Ⅰ 大数据技术在电子政务领域的应用
大数据技术在电子政务领域的应用
随着科学技术在社会各领域的不断渗透, 为人们的生活带来了巨大改变, 其中, 以大数据技术为代表的现代电子信息技术的广泛使用, 将人们带入了“大数据时代”。本文以大数据技术在电子政务领域的应用为研究内容, 在分析大数据技术特征的基础上, 这一技术在电子政务领域的实际应用加以介绍, 从而使人们更加深入的了解大数据技术。
近年来, 我国在计算机网络技术研究领域取得了显著成绩, 大数据技术、云计算技术、物联网技术等在社会各领域得到了较为广泛的应用。在此过程中, 为提高政府部门办事效率, 以大数据技术为核心的电子政务系统应运而生, 并且, 融入了大数据技术的电子政务系统在数据的获取、处理、分析等方面的效率显著提高, 为政府相关工作的高效开展奠定了基础。
1、大数据技术的特征概述
相比较传统数据处理技术来说, 大数据技术的主要特征包括以下四个方面:
(1) 大数据技术涉及到的数据量极为庞大, 在计算机网络快速发展的今天, 网络上的数字信息呈现出几何指数增长的趋势, 经过一定时期的积累, 这一数据量将达到惊人的数量, 为此, 只有大数据技术才能够对此类规模的数据进行有效的处理。
(2) 大数据技术所涉及数据类型众多, 除常见的文本、声音、图像、音频等数据外, 还包括一些特殊的文件形式, 并且, 不同类型的文件形式其作用自然也就存在着明显的差异。
(3) 大数据技术有着较快的数据处理数度, 凭借分布式计算机技术的使用, 能够在最短的时间内完成一定规模数据的处理任务, 并且, 最终得到的结果是有效的。
(4) 大数据技术所处理的数据虽然数据密度较低, 但是, 当密度较低的数据被收拢在一起后, 通过科学的数据处理分析方法, 从零星的数据中寻找有用的信息, 并对该信息的价值进行深入挖掘。
2 、大数据技术的关键
所谓大数据, 是指在短时间通过网络嗅探的方式, 快速搜集各种类型的网络数据, 并在相关数据中获取有价值的信息。大数据技术的实现需要通过大规模并行处理数据库技术、数据挖掘技术、分布式数据库技术、云计算基础构架平台等技术, 为更好的研究大数据技术, 应对其关键技术进行深入分析。
2.1 大规模并行处理数据库技术
为保证大数据技术中庞大数据的存储与处理, 则需要利用大规模并行处理数据库技术对相关数据进行集群管理。这一技术能够以最快的速度对数据处理命令进行相应, 并具有较低的延迟读写速度, 并且, 在云计算平台的配合下, 大规模并行处理数据库的成本也相对较低, 在正常工作过程中, 能够实现多个副本故障检测与转移机制, 在长时间工作的状态下, 出现故障的几率较低。
2.2 分布式数据库技术
所谓分布式数据库技术, 则区别于云存储数据库的形式, 他是利用互联网的空间特性, 将物理空间相对独立的存储单元进行连接, 通过一定的算法进行逻辑上的统一, 形成具有超大规模的数据库, 并具有较高的数据处理能力和数据存储能力。
从信息安全的角度分析, 这种分布式的数据库技术能够实现对数据资源的有效保护, 即便出现大规模的计算机病毒事件, 基于分布式数据的存储优势, 相关病毒对部分计算机的影响, 并不能对全部计算机中的数据造成毁灭性的破坏。
2.3 分布式存储技术
在大数据技术的实际应用中, 为满足用户一定规模数据存储的需求, 则充分利用了分布式存储技术所具有的纵向、横向扩展的优势, 将数据进行分割后存储与多台服务器、存储设备上, 从而有效降低了单一存储器的数据存储压力, 并且, 这种分布式存储技术, 还实现了系统可用性、可靠性的提高, 以及保证数据存取的高速进行。
2.4 云计算技术
对于大数据技术来说, 为了实现对一定规模数据的收集、分析和处理的能力, 则充分利用了云计算技术所搭建的平台, 从而为大数据技术的应用奠定了坚实的硬件基础。基于传统存储技术在速度、空间上的有限性, 无法为大数据技术提供足够的支持, 云计算技术则将传统计算机的存储、运算功能转移至云端, 以一种更加高效的方式, 为大数据技术在众多领域的拓展提供可靠的技术平台。
3、大数据技术在电子政务领域的应用
基于大数据技术的诸多优势, 在电子商务领域, 大数据技术主要用于网站数据进行分析, 社会诚信系统的构建, 信息共享平台与电子政务系统等。
3.1 大数据技术支持下的政府网站大数据分析
为准确掌握网站的浏览情况, 大多数网站都会对用户的日常浏览情况进行数据分析, 相关分析要素包括用户访问的路径、不同网页的停留时间、浏览网页的具体时间等, 通过对以上要素的研究, 能够对用户需求、习惯进行准确分析, 并能够对后期网站缺陷的具体调整提供指导性意见。
以某政府网站为例, 由于网页设计不合理, 以至于在用户打开某一页面时, 长期处于等待状态, 如此一来, 用户对这一网页的实际浏览次数将为0。针对这一情况, 网站管理人员通过对某一周期内的网站浏览情况进行分析, 由于一定周期内浏览网站用户的数量较大, 且相关要素成倍增加, 所以, 在处理以上信息的过程中就用到了大数据技术。对于网页访问次数出入较大的数据, 则需要进行深入分析, 在排除网页的可链接性之后, 检查网页内的相关信息, 却保网页内信息的可靠、安全。
通过用户浏览网站后留下的大量信息, 网站一方可以将用户信息存入数据库中, 并利用大数据技术对相关信息进行分类, 以实现网站信息向用户的精准推送。并且, 经过大数据处理后的数据信息, 逐渐成为政府行政决策的重要依据, 并能够在一定程度上保证行政决策的有效性和科学性。
3.2 大数据技术支持下的信用平台建设
为更好的掌握居民信用信息, 建立以个人为单位的信用数据库, 则需要以大数据技术为依托, 收集相关部门所掌握的居民信用资料, 并通过大数据技术进行对比、整合, 进而得出准确的个人信用情况。例如, 在购房贷款过程中, 商业银行往往需要用户提供《个人征信档案》, 在《个人征信档案》中, 不仅包括用户的基本身份信息, 还包括用户在所有金融机构办理的各种信用卡情况, 以及是否存在不良信用记录等, 这些信息的存在, 就意味着政府机构与金融机构之间实现了以大数据技术为核心的信息共享, 通过对比用户身份信息, 将属于同一用户的信用信息进行整合, 并重新存储与数据库之中。
政府行为的信用平台建设, 旨在掌握用户的个人诚信资料, 并为基于个人行为的政府服务工作提供数据支撑, 打击社会范围内长期存在的老赖等现象。大数据技术支持下的信用平台建设, 能够实现社会范围内道德诚信体系的不断加强, 促进社会道德水平的提升。
3.3 大数据交换共享平台与电子政务
随着政府部门事务性工作的不断增加, 仅依靠人工对相关数据进行收集、分类、整合、处理等工作不仅效率低, 速度慢, 且容易出现人为性差错, 数据结果的人为性因素较大。在此情况下, 依托大数据技术在多元数据收集、处理方面的优势, 以及计算机网络技术下的信息共享平台建设, 能够帮助政府通过网络获取社会各领域的相关数据, 并对数据资源进行有效整合, 形成庞大的数据库资源。
然而, 对于数据库来说, 只有得到利用才能体现其价值, 在情况下, 政府部门就充分利用了大数据交换共享平台的优势, 建立以政府事物为中心的社会基础数据库, 为政府相关工作的开展提供横向、纵向信息的全方位共享。在区域间政府工作交流方面, 大数据共享交换平台能够突破传统政务工作的空间限制, 进而促进跨地区政府部门信息资源整合与交流下的业务开展。
为更好的发挥电子政务的优势, 在大数据交换共享平台的建设方面, 需要对这一平台的信息资源目录体系进行完善, 制定政府间统一的大数据交换共享平台使用标准, 规范政府在使用大数据交换共享平台的各种行为, 以实现对数据资源的合理、高效利用。所以, 大数据交换共享平台的使用, 不仅便于政府工作的开展, 也促进了社会管理工作有条不紊的展开, 社会环境的稳定得以实现。
3.4 电子政务决策系统中的大数据技术
在实际使用过程中, 大数据技术并不仅仅是简单的对多元数据的收集、整合、分析、处理, 对于大数据技术的使用方来说, 庞大的数据价值还在于能够辅助政府决策。
利用计算机软件技术, 通过对庞大数据中有关数据的筛选、分析, 经过计算机软件的处理之后, 能够得到更加准确的计算结果, 政府部门依据这一结果, 就可以完成一系列的政府决策, 从而实现了政府办事效率的快速提高。
例如, 在市政建设方面, 对于城市内部交通拥堵问题, 可以借助交通系统长期提供的大数据信息, 了解城市内交通拥堵的主要路段、时间, 以及在庞大数据信息的支持下, 通过建模的方式, 采取多种治堵方式, 并利用大数据技术对每一种方式的实际效果进行综合评估, 最终选择效果最好的治堵方式。
对于政府决策的客观性、准确性等, 使用大数据技术辅助决策有着极大的优势, 但是, 基于大数据技术缺乏人类情感因素的介入, 以至于相关决策并不能够完全突出“以人为本”的政府工作理念, 所以, 政府部门应慎重对待大数据技术下的电子政务决策, 根据相关内容的实际情况, 做出最佳的决策选择。
4、大数据技术在电子政务中应用的不足之处分析
通过对地方政府电子政务系统的实际使用情况调查研究后发现, 即便在我国电子信息技术得到快速发展的情况下, 大多数地区政府在电子政务系统建设方面依然存在不足, 即便是已经施行电子政务管理的地区, 政府部门对于大数据技术的实际应用却有着较为明显的不足, 以至于大数据技术的优势无法得到有效发挥。
4.1“数据孤岛”现象的存在
大数据技术的核心在于对数据信息的共享, 然而, 有地方政府对大数据技术的认识不足, 以至于在数据共享方面存在政策性的理解偏差, 使得以政府为核心的相关数据无法被其它行业所利用, 大数据技术的优势也就失去。例如, A省与B省协商开通省际公交专线, 然而, 为了更好的安排公交车的运行时间表, 则需要A、B两省之间的人员往来数据进行分析, 并能够预估公交线路的实际载客风险, 从而适当的调整公交车的运营次数和时间, 但是, 在实际操作过程中, A、B两省间的客流数据无法实现共享, 以至于在公交车的实际安排下依然无法解决道路拥堵的实际问题。
地方政府所体现出来的在大数据技术应用方面的这一问题, 是传统政务管理工作中各自为政思想的延续, 一旦数据无法实现共享, 也就造成了所谓的“数据孤岛。大数据共享的问题在于两个方面, 首先, 政府部门之间有着严格的管理秩序, 优势存在上下级关系的政府部门, 下级向上级申请差异数据库中的内容, 多无法得到上机政府部门的许可, 以至于大数据技术在电子政务领域的使用存在着明显的“数据孤岛”现象。
导致“数据孤岛”现象的原因还包括大数据技术的本身, 由于我国大数据技术的应用并未得到普及, 在电子政务领域也只是部分地区完成了大数据技术的初步使用。数据作为政府管理的稀缺资源, 以及从保密的角度分析, 相关数据并不能进行过度披露, 否则, 将造成社会性的事件。所以, 这也就不难解释除政府部门间数据信息的相对独立以外, 广大市民同样无法通过大数据技术支持下的电子政务平台获得真实的数据信息。在这一“数据孤岛”现象的影响下, 地方电子政务平台的实际效果也就有着明显的降低。
4.2 电子政务领域常见的数据资源“过剩”与“闲置”问题
单从地区政府发展的角度来看, 地区政府在大数据技术方面投入的多少, 能够直接反映出该地区经济发展的实际情况, 两者之间存在着显著的正相关关系。然而, 当地区政府在大数据技术方面的投入与实际数据需求偏低时, 也就出现了所谓的数据资源“过剩”的问题。不仅如此, 在大数据技术投入不足的情况下, 政府部门无法对社会中存在的大量数据加以利用时, 也就形成了另一种形式的数据资源“闲置”。
(1) 以南京地区为例, 作为我国南方较为重要的经济主体, 南京市政府在大数据技术与电子政务方面投入了大量人力、物力和财力, 经过近几年的发展, 已经形成了较为完备的电子政务平台, 在实际使用中也到了广大市民的欢迎。然而, 相对于南京的区域地位来说, 受上海的影响, 作为上海市的经济辐射范围, 南京市的发展受到了一定的影响, 经济中心明显向上海地区便宜, 为此, 基于大数据技术的电子政务平台所整合的数据, 也就无法在更大的空间中发挥其作用, 这就是数据资源“过剩”。
(2) 在我国西北、西南部分地区, 由于经济发展较为落后, 以至于在全国范围内进行大数据技术支持下的电子政务系统建设过程中, 无法进行大范围的电子政务系统建设。以贵州省为例, 大数据技术下电子政务系统依然停留在商业层面的应用, 对于其它领域的电子政务系统建设并未涉及, 因此造成了贵州省内相关数据信息无法全面获取, 这也就是资源“闲置”的直接表现。
5、关于大数据技术在电子政务领域应用的建议
针对当前大数据技术发展的实际情况, 以及电子政务作为信息化时代下政府事务性工作改革的重要内容, 有着较为积极的意义。因此, 为推动大数据技术在电子政务领域的中的应用, 则需要做到以下三个方面。
(1) 地方政府应结合大数据技术与电子政务的结合, 推动地区大数据技术产业的发展, 通过各种优惠政策, 吸引高新技术企业入驻, 建立以大数据技术为核心的产业发展模式, 从而带动地区经济发展。
(2) 提高政府方面对大数据技术的认识, 在社会发展过程中, 大数据技术的优势越发明显, 尤其是在传统事务性工作的处理方面, 借助专业的数据分析软件, 能够完成从数据的收集、整理、分类, 直至得出数据分析结果, 实现了政府办事效率的显著提高。如此一来, 大数据技术的优势得以体现, 政府方面对于大数据的认识进一步提高, 进而促进了大数据技术在电子政务领域的普及。
(3) 加快大数据技术相关硬件、软件的研发。目前, 大数据技术涉及到的硬件、软件成本较高, 导致了部分经济欠发达地区无法实现大数据技术支持下的电子政务系统的全面推广。以大数据技术使用较为广泛的数据中心机房来说, 由于要使用到高速计算机和服务器到等昂贵的信息设备, 对于缺乏条件的地方政府来说, 可以利用云计算技术, 通过网络服务器的模式, 解决这一问题。
总的来说, 大数据技术在电子政务领域的应用实现了我国政务处理的信息化改革, 对于我国现代化社会管理制度体系的建立打下了坚实的基础。并且, 通过大数据思维在政务领域的渗透, 有助于大数据技术的应用效率提高。
6、总结
尽管, 我国电子政务系统的建设时间并不长, 相关领域依然有待完善。随着大数据技术在电子政务领域的不断渗透, 基于多元数据收集、整合、分类、处理的大数据信息交换共享平台建设, 为政府各项事务的有效开展奠定了坚实的基础。然而, 由于技术与认识上的不足, 电子政务系统中的大数据技术应用仍然集中于纵向政务业务领域, 这并不符合当前社会发展的趋势。因此, 为推广以大数据技术的应用个, 则需要加快大数据技术支持下的电子政务系统的设计, 推动电子政务系统中大数据技术的应用, 打造“数字化政府”。
Ⅱ 利用大数据解决治堵难题
利用大数据解决治堵难题_数据分析师考试
大数据时代来了。今年,从查处假套牌的士,到对已经吊销驾驶证的人员开车上路的排查,再到对泥头车的整治,深圳交警越来越频繁地将大数据应用于交通管理和违法整治行动中。昨日,交警相关负责人表示,运用互联网+概念,这仅仅是一个开始,利用大数据分析,我市交通管理将进入新的阶段。目前交警正在尝试对多年沉淀下来的数据进行分析挖掘,在治理拥堵方面,预测车辆的行驶轨迹,为市民提供更为科学的行车路线已不是难事。
应用于交通活跃度分析
“未来能分析出什么可能会超乎我们的想象。”深圳交警局情报中心副中队长吴凯峰表示,我市一直都存储车辆的行驶轨迹,已经超过十年的时间。历史所有的数据都可以进行挖掘。
深圳交警科技处副科长刘义表示,大数据在交通分析上的广泛应用,可对车辆活跃度进行分析。如,我市有多少车在路上行驶,多少车处于静止状态;行驶车辆有多少是本市的,有多少是非本市的;哪些车辆一个月仅用三天,哪些车辆每天都会使用;哪些黄标车平时在我市道路上行驶等。
今年新增了全市卡口数量
吴凯峰透露,今年我市大量增加了卡口数量,特别是原特区外的道路。这是为我市将大数据方法全面应用到交通管理的各个领域做好准备。
今年5月份,深圳交警依托大数据基础,专门针对我市2015年1月1日以来因酒驾被暂扣驾驶证的915人和2012年5月1日以来因醉驾被吊销驾驶证的3021人,共3936人,通过对其所驾车辆的活动规律进行分析,重点排查出活跃车辆有491辆。“交警通过在全市设点对活跃车辆拦截,排查出驾驶车辆的是否为已经失去驾驶资格的当事人。”
以上是小编为大家分享的关于利用大数据解决治堵难题的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅲ 如何实施政府大数据平台
随着信息技术的飞速发展,各领域的数据量都在爆发式增长,尤其在云计算、物联网、移动互联网等it技术得到广泛应用之后,数据的增长实现了从量变到质变的转型,大数据如浪潮般席卷而来,人类社会进入大数据时代。大数据不仅仅只是一次颠覆性的技术革命,更是一场思维方式、行为模式与治理理念的全方位变革,尤其在政府治理领域,大数据带来了巨大的变革潜力和创新空间。在“全面深化改革,推进国家治理体系和治理能力现代化”的时代背景下,应充分重视大数据在政府治理中的重要价值,牢牢抓住大数据为政府治理提供的创新机遇,切实提高各级政府部门的治理能力。
一、大数据为政府治理理念转型带来新机遇
治理理念的转型是提升政府治理能力的前提,理念的转型需要新文化、新思维的融入,大数据所蕴含的数据文化与数据思维恰好可以为治理理念转型提供突破口,基于大数据探索政府治理的多元、多层、多角度特征,最终实现以政府为主体的政府管制理念向以协同共治、公共服务为导向的政府治理理念的转型。在大数据时代,政府治理的依据不再是个人经验和长官意志,而是实实在在的数据,在过去深入群众、实地调研考察的基础上,系统采集的客观数据和实证分析的科学结果将成为最为重要的政府决策依据。“尊重事实、推崇理性、强调精确”的特征和“用数据说话、用数据决策、用数据管理、用数据创新”的理念将成为政府治理理念转型的核心要义。
二、大数据为政府治理模式创新带来新机遇
大数据通过把数学算法运用于海量数据,从数据中寻找相关关系,通过这种相关性预测事情发生的可能性,这是大数据方法论的核心思想。此外,依托于大数据技术和平台,通过外包、众包等灵活的组织方式,可以推动政府治理的组织架构从科层、分割、封闭向开放、协同、合作转型,因此把大数据的方法和手段引入到政府治理领域,是实现政府治理模式创新的有效路径。基于上述方法论,大数据为政府治理模式创新带来的新机遇主要包括:从粗放式管理到精细化治理、从单兵作战型管理到协作共享型治理、从被动响应型管理到主动预见型治理、从电子政务管理到政府2.0治理、从风险隐蔽型管理到风险防范型治理,最终实现全面数据驱动的治理模式创新。
三、大数据为政府决策科学化带来新机遇
随着公共事务的日益复杂,仅凭个人感知已经很难全面了解所有正在发生的事情并做出正确判断,政府部门想要提高决策的科学性,就需要把大数据思维与技术运用到政府治理与决策中,依靠大规模数据的收集来直观呈现经济社会运行规律,通过相应的数据挖掘来辅助政府部门进行科学决策。大数据为政府决策科学化带来的机遇主要体现在两个方面:首先,在决策的制定阶段,大数据背景下,政府决策不再是个别领导干部“拍脑袋”做出的,而是通过“用数据说话”,让听得见炮火的人(数据)做出决策,这样的政府决策是在对客观数据进行科学分析、充分了解客观现实的基础上做出的,这样大大提高了决策的精准性、适用性和科学化水平;其次,在决策实施效果的跟踪反馈阶段,通过物联网和社交网络的普及,大量的客观数据能够快速汇集给决策者,通过这些数据对决策的实施过程和效果进行实时监控,能够更全面地掌握决策的实施效果和下一步的改进方向。
四、大数据为政府服务效能提升带来新机遇
提升政府服务效能是政府治理能力提升的重要支撑,也是大数据背景下服务型政府建设的关键所在,在政府治理的范畴下,提升政府服务效能主要包括政府部门行政审批的效率提升和公共服务产品的质量提高两个方面。在提升行政审批效率方面,大数据可以打通各个政府部门的信息孤岛,打破各部门数据的条块分割,通过构建统一的政府行政审批云平台,让数据为老百姓“跑腿办事”,省去了“跑断腿、磨破嘴,办事跑十几个部门,盖几十个公章”的苦恼和无奈,这样既提高了行政审批效率,又节约了政府开支。在提高公共服务产品质量方面,大数据通过对公共服务产品数据和服务对象数据的挖掘、分析,提升公共服务产品供给的精准化、分层化、个性化;通过公共数据的开放和兼容,让公众参与到公共服务产品设计、提供和监督等各个环节,实现公共服务产品质量的提高。
Ⅳ 千方科技是如何利用大数据“问诊”畅通道路堵点的
千方科技为了打通城市交通“毛细血管”、大力缓解城市交通拥堵。所以,针对超大、特大城市科学治堵,打造了“大数据+全域交通综合治理”的解决方案。千方科技通过梳理交通大数据,分析问题成因,“诊断”出区域内的交通痛点问题,然后再以大数据作为支撑,形成对不同场景的治理方法。
Ⅳ 治堵,光靠自动驾驶技术就能成吗
堵车,一个让无数人绝望的问题。在大城市里,日常上下班通勤过程中,不可避免地会遇到堵车,让人心烦意乱;每逢节假日,堵车也必然会成为高速公路上的一道风景线,漫漫归途令人叹息。
如果站在实际应用的角度,眼下比较理想的方案倒是自动驾驶汽车+共享出行模式,这两者结合意味着许多消费者可以不必购买私家车,以一种更新颖更智慧的出行方式去更好的迎接城市交通及功能化建设的转型。
另外,要想有效地解决大城市交通拥堵问题,政府监管与城市规划也相当重要。打造智能化、集约化的公共交通体系、提升每个人的素质,都是整个社会需要共同努力的方向。
在上述前提下,自动驾驶汽车和飞行汽车的美好愿景,或许才更有可能实现。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
Ⅵ 如何缓解交通紧张
无论路上有人没人,车多车少,路口的红绿灯依旧按部就班地变换着通行信号,让行人和车主干着急……
这种情况其实在城市中司空见惯。一方面是城市拥堵越来越严重,另一方面是道路交通管理方式越来越不适应交通流量的迅速增长。交通领域专家和从业人员认为,破解城市交通难,不只是多修几条路那么简单。如何利用互联网、大数据等现代科技手段,给交通管理装上“智慧大脑”,成为新时代缓解城市拥堵的重要课题。
“这种形势下,亟须树立社会治理新理念、新思想,充分发挥科技、法制、文化力量,推进交通管理与互联网、大数据、云计算、人工智能等信息技术深度融合,实现共建共治共享交通管理新格局。”他说。
事实上,一些城市已经与交通互联网企业开展这样的尝试。在广东省中山市,市区全部143个路口的红绿灯都已经接入了高德交通“大脑”,在“大脑”调控、指挥下,让中山的红绿灯“活”起来。
阿里巴巴合伙人、高德集团总裁刘振飞表示,虽然车多路少的资源供需矛盾短时间内难以调和,但是提高现有交通资源的利用率,以及提高公共交通调度的合理性,都是能有效解决现有交通拥堵问题的有效方式。因此,高德提出用“大脑治堵”这一创新型解决方案,通过给城市装上智慧“大脑”,重塑人车路,为城市交通治理提供解决之道。
高德交通“大脑”是怎么让红绿灯“活”起来呢?
例如,南北向路上有5个红绿灯,其中中间路口等待的车辆最多。“大脑”通过摄像头、红绿灯全局感知到这个路口拥堵情况,测算出拥堵时长、拥堵长度等,按照全局调节的思路制定一套配时优化策略,将这个路口的绿灯配时延长,并相应地把其它几个路口的绿灯配时缩短,这就使拥堵路口的通行效率提升。
数据分析显示,中山红绿灯全部接入“大脑”之后,2018年一季度,市内通行速度环比提升了5.7%,行车过程中停车次数下降了8%。
“智能的配时优化,同时随着交通流的变化而动态调整,实现实时、智能配时。调节频率也会从之前的不变化,到几个小时调整一次,甚至几分钟就调整一次。目前杭州萧山已经能做到每15分钟调节一次。”刘振飞说。
清华大学交通研究所所长陆化普认为,要破解交通供求不平衡的矛盾,现在大多数城市无非是两大对策,加大供给和抑制需求。
“但未来的发展,我认为将是一体化、绿色化、智能化和共享化。包括设施的一体化,如交通枢纽的无缝衔接、零距离换乘等。此外,我们有大量的基础设施可以通过共享实现充分的利用,来破解交通供求不平衡的矛盾。”他说
来自新华网
Ⅶ 孟凡利,城市治堵 人工智能是否会成为一剂猛药
这个是肯定的。随着城市人口密度的增加,大部分城市交通都存在拥堵问题。人工智能在城市传感器和大数据支撑下,可以灵活规划和调配公共交通运力;可以预测和优化其他生产生活车辆的出行线路;可以预测拥塞路段的形成时间,可以智能分流…..
人工智能将从衣食住行各个方面改变城市的格局和发展方向。