1. 什么是大数据要简单通俗点的解释
这是一个非常好的问题,作为一名大数据从业者,我来回答一下。
在当前的大数据时代,不仅IT(互联网)行业的人需要了解大数据相关知识,传统行业的从业者和普通大学生也都应该了解一定的大数据知识,在产业互联网和新基建计划的推动下,未来大数据技术将全面开始落地应用,大数据也将重塑整个产业结构。
了解大数据首先要从大数据的概念开始,不同于人工智能概念,大数据概念还是相对比较明确的,而且大数据的技术体系也已经趋于成熟了。解释大数据概念,可以从数据自身的特点入手,然后进一步从场景、应用和行业来逐渐展开。
大数据自身的特点往往集中在五个方面,分别是数据量、数据结构多样性、数据价值密度、数据增长速度和可信度,对于这五个维度的理解和认知,是了解大数据概念的关键。当然,随着大数据技术的发展和在行业领域的应用,关于数据自身的维度也有了一定程度的扩展,这些扩展本身也是对大数据概念的一种丰富和完善。
数据量大是大数据的一个重要特征,但是数据量本身是一个汇集的概念,并不是只有很大的数据才称为大数据,传统信息系统所产生的“小数据”也是大数据的一个重要组成部分,这一点一定要有清晰的认知。当前从大数据的数据来源来看,主要集中在三个渠道,包括互联网、物联网和传统信息系统,物联网数据当前占据的比例比较大,相信在5G时代,物联网将依然是大数据的主要数据来源。
数据结构多样性是大数据的另一个重要特点,不同于创新信息系统(ERP)当中的数据,大数据的数据类型是非常复杂的,既有结构化数据,也有非结构化数据和半结构化数据,这对于传统的数据处理技术提出了巨大的挑战,这也是推动大数据技术产生的一个重要原因。在工业互联网时代,大数据的数据结构多样性会进一步得到体现,这对于数据价值化过程也提出了新的挑战。
数据价值密度往往是衡量数据价值的重要基础,相对于传统的信息系统来说,大数据当中的数据价值密度是比较低的,这就需要有更快速和便捷的方式,来完成数据的价值化提取过程,而这也正是当前大数据平台所关注的核心能力之一。实际上,早期的Hadoop、Spark平台之所以能够脱颖而出,一个重要的原因就是其数据处理(排序)速度比较快。
数据增长速度快是大数据的另一个重要表现,通常传统信息系统的数据增量是可以预测的,或者说增长速度是可控的,但是在大数据时代,数据增长速度已经大大突破了传统数据处理所能承载的极限。数据增长是一个相对的概念,相对于消费互联网来说,产业互联网所带来的数据增量可能会更加客观,因此产业互联网时代会进一步打开大数据的价值空间。
最后,大数据还有一个特点就是数据本身的真实性,大数据时代所带来的一个重要副作用就是数据真假难辨,这也是当前大数据技术所要重点解决的问题之一。从当前大型互联网平台所采用的方法来看,通常是技术和管理相结合的方式,比如通过为用户认证就能够解决一部分数据的真实性(专业性)问题。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
博士时候就是做大数据。
最通俗一点就是很多条数据。
我们做大数据研究呢,就是高效的处理数据,对未来做一些预测,建议等。
例如,全中国人大多数都是10点睡觉。睡觉前看一看手机。那我们做推广时候,就可以选择9点半的时间。
大数据没有什么特别神秘的地方,就是数据多一点。
大数据这个词其实流行了很久了,与我们的生活息息相关,并不陌生,现在我们生活中的大平台基本上都用到大数据,淘宝,拼多多,美团,滴滴等都用到大数据,如今大数据基本上无处不在。
一、大数据是什么意思
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
二、大数据特征
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
种类(Variety):数据类型的多样性;
速度(Velocity):指获得数据的速度;
可变性(Variability):妨碍了处理和有效地管理数据的过程。
真实性(Veracity):数据的质量。
复杂性(Complexity):数据量巨大,来源多渠道。
价值(value):合理运用大数据,以低成本创造高价值。
三、大数据的 历史 发展
人类诞生以来,数据就开始膨胀,时代交替,工业革命,互联网时代,5G时代,人工智能时代,都是数据的一次次发展,数据的不断精准,加快了人类的新陈代谢,大数据推动 历史 发展。
四、大数据意义
大数据的价值体现在以下几个方面:
1、对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
2、做小而美模式的中小微企业可以利用大数据做服务转型;
3、面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
4、各大领域的科研需要大数据,加快技术变革和换代如医疗,环保,公共政府服务
5、航空航天,军事领域因为大数据也会得到突飞猛进的提升。
生活工作中所有的流水账信息就是大数据,在信息化时代,它通过特定模式的整合、分析,使人得到对自己有用的、有指导性的结论。参加工作时讲台塑数字化、表单化、信息化,一晃二十年了,应该就是大数据的雏形,但那会信息化能力不足,没人这么称呼。管理是千变万幻,主线未变,大数据也仅仅是一种方法,只是更符合形势,更有效。小名流水账,大名大数据。
举个例子,大数据记录了一个爱抽烟的男人。晚上一般是先抽烟以后刷牙。有一天男士刷了牙以后抽烟。第二天app开始推送了tt。根据两天的记录了刷牙到抽烟的时间,第三天app推送了加厚版的tt。一个半月后某天记录到男人一直抽烟,便推送了某家专科医院。再过了一个月,发现男人再无抽烟,推送了铂爵旅拍。
从前有个大爷,在证券公司车库上班,给证券公司大户、老板看守车,这么一个工作。
这位大爷特别喜欢炒股,他也不会技术分析,什么基本面分析!每当呢,车库里面的车停的非常少的时候,这位大爷就买进股票,这大爷也不知道什么股票好,什么股票不好,就随便买,等车库里面的车停的越来越多了,每次都停满了的时候,这位大爷就买出股票。每次都能赚到钱!!!
这就是非常简单的大数据,大爷利用车库里车的多少来判断市场的火热程度,人弃我取,等到全民炒股的时候,市场就会出现泡沫,这时候离“崩盘”也就不远了
大数据通俗的解释就是海量的数据,顾名思义,大就是多、广的意思,而数据就是信息、技术以及数据资料,合起来就是多而广的信息、技术、以及数据资料。
大数据简单的说就是市场调研的升级版。包括腾讯,阿里巴巴等这些具有大量用户的公司,对其客户在其平台的所有行为发布的所有内容进行采集分类和分析。而这些数据有分成共性和个性。从所有人中采集出共性有助于发觉商机,了解客户痛点,更好地推出客户满意的产品,比如很多化妆品公司就会跟淘宝购买数据从而研发出更贴合市场需求的产品。而从你个人采集的数据属于个性,系统会通过你个人的数据采集进行相对于的推荐和改变,也就是我们经常说的ai智能,例子像我们的淘宝现在都是千人千面,每人手机打开的淘宝推荐的东西都不一样,这些就是大数据的效果。
大数据通俗来说就是有个机器,把你生活中的点点滴滴都记录下来,形成一种特定的形式!
大数据简单来说:就是海量的信息!不论用途,不论方向,就是简单地信息收集,参数收集,所有这些汇总起来就是大数据。大数据,不是随机样本,而是所有数据!
而大数据分析,就是针对这些信息进行识别,再进行分类,将其有事件变为数据化,概率化,然后应用于各种商业用途。
以上是对大数据简单地解读。那么大数据的意义何在呢?
随着大数据的发展,企业的技术研发、应用和落地在前期就能获得预期,能避免很多无所谓的浪费,以便于将有限的资源集中到开发更适合时代的企业产业。
商业决策可以通过数据分析来获取更为准确的信息和方向,最终能帮助决策者能更为准确直观的指导业务实践。
人工智能离不开数据。随着人工智能的发展,数据能模拟的更加人性化,也更个人化,也更适合于各种不同场景的应用。大数据的价值在于它是目前解决这个时代更新最有效的方法。
但对于我个人而言,比较抵触过度的大数据和互联网,原因如下:
一、当各类app通过我的使用习惯,推荐各种我搜索过一次的各种商业广告时,我会有种隐私被人冒犯的愤怒;
二、当你在使用各类软件时,都会被要求提供个人信息以便于获得更好的用户体验,这无形中增加了个人数据泄露的风险;
三、当数据化盛行,似乎人性变得无处安放;
四、一旦行业固化,人们想要突破阶层将变得不可能,拥有大量数据的将遥遥领先,后发的行人,将一辈子连望其项背的资格都没有,可以预见 社会 将会成为一潭死水,毫无兴趣和生机。
2. 大数据分析要注意哪些问题
1、从过时的事务战略开端
世界瞬息万变,没有发展到适用于第四次工业革命的商业战略就不会具有吸引力。您的数据战略应支撑适用于当今世界的事务体系。在过时的事务战略方面,投入精力和资产来搜集和分析数据似乎很糟糕。您不只不能抵达应该抵达的当地,而且会浪费时刻和资源来实现方针。
2、随意搜集数据
从一开端,可能很诱人直接反弹并搜集整个点上的数据,而没有恰当的思路来了解这将如何协助您的事务。原始信息一般对大多数事务用户而言什么也没说,而很多信息泛滥而树立巨大的数据库则没有任何特定的优点或有用的意图,除非占用您的时刻和资产。
3、投资回报率有限
为了有效地处理客户数据的重要事务资源,安排需求技术来简化数据搜集,随着信息量的动摇而主动扩展并为包含人工智能在内的中心事务提供支撑,一起还要考虑到自界说。安排犯下的一个典型过错是,从这些进步中寻求短期的投资回报,而不是专心于其为企业带来的长期价值和优势。
4、忽略数据质量
下一个最重要的视点是确保您拥有出色的数据。您可能有很多来自正确来历并契合您方针的数据;在任何情况下,这都不会破坏对数据的准确性和可猜测性的要求。巨大的安排实际上仅仅招聘人员来整理很多数据,以确保一致性和统一性。
5、隐私和法令问题
在任何数据项意图开端,都应树立恰当的数据管理。应界说对道德运用数据以及数据运用的法令和隐私问题的考虑。客户的信任至关重要。客户应该坚信您将安全地使用他们的信息,而且他们会从答应您使用他们的信息中取得实在的价值。
6、缺少专门的商业智能团队
在有效地搜集数据之后,许多安排以为很难从数据中取得价值和洞察力,主要是因为他们没有投入满足的资源来树立专门的BI组来协助他们搜集、分析和共享数据,以及推动进步的方法。
关于大数据分析要注意哪些问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
3. 关于大数据的几个问题!
大数据就是大量数据了,比如淘宝网存储的用户信息,用户购买记录等,这个版数据量达权到PB级了。
大数据带来的优势不好说啊,见过这样的大数据才有感觉。
大数据应用:最直观还是淘宝、京东这些,有没有注意到你浏览过、买过一些产品之后,有些广告推送就会给推送相关产品,这就是大数据的应用,通过分析你的购买记录,分析你可能感兴趣的商品,比如你买过婴儿奶粉,那你对纸尿裤、湿纸巾可能就感兴趣,这些都是后台大数据分析平台干的事情。
同上。
理解不够深刻,觉得可做的事情挺多,尤其是政府,大数据很有用,比如城市交通状况的预测、停车引导等等,比如犯罪嫌疑人的追踪(这个需要多方面的技术配合)。
4. 大数据是什么
作者:李丽
链接:https://www.hu.com/question/23896161/answer/28624675
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。
研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。 大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二、大数据分析
从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
三、大数据技术
1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
2、数据存取:关系数据库、NOSQL、SQL等。
3、基础架构:云存储、分布式文件存储等。
4、数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or
association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text,
Web ,图形图像,视频,音频等)
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。
四、大数据特点
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
1、
数据体量巨大。从TB级别,跃升到PB级别。
2、
数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
3、
价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
4、
处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。
五、大数据处理
大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理
六、大数据应用与案例分析
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
[1] Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
[2] 在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
[3] 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
[1] 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
[2] 维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
[1] XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
[2] 电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
[3] 中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
[4] NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
5. 大数据的内容是什么
问题一:大数据都包括什么内容? 你好,
第一,你可以直接网络搜索。
第二,根据我的理解,所有你在互联网上留下的痕迹就是大数据。
比如很多购物网站,会根据你以前的购买记录,在你再次到该网站的时候,在页面底部出现“猜你喜欢”,推荐几个你可能喜欢的东西。比如淘宝、天猫、京东这些购物网站。
有时候,还会定期发邮件给你,推荐你一些商品,比如做的比较好的,像亚马逊。
希望能对你有所帮助,有什么问题我们可以继续交流
问题二:什么是大数据?大数据是什么意思? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,大数据时代怎么理解呢,一起来看看吧。
大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。
大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大 数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关 的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对, 挖掘主效基因。例子还有很多。
大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运 用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本 质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据 *** ,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1.采购管理
2.财务管理
3.人力资源管理
4.客户服务
5.配销管......>>
问题三:什么是大数据 大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机理解自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从大入手,大是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的......>>
问题四:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。
大数据营销与传统营销最显著的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。
大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。
当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。
而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。
问题五:大数据到底是什么东西? 基于大数据→企业网上支付与结算
基于大数据→银行的融资参考依据
基于大数据→优化库存周转
基于大数据→按需按量按地定产,高效自营
问题六:大数据时代:大数据是什么? 大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据 *** 的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据的来源又有哪些?等等。当然,我不是专家学者,我无法给出一个权威的,让所有人信服的定义,以下所谈只是我根据自己的理解进行小结归纳,只求表达出我个人的理解,并不求全面权威。先从“大数据”与“数据”的区别说起吧,过去我们说的“数据”很大程度上是指“数字”,如我们所说的客户量,业务量,营业收入额,利润额等等,都是一个个数字或者是可以进行编码的简单文本,这些数据分析起来相对简单,过去传统的数据解决方案(如数据库或商业智能技术)就能轻松应对;而今天我们所说的“大数据”则不单纯指“数字”,可能还包括“文本,图片,音频,视频……”等多种格式,其涵括的内容十分丰富,如我们的博客,微博,轻博客,我们的音频视频分享,我们的通话录音,我们位置信息,我们的点评信息,我们的交易信息,互动信息等等,包罗万象。用正规的语句来概括就是,“数据”是结构化的,而“大数据”则包括了“结构化数据”“半结构化数据”和“非结构化数据”。关于“结构化”“半结构化”“非结构化”可能从字面上比较难理解,在此我试着用我的语言看能否形象点地表达出来:由于数据是结构化的,数据分析可以遵循一定现有规律的,如通过简单的线性相关,数据分析可以大致预测下个月的营业收入额;而大数据是半结构化和非结构化的,其在分析过程中遵循的规律则是未知的,它通过综合方方面面的信息进行模拟,它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度,通过大数据分析我们可以准确找到下一个市场热点。 基于此,或许我们可以给“大数据”这样一个定义,“大数据”指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易昭示的规律。相比“数据”,“大数据”有两个明显的特征:第一,上文已经提到,数据的属性是包括结构化、非结构化和半结构化数据;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。解决了大数据是什么,接下来还有一个问题,大数据的来源有哪些?或者这个问题这样来表达会更清晰“大数据的数据来源有哪些?”对于企业而言,大数据的数据来源主要有两部分,一部分来自于企业内部自身的信息系统中产生的运营数据,这些数据大多是标准化、结构化的。(若继续细化,企业内部信息系统又可分两类,一类是“基干类系统”,用来提高人事、财会处理、接发订单等日常业务的效率;另一类是“信息类系统”,用于支持经营战略、开展市场分析、开拓客户等。)传统的商业智能系统中所用到的数据基本上数据该部分。而另外一部分则来自于外部,包括广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成,其产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。具体包括了:如,呼叫详细记录、设备和传感器信息、GPS 和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。由于来源不同,类型不同的数据透视的是同一个事物的不同的方面,以消费客户为例,消费记录信息能透视客户的消费能力,消费频率,消费兴趣点等,渠道信息能透视客户的渠道偏好,消费支付信息能透视客户的支付渠道情况,还有很多,如,客户会否在社交网站上分享消费情况,消费前后有否在搜索引擎上搜索过相关的关键词等等,这些信息(或说数据)......>>
问题七:大数据是什么,干什么用的?包含哪些内容?哪些技术?解决什么问题? 大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。通过大数据分析,可以预测交通路况实况,比如网络地图的实时公交,了解客户信用,比如支付宝实名认证大数据背后的花呗借呗信用积累大数据研究显示,我国的数据总量正在以年均50%以上的速度持续增长,预计到2020年在全球的占比将达到21%。产业新形态不断出现,催生了个性化定制、智慧医疗、智能交通等一大批新技术新应用新业态。大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
问题八:大数据可以做什么 用处太多了
首先,精准化定制。
主要是针对供需两方的,获取需方的个性化需求,帮助供方定准定位目标,然后依据需求提 *** 品,最终实现供需双方的最佳匹配。
具体应用举例,也可以归纳为三类。
一是个性化产品,比如智能化的搜索引擎,搜索同样的内容,每个人的结果都不同。或者是一些定制化的新闻服务,或者是网游等。
第二种是精准营销,现在已经比较常见的互联网营销,网络的推广,淘宝的网页推广等,或者是基于地理位置的信息推送,当我到达某个地方,会自动推送周边的消费设施等。
第三种是选址定位,包括零售店面的选址,或者是公共基础设施的选址。
这些全都是通过对用户需求的大数据分析,然后供方提供相对定制化的服务。
应用的第二个方向,预测。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。
从具体的应用上,也大概可以分为三类。
一是决策支持类的,小到企业的运营决策,证券投资决策,医疗行业的临床诊疗支持,以及电子政务等。
二是风险预警类的,比如疫情预测,日常健康管理的疾病预测,设备设施的运营维护,公共安全,以及金融业的信用风险管理等。
第三种是实时优化类的,比如智能线路规划,实时定价等。
问题九:大数据的内容和基本含义? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,什么是大数据概念呢,大数据概念怎么理解呢,一起来看看吧。
1、大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到其内在规律。
3、大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
4、大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
5、大数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。
6、大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
问题十:大数据具体学习内容是啥? HADOOPP 是一个能够对大量数据进行分布式处理的软件框架。但是HADOOPP 是以一种可靠、高效、可伸缩的方式进行处理的。HADOOPP 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。HPCC高性能计算与 通信”的报告。开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理HADOOPP的批量数据。为了帮助企业用户寻找更为有效、加快HADOOPP数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。IT JOB
6. 大数据:Hadoop入门
什么是大数据:
(1.)大数据是指在一定时间内无法用常规软件对其内容进行抓取,管理和处理的数据集合,简而言之就是数据量非常大,大到无法用常规工具进行处理,如关系型数据库,数据仓库等。这里“大”是一个什么量级呢?如在阿里巴巴每天处理数据达到20PB(即20971520GB).
2.大数据的特点:
(1.)体量巨大。按目前的发展趋势来看,大数据的体量已经到达PB级甚至EB级。
(2.)大数据的数据类型多样,以非结构化数据为主,如网络杂志,音频,视屏,图片,地理位置信息,交易数据,社交数据等。
(3.)价值密度低。有价值的数据仅占到总数据的一小部分。比如一段视屏中,仅有几秒的信息是有价值的。
(4.)产生和要求处理速度快。这是大数据区与传统数据挖掘最显著的特征。
3.除此之外还有其他处理系统可以处理大数据。
Hadoop (开源)
Spark(开源)
Storm(开源)
MongoDB(开源)
IBM PureDate(商用)
Oracle Exadata(商用)
SAP Hana(商用)
Teradata AsterData(商用)
EMC GreenPlum(商用)
HP Vertica(商用)
注:这里我们只介绍Hadoop。
二:Hadoop体系结构
Hadoop来源:
Hadoop源于Google在2003到2004年公布的关于GFS(Google File System),MapRece和BigTable的三篇论文,创始人Doug Cutting。Hadoop现在是Apache基金会顶级项目,“
Hadoop”一个虚构的名字。由Doug Cutting的孩子为其黄色玩具大象所命名。
Hadoop的核心:
(1.)HDFS和MapRece是Hadoop的两大核心。通过HDFS来实现对分布式储存的底层支持,达到高速并行读写与大容量的储存扩展。
(2.)通过MapRece实现对分布式任务进行处理程序支持,保证高速分区处理数据。
3.Hadoop子项目:
(1.)HDFS:分布式文件系统,整个Hadoop体系的基石。
(2.)MapRece/YARN:并行编程模型。YARN是第二代的MapRece框架,从Hadoop 0.23.01版本后,MapRece被重构,通常也称为MapRece V2,老MapRece也称为 MapRece V1。
(3.)Hive:建立在Hadoop上的数据仓库,提供类似SQL语音的查询方式,查询Hadoop中的数据,
(5.)HBase:全称Hadoop Database,Hadoop的分布式的,面向列的数据库,来源于Google的关于BigTable的论文,主要用于随机访问,实时读写的大数据。
(6.)ZooKeeper:是一个为分布式应用所设计的协调服务,主要为用户提供同步,配置管理,分组和命名等服务,减轻分布式应用程序所承担的协调任务。
还有其它特别多其它项目这里不做一一解释了。
三:安装Hadoop运行环境
用户创建:
(1.)创建Hadoop用户组,输入命令:
groupadd hadoop
(2.)创建hser用户,输入命令:
useradd –p hadoop hser
(3.)设置hser的密码,输入命令:
passwd hser
按提示输入两次密码
(4.)为hser用户添加权限,输入命令:
#修改权限
chmod 777 /etc/sudoers
#编辑sudoers
Gedit /etc/sudoers
#还原默认权限
chmod 440 /etc/sudoers
先修改sudoers 文件权限,并在文本编辑窗口中查找到行“root ALL=(ALL)”,紧跟后面更新加行“hser ALL=(ALL) ALL”,将hser添加到sudoers。添加完成后切记还原默认权限,否则系统将不允许使用sudo命令。
(5.)设置好后重启虚拟机,输入命令:
Sudo reboot
重启后切换到hser用户登录
安装JDK
(1.)下载jdk-7u67-linux-x64.rpm,并进入下载目录。
(2.)运行安装命令:
Sudo rpm –ivh jdk-7u67-linux-x64.rpm
完成后查看安装路径,输入命令:
Rpm –qa jdk –l
记住该路径,
(3.)配置环境变量,输入命令:
Sudo gedit /etc/profile
打开profile文件在文件最下面加入如下内容
export java_HOME=/usr/java/jdk.7.0.67
export CLASSPATH=$ JAVA_HOME/lib:$ CLASSPATH
export PATH=$ JAVA_HOME/bin:$PATH
保存后关闭文件,然后输入命令使环境变量生效:
Source /etc/profile
(4.)验证JDK,输入命令:
Java –version
若出现正确的版本则安装成功。
配置本机SSH免密码登录:
(1.)使用ssh-keygen 生成私钥与公钥文件,输入命令:
ssh-keygen –t rsa
(2.)私钥留在本机,公钥发给其它主机(现在是localhost)。输入命令:
ssh--id localhost
(3.)使用公钥来登录输入命令:
ssh localhost
配置其它主机SSH免密登录
(1.)克隆两次。在VMware左侧栏中选中虚拟机右击,在弹出的快捷键菜单中选中管理---克隆命令。在克隆类型时选中“创建完整克隆”,单击“下一步”,按钮直到完成。
(2.)分别启动并进入三台虚拟机,使用ifconfig查询个主机IP地址。
(3.)修改每台主机的hostname及hosts文件。
步骤1:修改hostname,分别在各主机中输入命令。
Sudo gedit /etc/sysconfig/network
步骤2:修改hosts文件:
sudo gedit /etc/hosts
步骤3:修改三台虚拟机的IP
第一台对应node1虚拟机的IP:192.168.1.130
第二台对应node2虚拟机的IP:192.168.1.131
第三台对应node3虚拟机的IP:192.168.1.132
(4.)由于已经在node1上生成过密钥对,所有现在只要在node1上输入命令:
ssh--id node2
ssh--id node3
这样就可以将node1的公钥发布到node2,node3。
(5.)测试SSH,在node1上输入命令:
ssh node2
#退出登录
exit
ssh node3
exit
四:Hadoop完全分布式安装
1. Hadoop有三种运行方式:
(1.)单机模式:无须配置,Hadoop被视为一个非分布式模式运行的独立Java进程
(2.)伪分布式:只有一个节点的集群,这个节点即是Master(主节点,主服务器)也是Slave(从节点,从服务器),可在此单节点上以不同的java进程模拟分布式中的各类节点
(3.)完全分布式:对于Hadoop,不同的系统会有不同的节点划分方式。
2.安装Hadoop
(1.)获取Hadoop压缩包hadoop-2.6.0.tar.gz,下载后可以使用VMWare Tools通过共享文件夹,或者使用Xftp工具传到node1。进入node1 将压缩包解压到/home/hser目录下,输入命令:
#进入HOME目录即:“/home/hser”
cd ~
tar –zxvf hadoop-2.6.0.tar.gz
(2.)重命名hadoop输入命令:
mv hadoop-2.6.0 hadoop
(3.)配置Hadoop环境变量,输入命令:
Sudo gedit /etc/profile
将以下脚本加到profile内:
#hadoop
export HADOOP_HOME=/home/hser/hadoop
export PATH=$HADOOP_HOME/bin:$PATH
保存关闭,最后输入命令使配置生效
source /etc/profile
注:node2,和node3都要按照以上配置进行配置。
3.配置Hadoop
(1.)hadoop-env.sh文件用于指定JDK路径。输入命令:
[hser@node1 ~]$ cd ~/hadoop/etc/hadoop
[hser@node1 hadoop]$ gedit hadoop-env.sh
然后增加如下内容指定jDK路径。
export JAVA_HOME=/usr/java/jdk1.7.0_67
(2.)打开指定JDK路径,输入命令:
export JAVA_HOME=/usr/java/jdk1.7.0_67
(4.)core-site.xml:该文件是Hadoop全局配置,打开并在
7. 详细解读你所不了解的“大数据”
详细解读你所不了解的“大数据”
进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。
一、大数据出现的背景
进入2012年,大数据(bigdata)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的证券公司等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然现在企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
最早提出大数据时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
大数据在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量,大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
二、什么是大数据?
信息技术领域原先已经有“海量数据”、“大规模数据”等概念,但这些概念只着眼于数据规模本身,未能充分反映数据爆发背景下的数据处理与应用需求,而“大数据”这一新概念不仅指规模庞大的数据对象,也包含对这些数据对象的处理和应用活动,是数据对象、技术与应用三者的统一。
1、大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据对象既可能是实际的、有限的数据集合,如某个政府部门或企业掌握的数据库,也可能是虚拟的、无限的数据集合,如微博、微信、社交网络上的全部信息。
大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,“大数据”指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。研发小组对大数据的定义:“大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。”Kelly说:“大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
3、大数据应用,是指对特定的大数据集合,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据集合和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
三、大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。
四、大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。
2、是数据类别大和类型多样
数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
3、是处理速度快
在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
4、是价值真实性高和密度低
数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。
五、大数据的作用
1、对大数据的处理分析正成为新一代信息技术融合应用的结点
移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(RamayyaKrishnan,卡内基·梅隆大学海因兹学院院长)。
2、大数据是信息产业持续高速增长的新引擎
面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
3、大数据利用将成为提高核心竞争力的关键因素
各 行各业的决策正在从“业务驱动”转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
4、大数据时代科学研究的方法手段将发生重大改变
例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
六、大数据的商业价值
1、对顾客群体细分
“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。
2、模拟实境
运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。
云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。
3、提高投入回报率
提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。
4、数据存储空间出租
企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。
5、管理客户关系
客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。
6、个性化精准推荐
在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。
以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
7、数据搜索
数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。
运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。
七、大数据对经济社会的重要影响
1、能够推动实现巨大经济效益
比如对中国零售业净利润增长的贡献,降低制造业产品开发、组装成本等。预计2013年全球大数据直接和间接拉动信息技术支出将达1200亿美元。
2、能够推动增强社会管理水平
大数据在公共服务领域的应用,可有效推动相关工作开展,提高相关部门的决策水平、服务效率和社会管理水平,产生巨大社会价值。欧洲多个城市通过分析实时采集的交通流量数据,指导驾车出行者选择最佳路径,从而改善城市交通状况。
3、如果没有高性能的分析工具,大数据的价值就得不到释放
对大数据应用必须保持清醒认识,既不能迷信其分析结果,也不能因为其不完全准确而否定其重要作用。
1)由于各种原因,所分析处理的数据对象中不可避免地会包括各种错误数据、无用数据,加之作为大数据技术核心的数据分析、人工智能等技术尚未完全成熟,所以对计算机完成的大数据分析处理的结果,无法要求其完全准确。例如,谷歌通过分析亿万用户搜索内容能够比专业机构更快地预测流感暴发,但由于微博上无用信息的干扰,这种预测也曾多次出现不准确的情况。
2)必须清楚定位的是,大数据作用与价值的重点在于能够引导和启发大数据应用者的创新思维,辅助决策。简单而言,若是处理一个问题,通常人能够想到一种方法,而大数据能够提供十种参考方法,哪怕其中只有三种可行,也将解决问题的思路拓展了三倍。
所以,客观认识和发挥大数据的作用,不夸大、不缩小,是准确认知和应用大数据的前提。
八、总结
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
1、从大数据的价值链条来分析,存在三种模式:
1)手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2)没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3)既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
2、未来在大数据领域最具有价值的是两种事物:
1)拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;
2)还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。
8. 大数据主要学习什么呢
大数据技术与应用专业旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
大数据技术与应用专业的学生需要学习的内容有面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
2大数据技术专业的就业方向
1、互联网电商方向
作为当前最热门的风口,互联网电商是互联网领域应用于实践最多的地方,也是积累技术资源最丰富、资金最雄厚、人才需求量最大的部分。大数据技术与应用专业毕业生可以从事互联网电商运营维护、日常管理、消费大数据分析、金融数据风控管理等相关技术工作。目前大到已经上市的头部电商平台小到社区电商,这些技术人才的缺口都比较大。
2、零售金融方向
零售金融与互联网电商虽然同属于消费大范畴领域,但是具体而言,零售电商的范围要小于互联网电商,比互联网电商更需要精准对接消费群体和消费群体的爱好、收入等特征。大数据技术与应用专业毕业生可以从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融等领域的数据分布式程序开发、大数据集成平台的应用、开发等方面的工作。适合在零售金融企业承担相关技术服务工作,也可在IT领域从事计算机应用工作。