㈠ 如何实现大数据交易
大数据时代,数据成为数字经济的关键生产要素,以数据为基础,以人工智能为主要驱动力的新型经济形态正在蓬勃发展。大数据产业发展的核心在于数据自由流通,而数据交易就是实现数据有序流通的关键一环。
近日,发源地大数据对我国大数据交易产业进行了深度研究,指明了未来发展路径。
2011年至2014年这四年间,我国大数据处于起步发展阶段,大数据的市场规模增速稳定,每年均保持在20%以上。
2015年,大数据市场规模已达到98.9亿元,同比增长30.7%。
2016年,大数据市场规模增速迎来高潮,达到45%,市场规模继续扩大,超过160亿元。
预计2017年至2020年,大数据的市场增速稳定。
我国主要的大数据交易平台分布在西南、华中和华北地区,均属于国内第一批崛起的大数据交易平台。
从当前的发展来看,中西部发展势头强劲,产业发展进入良性循环,是国内最早规划并实施大数据产业发展的地区。
东部地区则依托经济优势,聚集效应开始显现。就目前而言,以北京、上海、广州为中心向四周辐射,形成以京津冀地区、长江三角洲地区和珠江三角洲地区为集团枢纽的沿海大数据走廊格局,是东部地区大数据交易平台建设的最大特点。
1.大数据交易平台建设进入井喷期。
数据交易平台是数据交易行为的重要载体,可以促进数据资源整合、规范交易行为、降低交易成本、增强数据流动性,成为当前各地促进数据要素流通的主要举措之一。从全国范围来看,2015年前成立并投入运营的有北京大数据交易服务平台、贵阳大数据交易所、长江大数据交易所、东湖大数据交易平台、西咸新区大数据交易所和河北大数据交易中心。2016年新建设的有哈尔滨数据交易中心、江苏大数据交易中心、上海大数据交易中心以及浙江大数据交易中心。据有关数据预测,到2016年年底全国类似的交易平台数量可能达到15到20个[1]。
2.大数据交易变现能力有所提升。
在国家政策的推动鼓励下,数据交易从概念逐步落地,部分省市和相关企业在数据定价、交易标准等方面进行了有益的探索。随着数据交易类型的日益丰富、交易环境的不断优化、交易规模的持续扩大,我国数据变现能力显著提高。据《2016年中国大数据产业白皮书》不完全统计,2015年我国大数据相关交易的市场规模为33.85亿元,预计到2016年国内大数据交易市场规模将达到62.12
亿元,2020年将达到545亿元。
3.大数据交易仍整体处于起步阶段。
从整体发展水平来看,我国大数据交易仍处于起步阶段,突出表现在以下几个方面:一是数据交易主要以单纯的原始数据“粗加工”交易为主,数据预处理、数据模型、数据金融衍生品等的内容的交易尚未大规模展开。二是数据供需不对称使得数据交易难以满足社会有效需求,数据成交率和成交额不高。三是数据开放进程缓慢一定程度上制约了数据交易整体规模,影响数据变现能力。四是数据交易过程中缺乏全国统一的规范体系和必要的法律保障,无法有效破解数据定价、数据确权等难题。
㈡ 认清现实吧 中国大数据产业的痛点和困难
认清现实吧 中国大数据产业的痛点和困难
大数据作为一个新兴的产业,一直在处于舆论的风口浪尖。就像互联网+的概念一样,大数据被神话了,被送上了“宗教”的神坛。大数据企业总是有一个担心,生怕大数据被捧得的太高,将来可能会被摔的很惨。
2015年中国大数据产业的热度从贵阳大数据交易所开始,到9月国务院的2015第50号文《促进大数据发展行动纲要》进入高峰,相信10月份的乌镇互联网大会上,大数据还会是一个大的热点。
大数据论坛上,数据产品和解决方案被介绍的很多。数据给企业带来的具体价值、数据应用场景、大数据产业的痛点介绍的很少。中国大数据产业经历着很多痛苦,大数据产业前景很好,但是大数据企业却很难做大,很难实现质的飞跃。中国大数据产业的痛点和困难如下。
1 大数据企业众多而弱小,很难实现产业优势中国大数据企业大概有200多家,将近60%集中在北京,以小微企业为主,年销售额达到十亿人民币的企业几乎没有。大数据产业处于春秋时代早期,各家诸侯割地而立,每家占领了一块小的细分领域,很难做大,都面临着同行的激烈竞争,有的领域例如舆情监控已成为红海。
大数据企业人数大多在几十人到几百人,少有千人以上的企业。没有一家大数据企业可以统领一个行业,没有一家企业占有细分市场10%的份额,没有一家大数据企业建立了行业标准,领导行业发展。
中国大数据产业处于极度分散状态,优秀的人才分布在不同企业,很难形成人才合力。各家企业规模小,很难在企业做深做大,很难利用大数据帮助企业实现业务提升。大多数企业的工具和数据很难满足企业整体的数据要求,中国的数据挖掘和分析产品也很难和国外的产品进行竞争。
大数据产业如果要形成产业优势,必须需要一批领军企业。参考国外大数据产业,中国在大数据基础架构,数据产品,数据工具、数据清洗和数据挖掘、数据分析、数据人才都需要产生一批标杆企业。每个领军企业都规模应该在千人以上,销售额应该在百亿以上,否则很难形成技术和人才优势,也很难利用大数据帮助客户实现业务提升。
贵阳大数据交易所《2015年中国大数据交易白皮书》提到2014年中国大数据市场规模为767亿元。这个数字看上去不错,估计其实真正和大数据工具和大数据产品相关的不足20%(业务价值提升)。大多数的经费都用于大数据基础平台(存储和计算)、咨询、报告等和业务价值提升相关度不大的领域。中国大数据市场销售额大多数集中在传统的IT企业例如IBM,Oracle,EMC,Intel,华为,联想等。真正大数据企业所有市场份额加起来可能就在百亿元左右。
中国大数据企业规模过小,领军企业缺少,行业过于分散,这些都是制约中国大数据产业发展的因素,也是产业做大的一个痛点。
2 外部数据是一个个孤岛,数据价值低数据是大数据产业发展的基础,具有商业价值的数据可以帮助企业洞察客户、数字化运营、风险管控、精准营销、预测和决策等。具有商业价值的数据和商业分析真正能够帮助企业提升业务,创造出新的价值。
中国的大数据市场还不成熟,很多大数据企业拥的数据都是片段的数据,很难形成完整的,具有商业价值的数据。大数据市场的数据质量和企业的数据需求有较大的差距。外部数据大多处于孤岛状态,数据之间很少流动和整合;孤立、不流动、没有整合的数据很难帮到企业,很多需要数据的企业不得不从多个大数据企业采购数据,效率很低,采购来的数据价值不高,数据整合的难度较大,数据采购的整体费用过高。
大家都看到了数据分散的弊端,于是很多地方都建立了大数据交易市场,帮助大家进行数据交易和数据采购。由于缺少法律保护,很多企业不太想在交易市场进行数据交易,往往还是采用一对一的数据交易,这种交易方式可以保护交易双方的利益。具有商业价值的数据还在开发中,大数据交易市场,缺少大量可以进行交易的数据。大数据交易市场这种商业模式,还需要用很长的时间去证明。
中国质量最好的数据在金融行业、BAT、电信运营商,这些企业比较谨慎,很难向外部输出数据。这三大行业自身的主营业务也不在数据,其数据产品生产和输出的愿望也不强烈。政府的数据正在逐步开放,但是其数据质量、集中度、输出方式等多存在很大多挑战。在中国大规模的数据开放,至少需要3年时间才能达到商业应用要求。
3 大多数企业客户,对数据商业应用敏感度低大多数企业对数据有需求,但是其对数据商业敏感度很低。对数据商业应用的场景以及数据技术了解很少。即使是数据商业敏感度较高的银行,至少要沟通三次以上,其才能够建立起数据价值理念。其他行业例如制造业,房地产业,零售业,他们的数据商业敏感度更低。甚至万科的王石也大声疾呼,不要和房地产业谈大数据应用,房产行业数据还不全,很多还是手工数据。于是某个领先的电商开始帮助万科进行数据规划建设,研究大数据在房地产行业的应用。
已有的大数据企业商业案例中,大部分都是大数据企业主动去找客户谈合作,为企业提供数据产品、数据工具或数据技术,目的是帮助企业提升业务。但是这种商业模式很累,市场很难被引爆,被动的数据商业应用,往往和业务结合较弱,无法迅速帮助企业利用数据提升业务,同时也无法解决业务发展瓶颈。
企业内部人士深度了解业务需求,他们缺少的是市场数据和消费者反馈,缺少的数据分析方法和工具。企业内部人士更应该成为大数据商业应用的主力,参加一些行业活动,从需求出发,主动寻找数据和解决方案。移动互联网时代,商业竞争策略很清晰,一个是快,一个是要利用数据进行决策。
大数据产业的发展,不仅仅是大数据企业自身的事情,也是各家企业自身的事情。企业客户也应该依据业务需要,主动到市场寻找数据和解决方案,提升数据商业敏感度,从业务场景出发,寻找具有价值的数据。
4大数据技术和产品同业务结合深度不够市场上所有大数据企业和客户都面临一个难题,就是数据解决方案同客户业务结合的深度不够,数据对业务整体推动效果不如期望,这也是大数据产业爆发的一个痛点。由于外部数据质量、企业用户数据敏感度、企业管理方式、商业数据人才等问题,大数据解决方案很难和业务深度结合。
大数据核心价值就是揭示事务发展规律,帮助企业利用数据进行科学决策。目前大数据的商业应用领域主要集中在数据采集、数据存储、数据计算、用户画像、精准营销等领域。大数据最具商业价值的预测和辅助决策功能并没有被充分利用。特别是在重大战略决策方面,大数据的作用并不明显。企业的产品开发,市场策略,战略决策还是依靠过去的精英决策和经验主义。未来社会只有两类企业,一种是利用数据发展的企业,另外一种是不重视数据被淘汰的企业。
大数据企业如果想发展壮大,如果想成为行业领先的企业,其必须放弃短期利益,深入到客户的运营中去,了解客户的数据,了解客户的业务,了解客户的商业需求。同时利用数据了解客户,了解市场,了解业务场景。数据和业务深度结合的核心是掌握正确的数据、正确的方法、正确的工具。业务人员要懂数据,技术人员要懂业务。复合型数据人才是数据生意的关键,业务人员掌握数据技术的门槛较高,但是技术人员了解业务的门槛很低,复合性人才倾向于从技术人才培养开始。
企业内部的数据人才和大数据企业的数据人才需要互相学习,了解对方环境和需求,在同一个平台上进行对话和沟通。数据团队需要深入了解业务场景和背后的规律,从业务出发,从场景出发,从数据出发,将大数据解决方案同业务深度结合,利用数据推动业务发展,发挥大数据预测规律的核心价值。
5 专业数据挖掘工具和人才缺失传统的数据挖掘工具和BI系统存在很久了,通过各类报表展示,让管理层了解企业运营信息,过去的确帮助企业提高管理水平,达到了预期目的。
在大数据时代,企业需要的是实时数据,需要的是高效工具,需要的是决策支持和预测。传统的数据挖掘工具的性能和灵活性已经不能满足企业的需要,另外非机构化数据的应用也对传统数据工具提出了挑战。BI领域中的SAS,SPSS,TD等数据工具越来越被边缘化,R语言正在成为数据统计和可视化的新宠。
数据的时间价值正在得到重视,特别是金融企业,所有的业务部门都期望在最短的时间里,看到资金使用情况,客户交易情况,风险管控情况。企业越早了解信息,就会越早进行决策,时间就是Money。过去数据需求可能是T+5或者T+30,现在的数据需求往往是T+1或者T+0,数据实时性、准确性、相关度被提到了一个非常重要的地位。业务的需求已经很明显了,但是数据工具和人才却是一个很大的挑战。
中国200多家大数据企业,看到了大数据产业的曙光,看到了大数据产业的价值,同时也在经历着大数据企业的痛苦。大数据产业发展很快,市场正在逐步变大,但是其产业优势不明显,优势企业很少,数据商业化较慢,市场还不成熟,客户数据商业敏感度较低,缺乏高质量数据工具和人才。所有大数据企业内心的感受就是,站在了时代的风口,选对了方向和行业,但是发展壮大还是很难。200多家大数据企业正在努力耕耘着大数据产业,痛并快乐着。
以上是小编为大家分享的关于认清现实吧 中国大数据产业的痛点和困难的相关内容,更多信息可以关注环球青藤分享更多干货
㈢ 为破局而生,情报分析师决胜大数据
大数据时代,谁拥有数据,谁也就拥有财富。
数据服务产业的发展,提高数据的应用水平,所离不开的关键核心都是专业的情报分析师。
通常所说的大数据分为三种,企业数据、公权机构数据和开源网络数据。前两种可供挖掘和应用的价值有限,目前世界上各国所重视的都是开源网络数据。
挖掘大数据价值,获取目标对象(人物、事件、机构、项目等)精确可靠的信息,需要经由情报分析师充分利用自身的技术、方法、经验和手段,建立和理清调查任务内在的逻辑关系,通过综合研判,才能从纷繁冗余的数据中找出价值。
大数据是座挖不完的“钻石矿”,随着科学技术的发展,每个人的生活都与大数据息息相关,同时随着国家政策对于大数据等前沿技术的愈发重视,大数据行业已逐步形成了一个万亿级别的市场。
截至2018年底,致力于打造“中国数谷”的贵州省会贵阳正推动大数据与相关领域深度融合,全国人大代表、贵阳市市长陈晏表示,贵阳建成大数据产业园10个,大数据企业1632家,全年企业主营业务收入1000亿元人民币。在推动大数据与实体经济、社会治理等方面,贵阳市“融”出了新动能、新前景、新生活、新效率。贵阳市政府数据已实现100%共享交换,向社会免费开放618余万条数据。
基于大数据对各个行业的深入影响,近几年,美国、欧盟、日本等主要发达经济体都积极推进各自的大数据战略。2009年,美国科学家委员会(NSTC)就发布了《开发数字数据的威力》报告,初步提出发展大数据的框架,奥巴马政府亦对大数据行业大力支持,帮助美国取得世界领先地位。参考《大数据白皮书(2016)》,2016年全球大数据核心产业规模约为300亿美元,预计2020年有望达到近600亿美元。
中国亦将大数据视为新经济的重要支撑。2014年“大数据”首次出现在《政府工作报告》,奠定了行业快速发展的政策基础。2017 年,工信部印发了《大数据产业发展规划(2016-2020 年)》,全面部署“十三五”时期大数据产业发展工作。发改委、工信部及农业部、运输部等部委先后颁布相关后续政策,推动大数据产业发展。预计未来将有更多部门出台相应具体政策,推动大数据行业的发展。
根据中国信通院数据显示,2017年中国大数据产业规模(包括数据资源建设、大数据软硬件产品的开发、销售和租赁活动,以及相关信息技术服务)为4700亿元人民币,同比增长30%,且预计2020年这一规模有望赶超1万亿,年均复合增速近30%。其中,大数据核心产业规模2017年为234亿元,同比增长39%,预计2018年为329亿元。
目前中国金融数据体量位居全球第一,其中金融行业数据量是数据的重要贡献和使用机构,互联网金融占据相当大的比重,活跃的交易账户和交易事项为金融领域贡献了大量可供挖掘的有价数据。
受互联网金融的影响,金融行业大数据也迎来了迅速发展,大数据在金融行业正实现全面普及应用。大数据在金融行业的应用,除了传统的风险管理、运营管理及业务创新外,近年金融行业大数据应用呈现新的趋势,主要包括高频金融交易、小额信贷、P2P放款审核、客户管理、精准营销等。
随着大数据发展和应用的持续推进,未来金融大数据行业中的机构和企业将围绕建立新的金融环境而竞争,主要表现在围绕生态圈、战略和产品三个层面的竞争,并由此确定金融行业企业的市场地位及竞争力。因此,金融机构、互联网企业都不会局限于某一个层面的发展,更倾向于多维度、多层面的布局。
此外,A股上市公司在大数据产业的各个领域布局广泛,目前A股大数据概念板块中,有118个标的,但是在各个子版块中有较强变现能力的龙头企业的数量却很少,对于一些概念炒作,没有核心技术能力的公司,很容易因为一些市场环境的变化,产生大幅下跌,让投资者蒙受损失。
由此可见,大数据进一步发展急切需要综合解决方案提供商,专注于利用当代最先进的IT技术推动企业和政府部门在管理和商业模式上的创新发展,提供综合解决方案,包括运营支撑、大数据、移动互联网解决方案等。最终形成电信+政府+金融的大数据全面布局。
内生外延布局金融大数据,业务协同发展。在公共安全、运营商等传统大数据业务将大数据平台和应用技术研发落地,继而可将经验快速复制到金融、农业等其他领域。形成强协同效用。
大数据是未来的发展趋势,现今人人也都可以谈一点大数据,任何行业都可以直接间接的与大数据相关联,但是真正专业应用大数据技术的公司却也屈指可数,更难辨别出真正具有大数据业务变现能力的企业。
身处信息爆炸的时代,要想透过大数据去发现背后的真相,也并不是一件易事。
术业有专攻,作为企业方需要有意识培养大数据技术和情报分析师等专业人才,而作为个人也要有意识培养情报分析师思维,如此才能真正将大数据为己所用,如此也才能在未来市场的角逐中不被淘汰出局。
未来,每一个人都离不开对于数据的分析。
㈣ 如何评价《大数据标准化白皮书》
居委会或者村委会
㈤ 大数据是什么意思 大数据包括什么
大数据,在近几年越来越受到人们的关注,尽管大数据概念已经在各个行业中应用逐渐变得广泛起来,但是对于大多数的人来说,大数据概念在他们眼里还是模糊不清的,那么,什么叫大数据?大数据是什么意思呢?我查询整理了相关资料,希望能够帮助到大家!
由于计量、记录、预测生产生活过程的需要,人类对数据探寻的脚步从未停歇,从原始数据的出现,到科学数据的形成,再到大数据的诞生,走过了漫漫长路。
2011年5月,麦肯锡研究院发布报告——Big data: The nextfrontier for innovation, competition, and proctivity,第一次给大数据做出相对清晰的定义:“大数据是指其大小超出了常规数据库工具获取、储存、管理和分析能力的数据集。”
2015年8月31日,国务院《促进大数据发展行动纲要》指出:“大数据是以容量大、类型多、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。”
《大数据白皮书2016》称:“大数据是新资源、新技术和新理念的混合体。从资源视角看,大数据是新资源,体现了一种全新的资源观;从技术视角看,大数据代表了新一代数据管理与分析技术;从理念的视角看,大数据打开了一种全新的思维角度。”
当前,业界公认的大数据有“4V特征,即:Volume(体量大)、Variety(种类多)、Velocity(速度快)和Value(价值高)。
大数据的作用在于在庞大的全量数据的基础上,通过算法模型,得出有意义的结果,进而进行资源配置的优化、现象的发现、未来的预测等。
大数据涉及由不同设备和应用程序产生的数据,主要包括以下几个领域:
1、黑匣子数据:它是直升机,飞机和喷气机等的组件。它捕捉飞行机组的声音,麦克风和耳机的录音,以及飞机的性能信息。
2、社会媒体数据:Facebook和Twitter等社交媒体保存着全球数百万人发布的信息和观点。
3、证券交易所数据:证券交易所数据保存关于由客户在不同公司的份额上做出的“买入”和“卖出”决定的信息。
4、电网数据:电网数据保持特定节点相对于基站消耗的信息。
5、运输数据:运输数据包括车辆的型号,容量,距离和可用性。
6、搜索引擎数据:搜索引擎从不同的数据库检索大量数据。
因此,大数据包含的数据是大量、高速度和可扩展的数据,其中,数据有三种类型:
(1)结构化数据:关系数据。
(2)半结构化数据:XML数据。
(3)非结构化数据:Word,PDF,文本,媒体日志
㈥ 求《大数据标准化白皮书》全文免费下载百度网盘资源,谢谢~
《大数据标准化白皮书》网络网盘pdf最新全集下载:
链接: https://pan..com/s/1yzbozSv4oW6S2pcwUTeGMQ
㈦ 大数据未来的发展前景怎么样
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。。
㈧ 大数据未来的发展前景怎么样
大数据发展的行业有三个方向,大数据开发、大数据分析、大数据科研
在2016年以前可能没多少人会认为这个行业的发展潜力有多大,但随着时代的进步,现如今大数据不是时时刻刻都在身边?大数据现今是存在于各个行业,比如,电信、金融、制造、物流、电商等也因此催生出了众多专业技术岗位。又从政策上来说,大数据是国家重点扶持项目,未来的一系列计划中,大数据都占据着十分关键重要的环节,自然是有着 不可多得发展机遇。从职业前景来看,大数据开发相比于其他的大数据相关职位如大数据分析,大数据科研都有着更广泛的应用,薪水高、待遇好,就业前景这方面也是非常好的。大数据行业发展未来可期
㈨ 中国大数据产业和企业的问题观察
中国大数据产业和企业的问题观察
大数据作为一个新兴的产业,一直在处于舆论的风口浪尖。就像互联网+的概念一样,大数据被神话了,被送上了“宗教”的神坛。大数据企业总是有一个担心,生怕大数据被捧得的太高,将来可能会被摔的很惨。2015年中国大数据产业的热度从贵阳大数据交易所开始,到9月国务院的2015第50号文《促进大数据发展行动纲要》进入高峰。大数据论坛上,数据产品和解决方案被介绍的很多。数据给企业带来的具体价值、数据应用场景、大数据产业的痛点介绍的很少。中国大数据产业经历着很多痛苦,大数据产业前景很好,但是大数据企业却很难做大,很难实现质的飞跃。中国大数据产业的痛点和困难如下。大数据企业众多而弱小,很难实现产业优势中国大数据企业大概有200多家,将近60%集中在北京,以小微企业为主,年销售额达到十亿人民币的企业几乎没有。大数据产业处于春秋时代早期,各家诸侯割地而立,每家占领了一块小的细分领域,很难做大,都面临着同行的激烈竞争,有的领域例如舆情监控已成为红海。大数据企业人数大多在几十人到几百人,少有千人以上的企业。没有一家大数据企业可以统领一个行业,没有一家企业占有细分市场10%的份额,没有一家大数据企业建立了行业标准,领导行业发展。
中国大数据产业处于极度分散状态,优秀的人才分布在不同企业,很难形成人才合力。各家企业规模小,很难在企业做深做大,很难利用大数据帮助企业实现业务提升。大多数企业的工具和数据很难满足企业整体的数据要求,中国的数据挖掘和分析产品也很难和国外的产品进行竞争。大数据产业如果要形成产业优势,必须需要一批领军企业。参考国外大数据产业,中国在大数据基础架构,数据产品,数据工具、数据清洗和数据挖掘、数据分析、数据人才都需要产生一批标杆企业。每个领军企业都规模应该在千人以上,销售额应该在百亿以上,否则很难形成技术和人才优势,也很难利用大数据帮助客户实现业务提升。贵阳大数据交易所《2015年中国大数据交易白皮书》提到2014年中国大数据市场规模为767亿元。这个数字看上去不错,估计其实真正和大数据工具和大数据产品相关的不足20%(业务价值提升)。大多数的经费都用于大数据基础平台(存储和计算)、咨询、报告等和业务价值提升相关度不大的领域。中国大数据市场销售额大多数集中在传统的IT企业例如IBM,Oracle,EMC,Intel,华为,联想等。真正大数据企业所有市场份额加起来可能就在百亿元左右。中国大数据企业规模过小,领军企业缺少,行业过于分散,这些都是制约中国大数据产业发展的因素,也是产业做大的一个痛点。外部数据是一个个孤岛,数据价值低数据是大数据产业发展的基础,具有商业价值的数据可以帮助企业洞察客户、数字化运营、风险管控、精准营销、预测和决策等。具有商业价值的数据和商业分析真正能够帮助企业提升业务,创造出新的价值。中国的大数据市场还不成熟,很多大数据企业拥的数据都是片段的数据,很难形成完整的,具有商业价值的数据。大数据市场的数据质量和企业的数据需求有较大的差距。外部数据大多处于孤岛状态,数据之间很少流动和整合;孤立、不流动、没有整合的数据很难帮到企业,很多需要数据的企业不得不从多个大数据企业采购数据,效率很低,采购来的数据价值不高,数据整合的难度较大,数据采购的整体费用过高。大家都看到了数据分散的弊端,于是很多地方都建立了大数据交易市场,帮助大家进行数据交易和数据采购。由于缺少法律保护,很多企业不太想在交易市场进行数据交易,往往还是采用一对一的数据交易,这种交易方式可以保护交易双方的利益。具有商业价值的数据还在开发中,大数据交易市场,缺少大量可以进行交易的数据。大数据交易市场这种商业模式,还需要用很长的时间去证明。中国质量最好的数据在金融行业、BAT、电信运营商,这些企业比较谨慎,很难向外部输出数据。这三大行业自身的主营业务也不在数据,其数据产品生产和输出的愿望也不强烈。政府的数据正在逐步开放,但是其数据质量、集中度、输出方式等多存在很大多挑战。在中国大规模的数据开放,至少需要3年时间才能达到商业应用要求。大多数企业客户,对数据商业应用敏感度低
大多数企业对数据有需求,但是其对数据商业敏感度很低。对数据商业应用的场景以及数据技术了解很少。即使是数据商业敏感度较高的银行,至少要沟通三次以上,其才能够建立起数据价值理念。其他行业例如制造业,房地产业,零售业,他们的数据商业敏感度更低。甚至万科的王石也大声疾呼,不要和房地产业谈大数据应用,房产行业数据还不全,很多还是手工数据。于是某个领先的电商开始帮助万科进行数据规划建设,研究大数据在房地产行业的应用。
已有的大数据企业商业案例中,大部分都是大数据企业主动去找客户谈合作,为企业提供数据产品、数据工具或数据技术,目的是帮助企业提升业务。但是这种商业模式很累,市场很难被引爆,被动的数据商业应用,往往和业务结合较弱,无法迅速帮助企业利用数据提升业务,同时也无法解决业务发展瓶颈。
大数据产业的发展,不仅仅是大数据企业自身的事情,也是各家企业自身的事情。企业客户也应该依据业务需要,主动到市场寻找数据和解决方案,提升数据商业敏感度,从业务场景出发,寻找具有价值的数据。大数据技术和产品同业务结合深度不够市场上所有大数据企业和客户都面临一个难题,就是数据解决方案同客户业务结合的深度不够,数据对业务整体推动效果不如期望,这也是大数据产业爆发的一个痛点。由于外部数据质量、企业用户数据敏感度、企业管理方式、商业数据人才等问题,大数据解决方案很难和业务深度结合。大数据核心价值就是揭示事务发展规律,帮助企业利用数据进行科学决策。目前大数据的商业应用领域主要集中在数据采集、数据存储、数据计算、用户画像、精准营销等领域。大数据最具商业价值的预测和辅助决策功能并没有被充分利用。特别是在重大战略决策方面,大数据的作用并不明显。企业的产品开发,市场策略,战略决策还是依靠过去的精英决策和经验主义。未来社会只有两类企业,一种是利用数据发展的企业,另外一种是不重视数据被淘汰的企业。大数据企业如果想发展壮大,如果想成为行业领先的企业,其必须放弃短期利益,深入到客户的运营中去,了解客户的数据,了解客户的业务,了解客户的商业需求。同时利用数据了解客户,了解市场,了解业务场景。数据和业务深度结合的核心是掌握正确的数据、正确的方法、正确的工具。业务人员要懂数据,技术人员要懂业务。复合型数据人才是数据生意的关键,业务人员掌握数据技术的门槛较高,但是技术人员了解业务的门槛很低,复合性人才倾向于从技术人才培养开始。企业内部的数据人才和大数据企业的数据人才需要互相学习,了解对方环境和需求,在同一个平台上进行对话和沟通。数据团队需要深入了解业务场景和背后的规律,从业务出发,从场景出发,从数据出发,将大数据解决方案同业务深度结合,利用数据推动业务发展,发挥大数据预测规律的核心价值。专业数据挖掘工具和人才缺失传统的数据挖掘工具和BI系统存在很久了,通过各类报表展示,让管理层了解企业运营信息,过去的确帮助企业提高管理水平,达到了预期目的。在大数据时代,企业需要的是实时数据,需要的是高效工具,需要的是决策支持和预测。传统的数据挖掘工具的性能和灵活性已经不能满足企业的需要,另外非机构化数据的应用也对传统数据工具提出了挑战。BI领域中的SAS,SPSS,TD等数据工具越来越被边缘化,R语言正在成为数据统计和可视化的新宠。数据的时间价值正在得到重视,特别是金融企业,所有的业务部门都期望在最短的时间里,看到资金使用情况,客户交易情况,风险管控情况。企业越早了解信息,就会越早进行决策,时间就是Money。过去数据需求可能是T+5或者T+30,现在的数据需求往往是T+1或者T+0,数据实时性、准确性、相关度被提到了一个非常重要的地位。业务的需求已经很明显了,但是数据工具和人才却是一个很大的挑战。中国200多家大数据企业,看到了大数据产业的曙光,看到了大数据产业的价值,同时也在经历着大数据企业的痛苦。大数据产业发展很快,市场正在逐步变大,但是其产业优势不明显,优势企业很少,数据商业化较慢,市场还不成熟,客户数据商业敏感度较低,缺乏高质量数据工具和人才。所有大数据企业内心的感受就是,站在了时代的风口,选对了方向和行业,但是发展壮大还是很难。200多家大数据企业正在努力耕耘着大数据产业,痛并快乐着。
以上是小编为大家分享的关于中国大数据产业和企业的问题观察的相关内容,更多信息可以关注环球青藤分享更多干货
㈩ 贵阳大数据是一个什么样子的工程合法吗
合法的。
贵阳大数据主要通过自主开发的大数据交易电子系统,线上与线下相互结合,撮合客户进行大数据交易,促进数据流通,同时,定期对数据供需双方进行评估,规范数据交易行为,维护数据交易市场秩序,保护数据交易各方合法权益。
面向社会提供完整的数据交易、结算、交付、安全保障、数据资产管理和融资等综合配套服务,以及大数据清洗建模分析服务、大数据定向采购服务、大数据平台技术开发等增值服务。
交易数据是基于底层数据,通过数据的清洗、分析、建模、可视化出来的结果,彻底解决了数据交易如何保护隐私及数据所有权的问题。
交易数据主要是清洗建模后的政府数据、金融数据、互联网数据。 目前,已有济宁、宁夏、武汉、苏州、贵阳等地政府相继开通了政府数据公开账户。
(10)2016中国大数据交易白皮书扩展阅读:
贵州省近日发布了2017年大数据十大工程,其中拟定了贵阳大数据交易所年度发展目标:交易会员达到2000家,交易规模累计3亿元(人民币,下同)以上。
当前,大数据正在成为“新经济”的新引擎,提供强而有力的经济新动能,已上升为国家战略。作为中国首个国家级大数据综合试验区,贵州大数据产业发展上已实现了一系列首创之举。
于2015年4月正式挂牌运营的贵阳大数据交易所,是全球第一家大数据交易所,总部位于贵阳,目前已建成北京、上海、深圳和成都四大运营中心。交易所旨在推动政府数据公开、行业数据价值发现,通过大数据交易,驱动贵州乃至全球大数据产业发展。
据《2016年中国大数据交易产业白皮书》预计,中国大数据产业市场规模2020年将达13626亿元,其中大数据交易545亿元。对此有业内人士分析认为,在合法的数据隐私保护条例下,未来大数据会作为国家与社会的重要资产,将诞生一个万亿级别的交易市场。
同时贵阳大数据交易所在国家大数据政策的推动下以市场化方式运作,在中国大数据交易领域已是领军者,未来有望成为中国上市的“交易所第一股”。