷款相差无几;再加上服务效率低,传统模式下的信贷审批程序多、周期长,与小微企业信贷规模小、速度快的需求特点不匹配。
对于上述难题,范文仲表示,北京金控集团将依托北京金融大数据公司解决信息不对称的问题,从健全小微企业信用信息征集、评价与应用机制,提高融资担保体系效能以及充分利用金融 科技 创新的新机遇等多方面推动平台建设。同时,以实现对全市民营、小微企业融资更广的覆盖面、更低的融资交易成本、更强的风险管控能力等作为目标,以金融大数据为核心技术降低融资成本,支持民营小微企业。
多因素导致风险犹存
在业内人士看来,当前服务民营、小微企业融资的过程中,仍存在部分风险需要警惕和防范。苏宁金融研究院高级研究员陈嘉宁认为,民营和小微企业受宏观经济影响较大,无论是增长放缓、贸易战还是去杠杆,都会对民营和小微企业造成重大影响。建议在服务过程中,要根据宏观经济情况,灵活调整政策,助力企业,控制市场风险。
同时,陈嘉宁指出,民营和小微企业的征信信息有限,难于授信。因此,建立金融大数据平台,结合上下游以及更多的数据维度,提升行业的数据采集和风险分析能力,有利于金融机构更高效率地识别、计量和管理民营和小微企业的风险,提供更加体贴的服务。
于百程也表示,目前民营和小微企业融资中,金融机构对于企业风险的把控是一个难点,从而会影响金融机构对此类业务的积极性。而数据不断丰富、完善和共享,是破解这一难点比较有效的手段。
此外,陈嘉宁还强调,民营和小微企业数量众多,金融机构难以对接,通过建立金融大数据平台,将民营和小微企业与有意服务民营和小微企业的金融机构进行很好地撮合、匹配和对接,实现资源的最优配置。
就下一步支持民营、小微和科创企业发展的措施,北京金控集团表示,未来3-5年,在小微企业金融综合服务平台建设的基础上,将逐步构建金融大数据、 社会 全信用、聚合无感支付、创新资产交易等金融服务设施,增加首都金融体系信息透明度。
本文源自北京商报
更多精彩资讯,请来金融界网站(www.jrj.com.cn)
7. 什么是大数据金融
大数据金融是通过大数据技术搜集客户交易信息、网络社区交流行为、资金流走向等数据,大数据金融了解客户的消费习惯,从而针对不同的客户投放不同的营销和广告或分析客户的信用状况。由于大数据金融数据是根据客户自身行为而搜集,大数据金融客观真实,因此,大数据金融针对客户制定的营销方案和偏好推荐也能做到精准化。
大数据金融的特点如下:
1、影响大。由于互联网加快了数据的传播,而金融大数据又属于个人核心隐私材料。在我国互联网金融发展现状下,信用体系尚不完善,互联网金融的相关法律还有待配套。互联网金融单位的违约成本较低,容易引发多种金融风险问题,造成群体性事件;
2、数量多。互联网金融大数据是获取的个人的金融行为数据,而这是属于个人数据中非常高频使用的部分。国内互联网金融服务企业获取的互金大数据已经达到数百PB,而且还在不断高速增长中;
3、速度快。互联网金融业务主要信息由系统处理,操作流程完全标准化,业务处理速度更快。在用户画像和信用数据库等金融大数据的支持下,经过数据挖掘和分析,引入风险分析和资信调查模型,一笔业务从申请到完成只需要几秒钟。
法律依据:《中华人民共和国数据安全法》第五条
中央国家安全领导机构负责国家数据安全工作的决策和议事协调,研究制定、指导实施国家数据安全战略和有关重大方针政策,统筹协调国家数据安全的重大事项和重要工作,建立国家数据安全工作协调机制。
8. 金融行业如何用大数据构建精准用户画像
用户画像的焦点工作就是为用户打“标签”,而一个标签通常是人为规定的高度精炼的特征标识,如年龄、性别、地域、用户偏好等,最后将用户的所有标签综合来看,就可以勾勒出该用户的立体“画像”了。
为了精准地描述用户特征,可以参考下面的思路,从用户微观画像的建立→用户画像的标签建模→用户画像的数据架构,我们由微观到宏观,逐层分析。
首先我们从微观来看,如何给用户的微观画像进行分级呢?如下图所示
总原则:基于一级分类上述分类逐级进行细分。
第一分类:人口属性、资产特征、营销特性、兴趣爱好、购物爱好、需求特征
市场上用户画像的方法很多,许多企业也提供用户画像服务,将用户画像提升到很有逼格一件事。金融企业是最早开始用户画像的行业,由于拥有丰富的数据,金融企业在进行用户画像时,对众多纬度的数据无从下手,总是认为用户画像数据纬度越多越好,画像数据越丰富越好,某些输入的数据还设定了权重甚至建立了模型,搞的用户画像是一个巨大而复杂的工程。但是费力很大力气进行了画像之后,却发现只剩下了用户画像,和业务相聚甚远,没有办法直接支持业务运营,投入精力巨大但是回报微小,可以说是得不偿失,无法向领导交代。
事实上, 用户画像涉及数据的纬度需要业务场景结合 ,既要简单干练又要和业务强相关,既要筛选便捷又要方便进一步操作。用户画像需要坚持三个原则,分别是人口属性和信用信息为主,强相关信息为主,定性数据为主。下面就分别展开进行解释和分析。
描述一个用户的信息很多,信用信息是用户画像中重要的信息,信用信息是描述一个人在社会中的消费能力信息。任何企业进行用户画像的目的是寻找目标客户,其必须是具有潜在消费能力的用户。 信用信息可以直接证明客户的消费能力,是用户画像中最重要和基础的信息 。一句戏言,所有的信息都是信用信息就是这个道理。其包含消费者工作、收入、学历、财产等信息。
我们需要介绍一下强相关信息和弱相关信息。 强相关信息就是同场景需求直接相关的信息,其可以是因果信息 ,也可以是相关程度很高的信息。
如果定义采用0到1作为相关系数取值范围的化,0.6以上的相关系数就应该定义为强相关信息。例如在其他条件相同的前提下,35岁左右人的平均工资高于平均年龄为30岁的人,计算机专业毕业的学生平均工资高于哲学专业学生,从事金融行业工作的平均工资高于从事纺织行业的平均工资,上海的平均工资超过海南省平均工资。从这些信息可以看出来人的年龄、学历、职业、地点对收入的影响较大,同收入高低是强相关关系。简单的将,对信用信息影响较大的信息就是强相关信息,反之则是弱相关信息。
用户其他的信息,例如用户的身高、体重、姓名、星座等信息,很难从概率上分析出其对消费能力的影响,这些弱相关信息,这些信息就不应该放到用户画像中进行分析,对用户的信用消费能力影响很小,不具有较大的商业价值。
用户画像和用户分析时,需要考虑强相关信息,不要考虑弱相关信息,这是用户画像的一个原则。
例如可以将年龄段对客户进行划分,18岁-25岁定义为年轻人,25岁-35岁定义为中青年,36-45定义为中年人等。可以参考个人收入信息,将人群定义为高收入人群,中等收入人群,低收入人群。参考资产信息也可以将客户定义为高、中、低级别。定性信息的类别和方式方法,金融可以从自身业务出发,没有固定的模式。
将金融企业各类定量信息,集中在一起,对定性信息进行分类,并进行定性化,有利与对用户进行筛选,快速定位目标客户,是用户画像的另外一个原则。
下面内容将详细介绍,如何根据用户行为,构建模型产出标签、权重。一个事件模型包括:时间、地点、人物三个要素。每一次用户行为本质上是一次随机事件,可以详细描述为:什么用户,在什么时间,什么地点,做了什么事。
什么用户 :关键在于对用户的标识,用户标识的目的是为了区分用户、单点定位。
以上列举了互联网主要的用户标识方法,获取方式由易到难。视企业的用户粘性,可以获取的标识信息有所差异。
什么时间 :时间包括两个重要信息,时间戳+时间长度。时间戳,为了标识用户行为的时间点,如,1395121950(精度到秒),1395121950.083612(精度到微秒),通常采用精度到秒的时间戳即可。因为微秒的时间戳精度并不可靠。浏览器时间精度,准确度最多也只能到毫秒。时间长度,为了标识用户在某一页面的停留时间。
什么地点 :用户接触点,Touch Point。对于每个用户接触点。潜在包含了两层信息:网址 + 内容。网址:每一个url链接(页面/屏幕),即定位了一个互联网页面地址,或者某个产品的特定页面。可以是PC上某电商网站的页面url,也可以是手机上的微博,微信等应用某个功能页面,某款产品应用的特定画面。如,长城红酒单品页,微信订阅号页面,某游戏的过关页。
内容 :每个url网址(页面/屏幕)中的内容。可以是单品的相关信息:类别、品牌、描述、属性、网站信息等等。如,红酒,长城,干红,对于每个互联网接触点,其中网址决定了权重;内容决定了标签。
注:接触点可以是网址,也可以是某个产品的特定功能界面。如,同样一瓶矿泉水,超市卖1元,火车上卖3元,景区卖5元。 商品的售卖价值,不在于成本,更在于售卖地点。 标签均是矿泉水,但接触点的不同体现出了权重差异。这里的权重可以理解为用户对于矿泉水的需求程度不同。即愿意支付的价值不同。
标签 权重
矿泉水 1 // 超市
矿泉水 3 // 火车
矿泉水 5 // 景区
类似的,用户在京东商城浏览红酒信息,与在品尚红酒网浏览红酒信息,表现出对红酒喜好度也是有差异的。这里的关注点是不同的网址,存在权重差异,权重模型的构建,需要根据各自的业务需求构建。
所以,网址本身表征了用户的标签偏好权重。网址对应的内容体现了标签信息。
什么事 :用户行为类型,对于电商有如下典型行为:浏览、添加购物车、搜索、评论、购买、点击赞、收藏 等等。
不同的行为类型,对于接触点的内容产生的标签信息,具有不同的权重。如,购买权重计为5,浏览计为1
红酒 1 // 浏览红酒
红酒 5 // 购买红酒
综合上述分析,用户画像的数据模型,可以概括为下面的公式: 用户标识 + 时间 + 行为类型 + 接触点(网址+内容) ,某用户因为在什么时间、地点、做了什么事。所以会打上**标签。
如:用户A,昨天在品尚红酒网浏览一瓶价值238元的长城干红葡萄酒信息。
标签: 红酒,长城
时间: 因为是昨天的行为,假设衰减因子为:r=0.95
行为类型: 浏览行为记为权重1
地点: 品尚红酒单品页的网址子权重记为 0.9(相比京东红酒单品页的0.7)
假设用户对红酒出于真的喜欢,才会去专业的红酒网选购,而不再综合商城选购。
则用户偏好标签是:红酒,权重是0.95*0.7 * 1=0.665,即,用户A:红酒 0.665、长城 0.665。
上述模型权重值的选取只是举例参考,具体的权重值需要根据业务需求二次建模,这里强调的是如何从整体思考,去构建用户画像模型,进而能够逐步细化模型。
本文并未涉及具体算法,更多的是阐述了一种分析思想,在计划构建用户画像时,能够给您提供一个系统性、框架性的思维指导。
核心在于对用户接触点的理解,接触点内容直接决定了标签信息。内容地址、行为类型、时间衰减,决定了权重模型是关键,权重值本身的二次建模则是水到渠成的进阶。模型举例偏重电商,但其实,可以根据产品的不同,重新定义接触点。
比如影视产品,我看了一部电影《英雄本色》,可能产生的标签是:周润发 0.6、枪战 0.5、港台 0.3。最后,接触点本身并不一定有内容,也可以泛化理解为某种阈值,某个行为超过多少次,达到多长时间等。
比如游戏产品,典型接触点可能会是,关键任务,关键指数(分数)等等。如,积分超过1万分,则标记为钻石级用户。钻石用户 1.0。
百分点现已全面应用用户画像技术于推荐引擎中 ,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%, 订单转化率提升34%。
金融企业内部的信息分布在不同的系统中,一般情况下, 人口属性信息主要集中在客户关系管理系统 , 信用信息主要集中在交易系统和产品系统之中 ,也集中在客户关系管理系统中, 消费特征主要集中在渠道和产品系统中 。
兴趣爱好和社交信息需要从外部引入 ,例如客户的行为轨迹可以代表其兴趣爱好和品牌爱好,移动设备到位置信息可以提供较为准确的兴趣爱好信息。社交信息,可以借助于金融行业自身的文本挖掘能力进行采集和分析,也是可以借助于厂商的技术能力在社交网站上直接获得。社交信息往往是实时信息,商业价值较高,转化率也较高,是大数据预测方面的主要信息来源。例如用户在社交网站上提出罗马哪里好玩的问题,就代表用户未来可能有出国旅游的需求;如果客户在对比两款汽车的优良,客户购买汽车的可能性就较大。金融企业可以及时介入,为客户提供金融服务。
客户画像数据主要分为五类, 人口属性、信用信息、消费特征、兴趣爱好、社交信息。 这些数据都分布在不同的信息系统,金融企业都上线了数据仓库(DW),所有画像相关的强相关信息都可以从数据仓库里面整理和集中,并且依据画像商业需求,利用跑批作业,加工数据,生成用户画像的原始数据。
数据仓库成为用户画像数据的主要处理工具,依据业务场景和画像需求将原始数据进行分类、筛选、归纳、加工等,生成用户画像需要的原始数据。
用户画像的纬度信息不是越多越好,只需要找到这五大类画像信息强相关信息,同业务场景强相关信息,同产品和目标客户强相关信息即可。根本不存在360度的用户画像信息,也不存在丰富的信息可以完全了解客户,另外数据的实效性也要重点考虑。
依据用户画像的原则,所有画像信息应该是五大分类的强相关信息。强相关信息是指同业务场景强相关信息,可以帮助金融行业定位目标客户,了解客户潜在需求,开发需求产品。
只有强相关信息才能帮助金融企业有效结合业务需求,创造商业价值 。例如姓名、手机号、家庭地址就是能够触达客户的强人口属性信息,收入、学历、职业、资产就是客户信用信息的强相关信息。差旅人群、境外游人群、汽车用户、旅游人群、母婴人群就是消费特征的强相关信息。摄影爱好者、游戏爱好者、健身爱好者、电影人群、户外爱好者就是客户兴趣爱好的强相关信息。社交媒体上发表的旅游需求,旅游攻略,理财咨询,汽车需求,房产需求等信息代表了用户的内心需求,是社交信息场景应用的强相关信息。
金融企业内部信息较多,在用户画像阶段不需要对所有信息都采用,只需要采用同业务场景和目标客户强相关的信息即可,这样有助于提高产品转化率,降低投资回报率(ROI),有利于简单找到业务应用场景,在数据变现过程中也容易实现。
千万不要将用户画像工作搞的过于复杂,同业务场景关系不大, 这样就让很多金融企业特别是领导失去用户画像的兴趣,看不到用户画像的商业,不愿意在大数据领域投资。为企业带来商业价值才是用户画像工作的主要动力和主要目的。
金融企业集中了所有信息之后,依据业务需求,对信息进行加工整理,需要对定量的信息进行定性,方便信息分类和筛选。这部分工作建议在数据仓库进行,不建议在大数据管理平台(DMP)里进行加工。
定性信息进行定量分类是用户画像的一个重要工作环节,具有较高的业务场景要求,考验用户画像商业需求的转化。其主要目的是帮助企业将复杂数据简单化,将交易数据定性进行归类,并且融入商业分析的要求,对数据进行商业加工。例如可以将客户按照年龄区间分为学生,青年,中青年,中年,中老年,老年等人生阶段。源于各人生阶段的金融服务需求不同,在寻找目标客户时,可以通过人生阶段进行目标客户定位。企业可以利用客户的收入、学历、资产等情况将客户分为低、中、高端客户,并依据其金融服务需求,提供不同的金融服务。可以参考其金融消费记录和资产信息,以及交易产品,购买的产品,将客户消费特征进行定性描述,区分出电商客户,理财客户,保险客户,稳健投资客户,激进投资客户,餐饮客户,旅游客户,高端客户,公务员客户等。利用外部的数据可以将定性客户的兴趣爱好,例如户外爱好者,奢侈品爱好者,科技产品发烧友,摄影爱好者,高端汽车需求者等信息。
将定量信息归纳为定性信息,并依据业务需求进行标签化 ,有助于金融企业找到目标客户,并且了解客户的潜在需求,为金融行业的产品找到目标客户,进行精准营销,降低营销成本,提高产品转化率。另外金融企业还可以依据客户的消费特征、兴趣爱好、社交信息及时为客户推荐产品,设计产品,优化产品流程。提高产品销售的活跃率,帮助金融企业更好地为客户设计产品。
利用数据进行画像目的主要是为业务场景提供数据支持,包括寻找到产品的目标客户和触达客户。金融企业自身的数据不足以了解客户的消费特征、兴趣爱好、社交信息。
金融企业可以引入外部信息来丰富客户画像信息,例如引入银联和电商的信息来丰富消费特征信息,引入移动大数据的位置信息来丰富客户的兴趣爱好信息,引入外部厂商的数据来丰富社交信息等。
外部信息的纬度较多,内容也很丰富,但是如何引入外部信息是一项具有挑战的工作。外部信息在引入时需要考虑几个问题,分别是外部数据的覆盖率,如何和内部数据打通,和内部信息的匹配率,以及信息的相关程度,还有数据的鲜活度,这些都是引入外部信息的主要考虑纬度。外部数据鱼龙混杂,数据的合规性也是金融企业在引入外部数据时的一个重要考虑, 敏感的信息例如手机号、家庭住址、身份证号在引入或匹配时都应该注意隐私问题 , 基本的原则是不进行数据交换,可以进行数据匹配和验证。
外部数据不会集中在某一家,需要金融企业花费大量时间进行寻找。外部数据和内部数据的打通是个很复杂的问题, 手机号/设备号/身份证号的MD5数值匹配是一种好的方法 ,不涉及隐私数据的交换,可以进行唯一匹配。依据行业内部的经验,没有一家企业外部数据可以满足企业要求,外部数据的引入需要多方面数据。一般情况下,数据覆盖率达到70%以上,就是一个非常高的覆盖率。覆盖率达到20%以上就可以进行商业应用了。
金融行业外部数据源较好合作方有 银联、芝麻信用、运营商、中航信、腾云天下、腾讯、微博、前海征信,各大电商平台等 。市场上数据提供商已经很多,并且数据质量都不错,需要金融行业一家一家去挖掘,或者委托一个厂商代理引入也可以。独立第三方帮助金融行业引入外部数据可以降低数据交易成本,同时也可以降低数据合规风险,是一个不错的尝试。另外各大城市和区域的大数据交易平台,也是一个较好的外部数据引入方式。
用户画像主要目的是让金融企业挖掘已有的数据价值,利用数据画像技术寻找到目标客户和客户的潜在需求,进行产品推销和设计改良产品。
用户画像从业务场景出发,实现数据商业变现重要方式。 用户画像是数据思维运营过程中的一个重要闭环,帮助金融企业利用数据进行精细化运营和市场营销,以及产品设计。用户画像就是一切以数据商业化运营为中心,以商业场景为主,帮助金融企业深度分析客户,找到目标客户。
DMP(大数据管理平台)在整个用户画像过程中起到了一个数据变现的作用。从技术角度来讲,DMP将画像数据进行标签化,利用机器学习算法来找到相似人群,同业务场景深度结合,筛选出具有价值的数据和客户,定位目标客户,触达客户,对营销效果进行记录和反馈。大数据管理平台DMP过去主要应用在广告行业,在金融行业应用不多,未来会成为数据商业应用的主要平台。
DMP可以帮助信用卡公司筛选出未来一个月可能进行分期付款的客户,电子产品重度购买客户,筛选出金融理财客户,筛选出高端客户(在本行资产很少,但是在他行资产很多),筛选出保障险种,寿险,教育险,车险等客户,筛选出稳健投资人,激进投资人,财富管理等方面等客户,并且可以触达这些客户,提高产品转化率,利用数据进行价值变现。DMP还可以了解客户的消费习惯、兴趣爱好、以及近期需求,为客户定制金融产品和服务,进行跨界营销。利用客户的消费偏好,提高产品转化率,提高用户黏度。
DMP还作为引入外部数据的平台,将外部具有价值的数据引入到金融企业内部,补充用户画像数据,创建不同业务应用场景和商业需求,特别是移动大数据、电商数据、社交数据的应用,可以帮助金融企业来进行数据价值变现,让用户画像离商业应用更加近一些,体现用户画像的商业价值。
用户画像的关键不是360度分析客户,而是为企业带来商业价值 ,离开了商业价值谈用户画像就是耍流氓。金融企业用户画像项目出发点一定要从业务需求出发,从强相关数据出发,从业务场景应用出发。用户画像的本质就是深度分析客户,掌握具有价值数据,找到目标客户,按照客户需求来定制产品,利用数据实现价值变现。
银行具有丰富的交易数据、个人属性数据、消费数据、信用数据和客户数据,用户画像的需求较大。但是缺少社交信息和兴趣爱好信息。
到银行网点来办业务的人年纪偏大,未来消费者主要在网上进行业务办理。银行接触不到客户,无法了解客户需求,缺少触达客户的手段。分析客户、了解客户、找到目标客户、为客户设计其需要的产品,成了银行进行用户画像的主要目的。银行的主要业务需求集中在消费金融、财富管理、融资服务,用户画像要从这几个角度出发,寻找目标客户。
银行的客户数据很丰富,数据类型和总量较多,系统也很多。可以严格遵循用户画像的五大步骤。先利用数据仓库进行数据集中,筛选出强相关信息,对定量信息定性化,生成DMP需要的数据。利用DMP进行基础标签和应用定制,结合业务场景需求,进行目标客户筛选或对用户进行深度分析。同时利用DMP引入外部数据,完善数据场景设计,提高目标客户精准度。找到触达客户的方式,对客户进行营销,并对营销效果进行反馈,衡量数据产品的商业价值。利用反馈数据来修正营销活动和提高ROI。形成市场营销的闭环,实现数据商业价值变现的闭环。另外DMP还可以深度分析客户,依据客户的消费特征、兴趣爱好、社交需求、信用信息来开发设计产品,为金融企业的产品开发提供数据支撑,并为产品销售方式提供场景数据。
简单介绍一些DMP可以做到的数据场景变现。
A 寻找分期客户
利用发卡机构数据+自身数据+信用卡数据,发现信用卡消费超过其月收入的用户,推荐其进行消费分期。
B 寻找高端资产客户
利用发卡机构数据+移动位置数据(别墅/高档小区)+物业费代扣数据+银行自身数据+汽车型号数据,发现在银行资产较少,在其他行资产较多的用户,为其提供高端资产管理服务。
C 寻找理财客户
利用自身数据(交易+工资)+移动端理财客户端/电商活跃数据。发现客户将工资/资产转到外部,但是电商消费不活跃客户,其互联网理财可能性较大,可以为其提供理财服务,将资金留在本行。
D 寻找境外游客户
利用自身卡消费数据+移动设备位置信息+社交好境外强相关数据(攻略,航线,景点,费用),寻找境外游客户为其提供金融服务。
E 寻找贷款客户
利用自身数据(人口属性+信用信息)+移动设备位置信息+社交购房/消费强相关信息,寻找即将购车/购房的目标客户,为其提供金融服务(抵押贷款/消费贷款)。
来源: 钱塘大数据二次整理,TalkingData的鲍忠铁原文出处,