㈠ 工业大数据有哪些特征
数据容量大(volume):数据的大小决定所考虑的数据的价值和潜在的信息。工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。
多样(variety):指数据类型的多样性和来源广泛。工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节,并且结构复杂,既有结构化和半结构化的传感数据,也有非结构化数据。
快速(velocity):指获得和处理数据的速度。工业数据处理速度需求多样,生产现场级要求分析时限达到毫秒级,管理与决策应用需要支持交互式或批量数据分析。
价值密度低(value):工业大数据更强调用户价值驱动和数据本身的可用性,包括:提升创新能力和生产经营效率及促进个性化定制、服务化转型等智能制造新模式变革。
时序性(sequence):工业大数据具有较强的时序性,如订单、设备状态数据等。
强关联性(strong-relevance):一方面,产品生命周期同一阶段的数据具有强关联性,如产品零部件组成、工况、设备状态、维修情况、零部件补充采购等;另一方面,产品生命周期的研发设计、生产、服务等不同环节的数据之间需要进行关联。
准确性(accuracy):主要指数据的真实性、完整性和可靠性,更加关注数据质量以及处理、分析技术和方法的可靠性。对数据分析的置信度要求较高,仅依靠统计相关性分析不足以支撑故障诊断、预测预警等工业应用,需要将物理模型与数据模型结合,挖掘因果关系。
闭环性(closed-loop):包括产品全生命周期横向过程中数据链条的封闭和关联以及智能制造纵向数据采集和处理过程中,需要支撑状态感知、分析、反馈、控制等闭环场景下的动态持续调整和优化。
关于工业大数据有哪些特征,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈡ 工业大数据是什么,及其对企业未来发展的作用
1、工业大数据是什么?
工业大数据是指涵盖工业领域中整个产品的全生命周期,所产生的各类数据及相关技术和应用的总称。
2、这些数据对未来企业的作用
在这里就举两个例子来说明,当然也是鉴于篇幅的关系,不能把所有的工业数据的应用都分享出来。
首先是产品的生产流程和进度的工业数据,这个工业数据主要是提供给生产计划部门和销售部门使用的,例如生产计划部门可以根据一个产品的生产流程制定详细的生产结合,并评估每个流程节点的生产周期,生产成本等等,以便快速的协调生产计划,合理控制生产周期。
而生产进度的工业数据可以让销售部门的销售人员更加对客户的产品形成控制力,同时也可以实时的将这些生产进度数据分享给客户知悉,从而坚定客户对我们的信心,这对于生产订单的实施和后续订单的吸引都有非常大的好处。
再例如产品质量的工业数据,我们可以通过对每个产品,以及产品对应的工艺流程来分门别类的统计与质量相关的合格率,废品率,不合格类型,报废类型等等,通过这些数据来提升企业生产能力,从而提升企业的产品质量和缩短企业的产品生产周期,甚至大幅度的降低企业生产成本。
而如果是传统的制造企业的话,虽然很多企业也在对一些工业数据进行手工采集和制表归类,但是如何更好的去应用就是一个非常大是问题了,甚至根本就从来都没有使用过。
㈢ 工业大数据是什么,及其对企业未来发展的作用
我国工业大数据处于起步阶段
工业大数据是指在工业领域信息化应用中所产生的数据,是工业互联网的核心,是工业智能化发展的关键。工业大数据是基于网络互联和大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。
工业大数据从类型上主要分为现场设备数据、生产管理数据和外部数据。
——以上数据来源于前瞻产业研究院《中国工业大数据产业发展前景与投资战略规划分析报告》。
㈣ 工业大数据有什么特点
尝试举例来阐述其特点:
从我们身边的直饮机服务故事开始(直饮机厂家的客服定期会给客户回访,要求更换滤芯,使直饮水保持干净健康)。
直饮机制造商A公司的电话回访,场景一:
智能产品是如何通过数据中心诊断的
上述应用就是一个典型的大数据应用案例。在直饮机制造商B公司的企业运作中,厂家已实现了大数据中心的运作,能实时监控其产品的运行指标,给出产品维保的建议,更为重要的是用数据说话,让客户知其所以然,由此提高客户的满意度。
大数据给智能服务提供了一种新的服务业态,这就是大数据可以给我们带来实质性的价值之一。
企业要构建这样的产品监控数据中心,连接的设备不是10台、100台,可能百万台,千万台。要构建这样的数据处理平台,即所谓的工业大数据平台,需要大量的技术支撑,如,设备数据传输、设备数据存储、大数据分析。
因此,工业大数据并不再只是理论,也不仅是一种技术,它其实就是在我们身边能感受到的一种服务!通过数字“01”让服务更加贴心,也提升了企业的竞争力!新时代的智能产品也由此孕育而生。
㈤ 工业大数据包括哪些工业大数据应用在哪些方面
【导读】众所周知,第二次世界大战也称为工业革命,可见工业在生活中是多么的重要,现在工业也已经趋于人工智能化,不过还是处于前期的观望试运行阶段,今天我们就来了解一下大数据在工业方面的应用有哪些,一起来看看吧!
大数据在工业中的应用有哪些?
从需求角度来看,目前国内制造企业对大数据的需求较为明显,但很多用户仍处于观望和试验阶段,不知道如何进行。因此,对于大数据服务提供商来说,有必要结合行业业务,寻找合适的应用场景。
工业大数据的应用有哪些?
互联网给传统制造业带来了挑战,而互联网大数据可以为企业管理者和参与者提供一个新的视角,通过技术创新和开发,以及对数据的全面感知、收集、分析和共享,来审视制造业价值链。所带来的巨大价值正在被传统企业所认可。
然而,不同于目前互联网大数据的火热,工业大数据的应用对于企业来说有着很高的门槛。与互联网不同,行业大数据与行业业务密切相关。因此,对企业的行业积累和对行业业务的深入了解都有很高的要求。此外,行业内的大数据分析比较准确,逻辑关系非常清晰。
工业大数据的应用有哪些?大数据在工业中的应用有哪些?通过大数据分析,企业可以使部门之间的数据更加协调,从而准确预测市场需求缺口。同时,通过更加灵活的工艺管理和更加自动化的生产设备装配调度,实现智能化生产。然而,据我们所知,在中国从事大数据应用的公司并不多。然而,拥有自主知识产权和核心技术的企业并不多。要做好工业大数据的应用,需要有一套严谨的数据推理逻辑,以及平台和工具。目前,国内大数据应用企业还没有足够的能力满足这一需求。
然而,仍有一些大型工业企业处于应用的前沿。以唐山钢铁集团为例,通过引进国际最先进的生产线,实现实时数据采集,与涵宇等企业合作,深入挖掘行业大数据价值,实时生产监控、生产调度、产品质量管理、能源控制等。此外,先进制造企业基于大数据在行业中的应用,将产品、机器、资源、人有机结合,推动基于大数据分析和应用的制造业智能化转型。
综上所述,在“互联网+”时代,用户需求具有实时性、小批量、碎片化、更新快等特点,对传统制造业提出了挑战。工业大数据有其鲜明的特点。随着信息化和工业化的融合,产业大数据的应用为制造业转型升级开辟了一条新途径。深入探讨工业大数据在制造过程中的应用场景和应用,将有利于更好地发挥其支撑作用。
以上就是小编今天给大家整理的关于“工业大数据包括哪些?工业大数据应用在哪些方面?”的相关内容,希望对大家有所帮助。总的来说,大数据的价值不可估量,未来发展前景也是非常可观的,因此有兴趣的小伙伴,尽早着手学习哦!
㈥ 工业大数据是什么
工业大数据的本质来是数据驱源动。就象我们以前说大数据一样,并不是一个名词,而是一个技术代名词,指的是基于大数据的分析、可视化,模型等大数据相关的技术和应用。在大数据技术日益成熟的前提下,与产业的深度整合成为大数据发展的下一个重要方向,埃睿迪的iReadyInsights平台,就是与产业深度融合的大数据平台。其被应用于工业、环保、金融等产业,并且有诸多典型客户。
㈦ 工业大数据是什么为什么怎么办
大数据具有数据量大、数据类型复杂、数据处理实时性要求高等特点,大数据分析在版互联网权和电子商务领域的广泛应用产生了巨大的商业价值,得到世界各国的高度重视。全球著名战略咨询公司麦肯锡认为,大数据是创新、竞争和生产力的下一个领域。
㈧ 工业制造大数据分析
工业制造大数据分析
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,是人们设法收集并弄清楚不断变化的数据类型。如果只是大量采集同一类型的数据,再大的数据量都不能称之为大数据。
如何实现智能制造是大家都关心的问题。从哈佛商学院的迈克尔·波特到宾夕法尼亚大学沃顿商学院,有一个普遍的共识,即数字化转型是智能制造实现的途径。重要的是,这个共识也来自于众多的世界级制造业企业与企业家们。
这一共识是基于无数技术趋势的融合,例如,物联网、赛博系统(CPS)、工业物联网、移动技术、人工智能、云计算、虚拟/虚拟增强现实(VR/AR),以及大数据分析等。我们一定要保持清醒,不要简单地认为有了这些技术,未来五年就是制造业的黄金时期。道理很简单,这个新制造业文化的变革进程是相当复杂和艰难的,没有行业、企业与用户的融合推进,无法实现这次变革。数字化转型不仅仅意味着企业简单的数字化,而是把数字作为智能制造的核心驱动力,利用数据去整合产业链和价值链。
自工业革命以来,为了改进运营,制造商一直以来都在有意地采集并存储数据。随着时间的推移,数据在制造业分析的需求将越来越大。然而在过去的许多年间,利用数据的根本动因并没有改变,数据的复杂性增强,数据转化为情报的能力越来越大。
2012年高德纳给出大数据定义,其中特别强调大数据是多样化信息资产,不仅关注实际数据,更关注大数据处理方法。数据量大小本身并不是判断大数据价值的核心指标,而数据的实时性和多元性对大数据的定义和价值更具直接的影响。
在讨论工业大数据分析的时候,我注意到两种不同的观点:
第一种观点认为,制造业向来都有大数据。几十年来我们的企业一直在通过历史记录、MES、ERP、EAM等各种应用系统采集数据。在部分产业链环节,特别在市场营销方面,大数据算是一个新的热词。
第二种观点认为,从工业大数据角度看,制造业是一个尚未打开的市场或刚刚开启的市场。存在大量不同类型的数据,但如今它们还未被应用到分析之中。
考虑到这些观点,面对任何新的市场提法,包括名词解释、定义或分析框架,我们始终都应该保持适当的怀疑精神。这里我更多倾向于第二个观点。我们的制造业的确有“大量数据”,但这并不是我们大多数人从市场上所理解的“大数据”涵义。在搞清楚工业大数据分析之前,我们应该如何定义制造业的大数据?这里可以通过大数据的三个特性,进一步了解大数据的特性。
数据来源
工业大数据的主要来源有两个,第一是智能设备。普适计算有很大的空间,现代工人可以带一个普适感应器等设备来参加生产和管理。所以工业数据源是280亿左右大量设备之间的关联,这个是我们未来需要去采集的数据源之一。
第二个数据来源于人类轨迹产生的数据,包括在现代工业制造链中,从采购、生产、物流与销售内部流程以及外部互联网信息等。通过行为轨迹数据与设备数据的结合,大数据可以帮助我们实现对客户的分析和挖掘,它的应用场景包括了实时核心交易、服务、后台服务等。
数据关系
数据必须要放到相应的环境中分析,才能了解数据之间的关系。譬如,每一款新机型在交付给航空公司之前都会接受一系列残酷的飞行测试。极端天气测试就是测试之一。该测试的目的是为了确保飞机的发动机、材料和控制系统能在极端天气条件下正常运行。
问题的处理关键在于找到可能产生问题的根源,消除已知错误,并确保解决方案的可靠有效。一旦找到并确定了根本原因,同时具备了可接受的应急措施,就可把问题当成一个已知错误来处理。问题调查的过程一定需要收集所有可用、与事件相关的信息,以确定并消除引起事件和问题的根本原因。数据采集与分析必须要事件/问题发生的环境数据结合。
数据价值
对于数字化转型,大数据不仅要关注实际数据量的多少,最重要的是关注大数据的处理方法在特定场合的应用,让数据产生巨大的创新价值。如果离开了收益考虑或投资回报(ROI)的设计,一味寻求大数据,则大数据分析既无法落地也无法为企业创造价值。
工业大数据分析的定义
发动机是飞机的心脏,也是关乎航空安全,生命安全的重中之重。为了实时监控发动机的状况,现代民航大多安装了飞机发动机健康管理系统。通过传感器、发射系统、信号接收系统、信号分析系统等方式采集到的数据,会经由飞机通信寻址与报告系统,通过甚高频或者卫星通信传输出来,这就是为何GE的发动机监控系统每天会获取超过1PB数据的原因。
生产执行系统(MES)与飞机发动机健康管理系统如出一辙。我们可以从工厂的生产中,实时采集到海量的流程变量、测量结果等数据。基于大量数据集而生成的报表,或是基础统计的分析并不足以称为制造业的大数据分析。
数据类型的多样性是工业大数据分析的重要属性
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,是人们设法收集并弄清楚不断变化的数据类型。如果只是大量采集同一类型的数据,再大的数据量都不能称之为大数据。
例如,生产环境中收集的时间序列模拟流程变量,数据的类型是单一的,很容易建立索引,即使存在千千万万,也不足以成为大数据。
数据必须包括高度可变性和种类多样性。制造工厂中存在无数的大数据应用,但并不包括简单地分类和展示一连串的流程测量结果,对这些工作,基本的统计展现就可以完成。一些大数据的数据库或数据湖的构成部分也是文本信息、图像数据、地理或地质信息和非结构信息,例如,通过社交媒体或其他协作平台获得的数据类型。
制造业信息结构概括起来分为两层,一个是管理层,一个是自动化层。从经营管理、生产执行与控制三个纬度来实现决策支持、管理、生产执行、过程控制以及设备的连接与传感。制造业中大数据分析是指利用通用的数据模型,将管理层与自动化层的结构性系统数据与非结构性数据结合,进而通过先进的分析工具发现新的洞见。
大数据分析对企业生产智能的意义
制造业创新的核心就是要依托大量的前沿科技。先进的技术是创新的手段。在新技术的支持下,可以通过一体化的制造运作管理系统MOM将企业管理应用系统,例如ERP、EAM等系统与工业自动化的相关系统整合为一体。在一体化制造运作管理的基础上,我们可以实现集IT+MOM+MES+BI的一体化制造企业信息系统解决方案。
从两化融合的角度来看,信息系统供应商要从企业的主信息系统提供商(MIV,MainInformation systems Vendor )定位来做好规划、标准、功能设计、实施策略的统一性工作。协助企业做好风险控制,降低投资,降低操作维护成本,实现企业信息系统全集成。
特别需要注意的是,企业管理信息平台被普遍认为是制造企业管理的集成和仪表板工具。许多供应商既大量投资其与ERP和自动化系统专有的集成,也投资开放式集成,还投资仪表板和移动技术,希望随时随地为需要正确信息的决策者提供衡量标准。
制造业大数据分析的三种途径
途径一,利用开放技术与平台,将任何系统的数据移动到任何其他地方。
制造运作管理系统建设项目是系统工程,不仅仅是一套我们理解的传统软件系统,更多的是项目执行和服务的平台。这需要在项目管理与制造企业的策略“客户服务”上,体现出制造企业的综合管理能力与软实力。
整个平台要从前期、工程实施以及售后服务这三个大的阶段来架构。在前期规划中,要重视标准、设计与实施,特别是与管理一体化的信息系统形成统一的对接。有了前期统一规划的制定,工程实施的环节可把行业的经验、集成能力、实施能力、软件开发能力等融合。特别需要在组织上建立和形成超级团队的制度。而持续服务、长期经营,将物联网应用融入与“软件+云服务”的互联网+战略是后续服务的考虑重点。
在制造业大数据分析工作中,必须要加强通过物联网科技的应用对后续持续服务的支撑作业。通过工业物联网,实现的及时响应客户、物联网软硬件系统定期巡检、提供应急备件、提供易耗品、完善应用等功能来加强和锁定与企业的供应链企业之间的长期合作。通过管理平台与物联网数据,可以持续为客户提供有价值的服务。
途径二,投资工厂内外系统架构堆栈中能够处理结构性和非结构性数据的数据模型。
新技术是创新革命的核心,其中很重要一个特点就是集成,即制造运作管理系统MOM与ERP、EAM、OA、商业分析的集成,包括一键登录、界面集成、消息推送、工作流集成、主数据、应用集成总线与平台。
由于这些系统之间主数据全部统一,所有系统之间的数据交互依靠应用系统总线进行数据交互,整合了跨系统的业务流程、工作流、服务流程等之后即实现无缝集成和分析。对于企业管理者来说,一键登录后,可以根据不同的岗位,个性化制定并且显示与管理最相关的必要信息。这就是互联网所带给我们的分享思路。
途径三,通过时间序列、图像、视频、机器学习、地理空间、预测模型、优化、模拟和统计过程控制等先进的分析工具与制造业企业内的大数据平台结合分析,从而洞见尚未显现的情况。通过传感器、感应器、传输网络和应用软件等物联网数据,与管理应用软件结合起来,将是今后制造业大数据分析的一大方向。
培养企业内部大数据分析专家
作为一个行业,我们需要有机地发展行业特定的大数据分析工具集,这样才能让现在的行业专家,从足够的数据科学中实现数字化转型。为了推动转型,我们需要一大批优秀的企业利用这种方法,并向其他人或同行证明其价值。
㈨ 大数据:互联网大数据和物联网大数据有何不同
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。IBM提出大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
工业大数据是大数据与智能制造的交叉点。工业大数据是指在工业产品全生命周期的信息化应用中所产生的数据,是工业互联网的核心,是工业智能化发展的关键。工业大数据是基于网络互联和大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。
一、工业大数据来源
我们所谈的工业大数据,不完全等同于企业信息化软件中流淌的数据,从业界的共识看,主要来源有三类,
第一类是企业经营相关的业务数据,这类数据来自企业信息化范畴,包括企业资源计划(ERP)、产品生命周期管理(PLM)、供应链管理(SCM)、客户关系管理(CRM)和环境管理系统(EMS)等,此类数据是工业企业传统的数据资产。
第二类是机器设备互联数据,主要是指工业生产过程中,装备、物料及产品加工过程的工况状态、环境参数等运营情况数据,通过MES系统实时传递,目前在智能装备大量应用的情况下,此类数据量增长最快。
第三类是企业外部数据,这包括了工业企业产品售出之后的使用、运营情况的数据,同时还包括了大量客户、供应商、互联网等数据状态。
在工业企业生产制造产品的过程中,通过数据采集和分析,可以提供信息决策支持,在产品的生产流程、上游供应链、产品质量、生产管理控制、研发设计、下游供应链、远程维修维护等环节起到重要作用。
二、工业大数据的特点
工业大数据和互联网大数据采集和运用的目的不同,导致工业大数据与互联网大数据有很大的不同,具体体现在以下几个方面:
1、工业大数据更强调数据的完整性
互联网大数据是在数据分析的基础之上,分析用户的使用习惯、消费偏好和行为特征等相关数据,运用的是统计学的知识,对数据进行处理,如今日头条,通过数据的分析,给用户推荐阅读内容,增加用户的粘性。如淘宝,通过统计分析根据消费者的消费习惯,推荐相关的产品给用户。而工业大数据是通过对设备、机组等连续记载,根据设备的运行的全部数据,根据对设备的监测,在多指标的逻辑算法之上,基于数据分析的综合评估,来指导设备的调整、检修、配件的更换、耗材的更换保证生产的连续性。
2、工业大数据更强调数据的准确性
互联网的大数据所收集的数据,大多是关联性的挖掘,是一种发散性的数据收集和分析,互联网大数据在进行预测和决策时,仅仅考虑的是两个属性之间的关联是否具有统计显著性。如亚马逊收集买家的行为,对转化率、相关性、买家满意率和留存率数据进行分析,类似这样的数据并不能准确的反映每个买家的购买行为的决定因素。
而工业大数据具有非常强的目的性,更强调数据的正确性。工业大数据对预测和分析结果的容错率远远比互联网大数据低的多。如工业互联网中的故障预测是基于装备真实健康状态和衰退趋势,结合用户决策活动的定制化需求,提供设备使用、维修和管理等活动相关的最优决策支持,并达成任务活动与设备状态的最佳匹配,以保障生产系统的持续稳定运行能力。有的工业企业需要设备“近零故障”运行,否则会带来巨大的损失。
3、工业大数据更强调数据的及时性
互联网大数据在时效性方面没有特殊的要求,其数据是长期积累,从中找出数据中的相关性即可。而工业大数据就更着重数据的时效性了。如工业设备的故障,厂房或生产的灾难性的故障,火灾、污染物的泄露等,这些不仅仅需要事后的补救,更为重要的是,工业互联网需要在数据提供和采集的基础之上能给予提前预测,发出预警,在灾难发生之前采取措施避免灾难的发生。
近年来由于大数据被用于生活和工作的方方面面,甚至有人曾说未来的时代将不是IT时代,而是大数据的时代。大数据是重要,但却也出现信息越多,就越靠近真相这样的认知,这就不应该了。《The Signal and the Noise》(信号与噪声,作者Nate Silver),这本书里面有一个观点:更多的数据意味着更多的噪声。信号是真相,噪声却使我们离真相越来越远。
所以,无论是互联网大数据还是工业互联网大数据,人们需要构建有效的算法和模型,去识别和认知何为真相,这样,大数据才真正给我们的生活和工作带来正面的影响。
以上由物联网转载,如有侵权联系删除