Ⅰ 大数据和传统数据有什么关系
大数据与传统数据的核心差异在于其价值的不可估量。传统数据的价值体现在信息传递与表征,是对现象的描述与反馈,让人通过数据去了解数据。而大数据是对现象发生过程的全记录,通过数据不仅能够了解对象,还能分析对象,掌握对象运作的规律,挖掘对象内部的结构与特点,甚至能了解对象自己都不知道的信息。
诸如某网络对一个人的描述与概括,记录了这个人的身高、体重、出生年月、兴趣爱好、日常活动、亲朋好友等数据,这些算是传统数据,通过这些传统数据你能知道和认识这个人。如果用大数据的方式来记录一个人,那就可以详细到他几点起床、睡眠质量、身体状况、每个时间点在做什么事等一系列过程数据,通过这些过程数据我们不仅知道和认识这个人,还能知道他的习惯性格,甚至能挖掘出隐藏在生活习惯中的情绪与内心活动等信息。这些都是传统数据所无法体现的,也是大数据承载信息的丰富之处,在丰富的信息背后隐藏着巨大的价值,这些价值甚至能帮助人们达到“所思即所得”的境界。
大数据价值的特殊之处就在于它的可挖掘性,同样的一堆数据,不同的人能得到不同层次的东西。就好像同样见一个人,有些人只看他的外貌好不好看,有些人能从他的表情中读出心理活动,从眼神中看出阅历,从衣着打扮中读出品味,从鞋子上读出生活习惯。而这些深层次的非表象的内容需要技巧与实力去挖掘出来,这就是我们说的数据分析与数据挖掘。
Ⅱ 大数据和数据库有什么不同
大数据是通过将众多数据进行分析,提供服务的一种方式。数据库是一个公司或者是一个企业的数据中心,个人见解,如有不对,欢迎商讨。
Ⅲ 数据库原理及应用和大数据与会计有什么联系
内在有一定联系,都用到计算机和数据。
数据库管理与应用共分为7个学习内容,一为熟悉、安装和配置数据库,二介绍数据库设计与创建,三介绍数据库安全管理,四介绍数据库性能监测和日常维护,五讲解数据库的操纵,六讲述T-SQL语言及其应用,七通过一个综合案例讲述数据库系统的编程和测试。大数据与会计是适应当今人工智能与大数据时代会计业务和会计信息日益呈现海量数据处理、实时云计算化、会计智能决策等新型会计业务特征。具备会计理论知识和财务知识,大型数据分析和处理技术,计算机人工智能和IT信息技术‘文力’的专业知识和技术技能,是一套全新的高端复合型会计人才。
Ⅳ 请分析“大数据”的存储方式及主要业务跟课中所讲解的关系型数据库有何区别
大数据的存储方式主要使用noSQL
这种数据库有几个特点,一个是针对大数据环境,版它是分布式的,另一权个他的操作非常原始,只有Keyvalue读写
关系数据库呢,一般都是单机的,因为关系数据库最强大的就是事务,事物在分布式环境很难实现,所以关系数据库通常都是单机版,另外一个是关系数据库,它的计算层次更高,是表格上的运算
Ⅳ 数据库和大数据的区别
大数据和bi的区别,强大的多维动态分析与报表智能钻取,酷炫BI可视化体验,免费使回用!帆软软答件智能BI,精细化统计分析.亿级数据秒级处理,实时更新,支持私有化部署.
1.数据量庞大。 空间数据库面向的是地学及其相关对象,而在客观世界中它们所涉及的往往都是地球表面信息、地质信息、大气信息等及其复杂的现象和信息,所以描述这些信息的数据容量很大,容量通常达到gb级。
2.具有高可访问性。 空间信息系统要求具有强大的信息检索和分析能力,这是建立在空间数据库基础上的,需要高效访问大量数据。
3.空间数据模型复杂 空间数据库存储的不是单一性质的数据,而是涵盖了几乎所有与地理相关的数据...
Ⅵ 数据库是大数据的主要课程吗
这个怎么说呢?数据库应该是大数据的课程之一,但是应该不算是主要课程。
因为大数据有5V特性,那么大数据课程也应该集中于这五个方面。
第一个V(Volume(大量)),那么就会有数据治理与数据整理,从大量甚至海量的数据中,找到有价值的数据,或者说有关联的对分析有帮助的数据。
第二个V(Velocity(高速)),这部分主要是数据实时性,比如现在有时某些城市会有所谓的堵车报告,或者实时概况,这种就是高速提高的实时性。比如今天才得到去年的信息,那有什么用?
第三个V(Variety(多样)),大数据并不是特定收集某些相关数据,而是从第一个V大量的数据中找到很多信息,信息非常的多,这里主要的内容应该是数据分析,以及数据关联性等等
第四个V(Value(低价值密度)),每一条数据拿出来其实都是没神勇的,只有将数据放在一起,进行分析管理才能得到一些趋势,概率,密度等等这些内容,其实大数据要做的就是讲得到的低价值密度的信息进行提炼,提炼为价值密度更高的信息。
第五个V(Veracity(真实性)),这个其实就是一个数据治理的过程,只是这里更多的存在一些去伪存真的意思,就好比现在的“刷X”,如果能判断出来哪些是刷的,哪些是真的,那么这不就是数据治理吗。而且只有真实的有效的信息才能对大数据有用,虚假的信息指挥干扰分析结果,所以真实性也很重要。
那为什么数据库还是大数据的课程之一?上面五个V和数据库没关系啊,但是大数据的数据最后还是要分层次,分系统的展现给用户,这里还是需要数据库来做,所以数据库还是有作用的,而且不管现在用的是什么大数据分析工具和怎么做的数据分析,分析工具都是作用在数据库内的数据上(这里的数据库并不特指都一个产品,而是所有的数据库产品),所以数据库本身还是要学习的,只是与在大数据中,数据库并不是那么重要而已。
举例来说:你可以不懂数据库,但是你可以涉及算法,算法就是大数据的主要核心之一,然后再由动数据库的将算法转换成数据库语言,只是这样的人一般都是大牛,平常人能做到转换这一步就不错了。
Ⅶ 数据库和大数据的区别
其他指标都差不多,主要区别还是在“海量”这个方面。数据库就像一个池塘,一个湖的数据,大数据就类似一个大海的数据,处理的数量级、速度、效率都不是一个级别的。如果用数学的说法就是子集的概念,大数据包含数据库,数据库是大数据的子集。
Ⅷ 数据库和大数据的区别
在大数据处理当中,数据库提供底层支持,实现了稳固的大数据存储,才能更好地支持下一步的大数据计算。今天的大数据基础知识分享,我们来聊聊大数据当中,数据库和数据仓库的区别,怎么去理解这两者,又该怎么去应用? 首先,数据库是什么?
从定义上来说,数据库是用来存放数据的仓库,数据库由很多表组成,表是二维的,一张表里面有很多字段。字段一字排开,对数据就一行一行的写入表中。
数据库的表,在于能够用二维表现多维的关系,如:oracle、DB2、MySQL、Sybase、MSSQL Server等,都是典型的数据库。
那么,数据仓库又是什么?
数据仓库,可以理解为是数据库概念的升级。从逻辑上理解,数据库和数据仓库没有区别,都是通过数据库软件实现存放数据的地方,只不过从数据量来说,数据仓库要比数据库更庞大。
数据库和数据仓库的区别:
1.数据库只存放在当前值,数据仓库存放历史值;
2.数据库内数据是动态变化的,只要有业务发生,数据就会被更新,而数据仓库则是静态的历史数据,只能定期添加、刷新;
3.数据库中的数据结构比较复杂,有各种结构以适合业务处理系统的需要,而数据仓库中的数据结构则相对简单;
4.数据库中数据访问频率较高,但访问量较少,而数据仓库的访问频率低但访问量却很高;
5.数据库中数据的目标是面向业务处理人员的,为业务处理人员提供信息处理的支持,而数据仓库则是面向高层管理人员的,为其提供决策支持;
6.数据库在访问数据时要求响应速度快,其响应时间一般在几秒内,而数据仓库的响应时间则可长达数几小时。
关于,数据库基础,大数据数据库和数据仓库的区别,以上就是详细的介绍了。在大数据当中,数据库和数据仓库的知识的,都是值得关注的,也是在学习当中需要去重视的。
Ⅸ 大数据和数据库的区别
大数据和以前的数据相比,有4个特点(4V):Volume(大量)、Velocity(高速)版、Variety(多样)、value(价值)。volume指量,权数据量大,这是大数据的基础;Velocity是指处理的速度;Variety指数据的维度;value指大数据能展现的价值,这是大数据的目的。
Ⅹ 数据库一体机与大数据技术区别何在
数据库一体机与大数据技术区别何在
作为近期信息管理领域最为热门的两项技术,数据库一体机与大数据技术的硬件架构基本相同,但软件体系有着本质的区别,这也导致了两者拥有不同的特征表现。
随着企业数据量的快速增长,以及用户对服务水平要求的不断提高,相当长的一段时间以来,传统关系数据库技术在生产实践中表现出明显的能力不足。如何以合理的成本获得海量数据的高可用性已经成为现代IT领域的重大挑战。为了应对这一挑战,近年来,IT市场中相继出现了许多新的技术手段,其中最为引人注目的便是由主流数据库厂商主导的数据库一体机(例如Oracle ExaData以及IBM Netezza等),以及以开源力量为主的大数据技术。
不过,虽然数据库一体机与大数据技术都是当今的热门话题,并都已经被广泛应用,但却有相当一部分用户仍然无法深入了解两者之间的本质区别与关系。同时,很多用户也在为如何在企业内部对这两者进行正确定位而感到困惑。为此,本文特别对数据库一体机(也可称新一代主流关系型数据库)和大数据技术(例如Hadoop,主要指MapRece与NoSQL)的相关技术特点进行对比。
硬件与软件
从本质上来讲,数据库一体机与大数据技术的硬件架构基本相同,同样是采用x86服务器集群的分布式并行模式,以应对大规模的数据与计算。但是,数据库一体机的卖家们通常会对其产品的硬件体系进行面向产品化的、系统性的整体调优,同时也会有各自的特色手段。比方说Oracle ExaData的Infiniband、Flash Cache,IBM Nettezza的FPGA(现场可编程逻辑门阵)等。[page] 数据库一体机与大数据技术最为核心的区别是在软件体系上。数据库一体机的核心是SQL体系,这不只是指SQL解析,更重要的是指包括SQL优化引擎、索引、锁、事务、日志、安全以及管理等在内的完整而庞大的技术体系。这一体系是成熟的、面向产品的。
大数据技术软件体系中的MapRece则提供了一个面向海量数据处理的分布式编程框架,使用者需要自行编制所需要的计算逻辑。MapRece对数据的读写是批量连续的,而不是随机的。而大数据技术的另一体系NoSQL则大都只是提供了海量数据的分布式存储,以及基于索引的快速读取机制,为使用者提供的大多是编程API(虽然也有类SQL的语言,但其本质并不是完整的SQL体系)。
由于SQL体系的复杂性与处理逻辑的整体关联性,导致数据库一体机在扩展性上远不及大数据技术体系,虽然前者已经在很大程度上改善了传统关系数据库垂直扩展的瓶颈。MapRece与NoSQL的单个集群往往可以扩展到数千个节点,而数据库一体机如果在硬件上扩展到这个规模,从软件上来讲,已经是没有意义的了。
特征与本质
基于软件体系的不同,导致了数据库一体机和大数据技术有着不同的特征表现。数据库一体机往往适合于存储关系复杂的数据模型(例如企业核心业务数据),并且需要限制为基于二维表的关系模型。同时,数据库一体机适合进行一致性与事务性要求高的计算,以及复杂的BI计算。
大数据技术则更适合于存储较简单的数据模型,并且可以不受模式的约束。因而其可存储管理的数据类型更加丰富。大数据技术还适合进行一致性与事务性要求不高的计算(主要是指NoSQL的查询操作),以及对超大规模海量数据的、批量的分布式并行计算(基于MapRece)。
需要注意的是,NoSQL数据库由于摆脱了繁琐的SQL体系约束,其查询与插入的效率比数据库一体机更高。大数据技术比数据库一体机所能处理的数据量也相对大些,这主要是因为其集群可以扩展得更大。
从本质上讲,MapRece是对海量数据分布式计算领域的一个重要创新,但也只是在适合于并行处理的大规模批量处理问题上更占优势,而对一些复杂操作,则不一定具有优势。NoSQL则可以看作是对传统关系数据库进行简化的结果。由于NoSQL数据库的设计思想只是提取出关系型数据库的索引机制,并加了上分布式存储,把SQL体系中那些对“某些特殊问题”而言并不需要的东西统统删去,由此实现了更优秀的效率、扩展性与灵活性。[page] 因此,我们可以明显地看到,在实践中,有很多问题(特别是流行的大数据问题),关系数据库中的许多设计并不需要,这才是NoSQL发展壮大的根本立足点。
关系与协作
通过前面的分析,我们不难得出这样的结论:大数据技术与数据库一体机应该是相辅相成,并非互相替代的。它们针对不同的应用场景设计,并相互补充与合作。具体来说,大数据技术可以实现:
■处理企业内海量的、模型简单、类型多样的非结构化与半结构化数据(例如社会化数据、各种日志甚至图片、视频等),其处理结果可以被直接使用;
■以上处理结果也同时可以被当成是新的输入存储到企业级数据仓库中,这时大数据机相当于是面向大数据源的、新的ETL(提取-转换-加载)手段;
■面向海量数据的、不太适合SQL的存储或计算。
而数据库一体机则应该还是作为企业数据仓库的主流技术,至少在很长一段时间内应该是这样。它负责存储与计算最主要的、有重大价值的企业关键业务数据。
现存的误区
有些人认为,虽然大数据技术的原始开源状态还不适合充当企业级数据仓库主平台的要求,但经过开发、补充,应该是可以的。其实这个观点没有错。但实际上,对开源的大数据技术进行补充开发,所要补充的正是大数据技术在原始设计上就去除了的、那些本属于关系型数据库体系的东西。
如果进行这样的补充开发,企业不仅会面临庞大的、难于估计的开发工作量,同时也难以像专业数据库厂商那样实现这些工作的理论化、产品化与体系化。虽然从纯技术的角度上讲,开发什么都有可能。但是如果企业真的准备这样做,是要开发另一个商业化的关系数据库吗?很明显,这违背了大数据技术的设计初衷。