导航:首页 > 网络数据 > 大数据看什么书知乎

大数据看什么书知乎

发布时间:2023-02-11 23:35:25

1. 大数据入门书籍有哪些

当年互联网疯狂发展的时候,很多人在观望和犹豫中错过了这班顺风车(没有尽早开个淘宝店,肠子都悔青了好几遍呢)。如今,同样的桥段上演,大数据时代,坚决不能再无动于衷!
于是,你着急,你迷茫,你很方……除了平时要加班加点的搬砖,牙缝里挤出来的的闲碎时间都贡献给度娘了,“小白如何学习大数据”,“大数据入门书籍有哪些”……
1:<大数据时代>
这是学习大数据必读的一本书,也是最系统的关于大数据概念的一本书,由维克托·迈尔-舍恩伯格和肯尼斯·库克耶编写,主要介绍了大数据理念和生活工作及思维变革的关系。
它被包括宽带资本董事长田朔宁、知名IT评论人谢文等专业读者鉴定为“大数据领域最好的著作没有之一,一本顶一万本”。有这么好吗?看完自己评价吧。这本书对这个大规模产生、分享和应用数据的新的大时代进行了阐述和厘清,作者围绕“要全体不要抽样、要效率不要绝对精确、要相关不要因果”三大理念,通过数十个商业和学术案例,剖析了万事万物数据化和数据复用挖掘的巨大价值。
2:<爆发>
由巴拉巴西编写,主要讲了在一个历史故事的连续讲述中,了解大数据的概念实质。从大数据的历史开始,能更深入的了解大数据的发展历程。
巴拉巴西整本书讲述的大数据根本目的,是预测。他甚至有零有整地判断,人类行为93%是可以预测的。打个比方,千百年前人类无法如今天般准确预测天气,以致某些大致预测的行为都被认为是“通神”,其实核心在于对天气数据的海量占有和分析能力。但假如全人类的所有基础及行为数据全部被占有全部能分析呢?比如通过智能终端LBS功能采集全部运动轨迹、通过金融系统采集所有支付记录、通过SNS采集所有社会关系和通过邮件、文档、社会视频监控和自我视频监测采集所有言行记录,24小时,每分每秒,一生,全地球70亿人,那会如何?
3:<大数据>
由徐子沛编写,看美国政府在大数据开放上的进程与反复,算是个案。如果能够基本了解这三本的观点,出门有底气,见人腰杆直,不再被忽悠。
全书讲述的,是大数据在美国政府管理中的应用,以及美国政府运行方式大数据变革的历史与斗争,其实也是故事性的。从奥巴马上台就颁布《信息公开法案》,到设立第一个美国政府首席信息官开始,讲述美国政府与民间在社会数据公开的斗争史,以及美国社会管理向大数据思维转变的过程。首先,这算是一个最详实的案例;其次,这代表的不是某种管理方式变革,深处是对民主运行机制的变革与进步。说好了,这本书用心良苦,远远超越科普技术领域;说坏了,其心可诛。有一段,民间斗争,逼迫奥巴马公布所有每日白宫全部日程,包括接见了谁、谈话的全部内容,这不就是个人大数据全公开在公众人物上的应用吗?这可比现在所谓官员公开财产的要求高了几十倍——这要求政府全部行为、全部数据、全部公开,全体公众随时可查——技术和成本上其实已经可以做到或至少努力接近——如果不这么做,不止是落后问题而是真正的其心可诛了。
4:<大数据基础与应用>
由陈明编写。看名字就知道,入门级别拯救小白的书。这本书共17章,第1章是对大数据的简单概述,第2章介绍大数据研究的方法论,第3、8、9、14章介绍大数据的生态环境,第17章介绍数据科学的内容,剩下的章节是本书重点,介绍大数据技术及应用方法。
身处大数据大环境下,身边的人经常讨论数据库、数据可视化、大数据预处理等等。这些词听得多了会让人产生错觉——自己已经知道里面的门道了。但事实上还是个“门外汉”。
举个例子,没有人肯在上千人规模的讲座上专门花半个小时教你怎样进行数据清洗。本书专门列了一章,详细介绍大数据预处理技术,包括数据清洗的实现方式,从步骤到检验,都做了用心的阐述。诸如此类,数据挖掘、大数据流式计算、Hadoop、NoSQL等等都从最基础的点做了详细介绍。耐心看完这些,再往深处进阶就不会那么吃力了。
5:<一本书读懂大数据>
进入大数据时代,让数据开口说话将成为司空见惯的事情,本书将从大数据时代的前因后果讲起,全面分析大数据时代的特征、企业实践的案例、大数据的发展方向、未来的机遇和挑战等内容,展现一个客观立体、自由开放的大数据时代。
5:<集体智慧编程>
入门,浅显易懂,里面每一章都是一个案例,但是很方便,有具体的代码,用来入门最好。
6:<社交网络的数据挖掘>
专门做社交网络的数据挖掘,案例很丰富,有代码。
7:<数据可视化之美>
致力于介绍各种可视化方案。
8:<鲜活的数据>
比较简单的可视化,不过内容丰富,有代码。
9:<数据挖掘导论完整版>
看完上述的书,对大数据产生很大的兴趣,已经初步入门了,现在开始理论方面的学习,数据挖掘入门教程,个人觉得写的很好,目前正在研究这本书,努力。。。
10:<统计学习方法>
这本书比较深,刚开始看的就是这一本,不过太深,看到一半,准备在导论看完之后,在看这本书提升一下自己。
11:<鸟哥私房菜—基础篇>
作为一个计算机专业linux那是必学的,而且Hadoop是建立在Linux基础上的,不求多么的精通,但是基础的操作要学会。
如果是没有任何编程语言基础的想入行大数据的话,是必须要学习java基础的,虽然大数据支持很多开发语言,但是企业用的最多的还是java,接下来学习数据结构,关系型数据库,linux系统操作,有了基础之后,在进入大数据学习,可以给小白学习的体系。
第一阶段
COREJAVA(加**的需重点熟练掌握,其他掌握)
Java基础**
数据类型
运算符、循环
算法
顺序结构程序设计
程序结构
数组及多维数组
面向对象**
构造方法、控制符、封装
继承**
多态**
抽象类、接口**
常用类
集合Collection、list**
HashSet、TreeSet、Collection
集合类Map**
异常
File
文件/流**
数据流和对象流**
线程(理解即可)
网络通信(理解即可)
第二阶段
数据结构
关系型数据库
Linux系统操作
Linux操作系统概述
安装Linux操作系统
图形界面操作基础
Linux字符界面基础
字符界面操作进阶
用户、组群和权限管理
文件系统管理
软件包管理与系统备份
Linux网络配置
(主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养学生的动手能力。使学生了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。与此同时,如果大家有时间把javaweb及框架学习一番,会让你的大数据学习更自由一些)
重点掌握:
常见算法
数据库表设计
SQL语句
Linux常见命令
第三阶段
Hadoop阶段
离线分析阶段
实时计算阶段
重点掌握:
Hadoop基础
HDFS
MapRece
分布式集群
Hive
Hbase
Sqoop
Pig
Storm实时数据处理平台
Spark平台
若之前没有项目经验或JAVA基础,掌握了第一阶段进入企业,不足以立即上手做项目,企业需再花时间与成本培养;
第二阶段掌握扎实以后,进入企业就可以跟着做项目了,跟着一大帮人做项目倒也不用太担心自己能不能应付的来,当然薪资不能有太高的要求;
前两个阶段都服务于第三阶段的学习,除了熟练掌握这些知识以外,重点需要找些相应的项目去做,不管项目大小做过与没有相差很多的哦!掌握扎实后可直接面对企业就业,薪资待遇较高!

2. 有什么好的大数据书籍推荐吗

1、舍恩伯格的《大数据时代》;
2、巴拉巴西的《爆发》;
3、涂子沛的《大数据》
这几本书都不错,可以看看!

3. 数据挖掘从入门到进阶 要看什么书

推荐:Jiawei Han的《数据挖掘概念与技术》、Ian H. Witten 的《数据挖掘实用机器学习技术》、Pang-Ning Tan的《数据挖掘导论》、Matthew A. Russell的《社交网站的数据挖掘与分析》、Anand Rajaraman的《大数据》。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等。

高度自动化地分析企业的数据,作出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策。知识发现过程由以下三个阶段组成数据准备、数据挖掘、结果表达和解释。数据挖掘可以与用户或知识库交互。

数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。

4. 推荐一本关于大数据,数据分析类似的书籍

1、《Hadoop权威指南》
现在3.1版本刚刚发布,但官方并不推荐在生产环境使用。作为hadoop的入门书籍,从2.x版本开始也不失为良策。
本书从Hadoop的缘起开始,由浅入深,结合理论和实践,全方位地介绍Hadoop这一高性能处理海量数据集的理想工具。刚刚更新的版本中,相比之前的版本增加了介绍YARN , Parquet , Flume, Crunch , Spark的章节,非常适合于Hadoop 初学者。
2、《Learning Spark》
《Spark 快速大数据分析》是一本为Spark 初学者准备的书,它没有过多深入实现细节,而是更多关注上层用户的具体用法。不过,本书绝不仅仅限于Spark 的用法,它对Spark 的核心概念和基本原理也有较为全面的介绍,让读者能够知其然且知其所以然。
3、《Spark机器学习:核心技术与实践》
以实践方式助你掌握Spark机器学习技术。本书采用理论与大量实例相结合的方式帮助开发人员掌握使用Spark进行分析和实现机器学习算法。通过这些示例和Spark在各种企业级系统中的应用,帮助读者解锁Spark机器学习算法的复杂性,通过数据分析产生有价值的数据洞察力。

5. 有哪些关于云计算,大数据,物联网的书籍值得推荐

关于大数据书籍有以下基本了参考看:
1.大数据预测
2.大数据时代
3.大数据分析:决胜互联网金融时代
4.为数据而生:大数据创新实践
5.爆发:大数据时代预见未来的新思维

6. 市面上大数据的书不少,如果只挑一本,哪本值得推荐

市场上大数据的说不少,但是你要挑一本的话,其实我还是觉得你在网络上选择一些自己可以公开的数据。因为每个人需要的每个程度的书是不一样的,你可以选择购买一些书的电子版本。电子版本反而比书籍会更好一点。

7. 大数据怎么学

大数据零基础系统学习,这里给你分享一条入门学习路线——
第一步:培养对于大数据的基本认知
大数据是什么,大数据未来的发展方向和应用场景有哪些,想要入行做大数据,先对培养其基本的行业背景知识是很有必要的。推荐可以看一些相关书籍,例如《大数据时代》、《数据之美》等。
第二步:大数据技术理论知识学习
零基础小白能不能学懂大数据,能不能形成系统的技术体系,这一步很关键。
1、Java:主要为Java的标准版JavaSE。另外,JDBC是一定要掌握的,因为它关系到Java与数据库的连接。
2、Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,大数据软件的运行环境和网络环境配置会常常用到。
3、Hadoop:这个是必学的,核心组件HDFS、MapRece和YARN,还有生态圈的常用组件。
4、Oozie:用于管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确。
5、python:用于编写网络爬虫。
6、Kafka:比较好用的消息队列工具,数据吞吐量很大。
7、Spark:用来弥补基于Hadoop中MapRece处理数据速度上的缺点,特别适合做迭代运算。
学完这些技术框架之后,最好还要有相应的项目来做实战练习,巩固对理论知识的掌握,能够实际去完成一个大数据项目周期当中的所有环节,这样才能在就业市场上获得更大的竞争优势。

8. 入门数据分析行业可以看哪些书

1、统计学


《赤裸裸的统计学》


理由:了解学习统计学的意义,在日常生活中统计学有什么用?也可以当成一本科普书。


《深入浅出统计学》


理由:零基础可以轻松愉快的学会,书里面有通俗易懂的案例,图文并茂,学习统计学不会那么枯燥。


《商务与经济统计》


理由:适合有基础的人看,可以深入了解统计学。零基础看这本书会有些困难。


2、SQL


《SQL基础教程》


理由:零基础入门,通俗易懂,里面的案例也很贴合实际应用。


《SQL必知必会》


理由:有基础的可以把这本书当作一本字典来使用,遇到问题了,可以查找对应的内容。


3、业务知识


电商行业:《数据化管理:洞悉零售及电子商务运营》


游戏行业:《游戏数据分析实战》


网站:《网站分析实战》


HR行业 《人力资源与大数据分析》


金融行业:《消费金融真经:个人贷款业务全流程指南》


其他行业:国外作者肖恩的《增长黑客》


关于入门数据分析行业可以看哪些书,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

9. 大神,关于大数据处理方面的书籍有推荐吗

《大数据处理之来道》作者:自何金池
分析比较了当下流行的大数据处理技术的优劣及适用场景,包括Hadoop、Spark、Storm、Dremel、Drill等,详细分析了各种技术的应用场景和优缺点;同时阐述了大数据下的日志分析系统,重点讲解了ELK日志处理方案;最后分析了大数据处理技术的发展趋势,重点从各种技术的起源、设计思想、架构等方面阐述大数据处理之道。

10. 有什么比较好的大数据入门的书推荐

比较好的大数据入门的书有《大数据日知录:架构与算法》。

《大数据日知录:架构与算法》是2014年电子工业出版社出版的图书,作者是张俊林。《大数据日知录:架构与算法》从架构与算法的角度全面梳理了大数据存储与处理的相关技术。大数据技术具有涉及的知识点异常众多且正处于快速演进发展过程中等特点。

其技术点包括底层的硬件体系结构、相关的基础理论、大规模数据存储系统、分布式架构设计、各种不同应用场景下的差异化系统设计思路、机器学习与数据挖掘并行算法以及层出不穷的新架构、新系统等。

主要介绍

本书对众多纷繁芜杂的相关技术文献和系统进行了择优汰劣并系统性地对相关知识分门别类地进行整理和介绍,将大数据相关技术分为大数据基础理论、大数据系统体系结构、大数据存储。

以及包含批处理、流式计算、交互式数据分析、图数据库、并行机器学习的架构与算法以及增量计算等技术分支在内的大数据处理等几个大的方向。通过这种体系化的知识梳理与讲解,相信对于读者整体和系统地了解、吸收和掌握相关的技术有很大的帮助与促进作用。

阅读全文

与大数据看什么书知乎相关的资料

热点内容
maya粒子表达式教程 浏览:84
抖音小视频如何挂app 浏览:283
cad怎么设置替补文件 浏览:790
win10启动文件是空的 浏览:397
jk网站有哪些 浏览:134
学编程和3d哪个更好 浏览:932
win10移动硬盘文件无法打开 浏览:385
文件名是乱码还删不掉 浏览:643
苹果键盘怎么打开任务管理器 浏览:437
手机桌面文件名字大全 浏览:334
tplink默认无线密码是多少 浏览:33
ipaddgm文件 浏览:99
lua语言编程用哪个平台 浏览:272
政采云如何导出pdf投标文件 浏览:529
php获取postjson数据 浏览:551
javatimetask 浏览:16
编程的话要什么证件 浏览:94
钱脉通微信多开 浏览:878
中学生学编程哪个培训机构好 浏览:852
荣耀路由TV设置文件共享错误 浏览:525

友情链接