导航:首页 > 网络数据 > 漫谈大数据的思想形成与价值维度

漫谈大数据的思想形成与价值维度

发布时间:2023-02-10 13:28:21

大数据思维的三个维度分别是什么

第一、描述思维


也就是要将一些的结构化的数据或者非结构化的数据都变为客观的标准,在大数据思维的过程中,涉及了很多人为的因素,这些也是可以进行数据分析的,举一个例子就是消费者行为的研究,消费者行为可以是定量的,也可以是不定量的,描述思维就要包含消费者行为的各个方面。这里举一个例子就是商场会对连入局域网的客户继续进行数据的采集,了解客户的消费情况以及分布的情况,消费者可以实现购物、用餐、休闲、娱乐一条龙的服务,并且也可以在很大的程度上提升用户的体验度。在一些大型的景区或者游乐场,大数据可以帮助景区进行更好的游客管理。


第二、相关性思维


就是对于数据之间相关性的研究,对于消费者行为或者用户行为的研究方面,这些行为在一定程度上,大大小小和其他不同的数据都是有内在的联系的,大数据分析的结果就可以更好的建立起数据预测的模型,可以用来预测消费者的偏好和行为,相关性的研究和纷纷也可以更好的支持预测思维。


第三、攻略思维


在大数据继续预测以及分析之后,企业可以根据大数据分析的结果进行营销策略的调整,这才是大数据营销的主要目的,从描述到预测,最后到攻略,这也是大数据思维的一个完整的过程。


关于大数据思维的三个维度分别是什么,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

㈡ 漫谈大数据的思想形成与价值维度

漫谈大数据的思想形成与价值维度

清华基于微博分析获得的大数据幸福指数发现人们周六最幸福,相信大家心情不错,因此今天不谈枯燥的技术。关于大数据的思维、理念、方法论已经被反复消费了,本来我想直接进入交互环节,继挺兄还是要求先有一部分规定动作,我就先自弹自唱几十分钟,既然是漫谈,也不见得扣题,说到哪里是哪里。各位有问题,我可以择时择机插入讨论。
先说大数据思想的形成吧。自从人类开始文字和数字,数据就开始产生。就数据增长曲线而言,极小的初值确实要经历漫长的过程达到人类能感知的曲线拐点。谷歌前CEO埃里克·施密特曾给出了一个有趣的数据:从人类文明曙光初现到2003年一共产生的数据,只相当于2010年两天产生的数据量。而一旦越过拐点,“大数据摩尔定律”的滚滚铁轮下,指数效应爆发:最近两年产生的数据量相当于之前产生的全部数据量。
在漫长的数据蓄水过程中,数学和统计学逐渐发展,人们开始注意对数据的量化分析,在人类进入信息时代以前这样的例子就不胜枚举。比如经济上,黄仁宇先生对宋朝经济的分析中发现了“数目字管理”(即定量分析)的广泛应用(可惜王安石变法有始无终)。又如军事,“向林彪学习数据挖掘”的桥段不论真假,其背后量化分析的思想无疑有其现实基础,而这一基础甚至可以回推到2000多年前,孙膑正是通过编造“十万灶减到五万灶再减到三万灶”的数据、利用庞涓的量化分析习惯对其进行诱杀。
到上世纪50-60年代,磁带取代穿孔卡片机,启动了数据存储的革命。磁盘驱动器随即发明,它带来的最大想象空间并不是容量,而是随机读写的能力,这一下子解放了数据工作者的思维模式,开始数据的非线性表达和管理。数据库应运而生,从层次型数据库(IBM为阿波罗登月设计的层次型数据库迄今仍在建行使用),到网状数据库,再到现在通用的关系数据库。与数据管理同时发源的是决策支持系统(DSS),80年代演变到商业智能(BI)和数据仓库,开辟了数据分析——也就是为数据赋予意义——的道路。
那个时代运用数据管理和分析最厉害的是商业。第一个数据仓库是为宝洁做的,第一个太字节的数据仓库是在沃尔玛。沃尔玛的典型应用是两个:一是基于retaillink的供应链优化,把数据与供应商共享,指导它们的产品设计、生产、定价、配送、营销等整个流程,同时供应商可以优化库存、及时补货;二是购物篮分析,也就是常说的啤酒加尿布。关于啤酒加尿布,几乎所有的营销书都言之凿凿,我告诉大家,是Teradata的一个经理编的,人类历史上从没有发生过,但是,先教育市场,再收获市场,它是有功的。
仅次于沃尔玛的乐购(Tesco),强在客户关系管理(CRM),细分客户群,分析其行为和意图,做精准营销。
这些都发生在90年代。00年代时,科研产生了大量的数据,如天文观测、粒子碰撞,数据库大拿吉姆·格雷等提出了第四范式,是数据方法论的一次提升。前三个范式是实验(伽利略从斜塔往下扔),理论(牛顿被苹果砸出灵感,形成经典物理学定律),模拟(粒子加速太贵,核试验太脏,于是乎用计算代替)。第四范式是数据探索。这其实也不是新鲜的,开普勒根据前人对行星位置的观测数据拟合出椭圆轨道,就是数据方法。但是到90年代的时候,科研数据实在太多了,数据探索成为显学。在现今的学科里,有一对孪生兄弟,计算XX学和XX信息学,前者是模拟/计算范式,后者是数据范式,如计算生物学和生物信息学。有时候计算XX学包含了数据范式,如计算社会学、计算广告学。
2008年克里斯·安德森(长尾理论的作者)在《连线》杂志写了一篇《理论的终结》,引起轩然大波。他主要的观点是有了数据,就不要模型了,或者很难获得具有可解释性的模型,那么模型所代表的理论也没有意义了。跟大家说一下数据、模型和理论。大家先看个粗糙的图。
首先,我们在观察客观世界中采集了三个点的数据,根据这些数据,可以对客观世界有个理论假设,用一个简化的模型来表示,比如说三角形。可以有更多的模型,如四边形,五边形。随着观察的深入,又采集了两个点,这时发现三角形、四边形的模型都是错的,于是确定模型为五边形,这个模型反映的世界就在那个五边形里,殊不知真正的时间是圆形。
大数据时代的问题是数据是如此的多、杂,已经无法用简单、可解释的模型来表达,这样,数据本身成了模型,严格地说,数据及应用数学(尤其是统计学)取代了理论。安德森用谷歌翻译的例子,统一的统计学模型取代了各种语言的理论/模型(如语法),能从英文翻译到法文,就能从瑞典文翻译到中文,只要有语料数据。谷歌甚至能翻译克莱贡语(StarTrek里编出来的语言)。安德森提出了要相关性不要因果性的问题,以后舍恩伯格(下面称之为老舍)只是拾人牙慧了。
当然,科学界不认同《理论的终结》,认为科学家的直觉、因果性、可解释性仍是人类获得突破的重要因素。有了数据,机器可以发现当前知识疆域里面隐藏的未知部分。而没有模型,知识疆域的上限就是机器线性增长的计算力,它不能扩展到新的空间。在人类历史上,每一次知识疆域的跨越式拓展都是由天才和他们的理论率先吹起的号角。
2010年左右,大数据的浪潮卷起,这些争论迅速被淹没了。看谷歌趋势,”bigdata”这个词就是那个时间一下子蹿升了起来。吹鼓手有几家,一家是IDC,每年给EMC做digitaluniverse的报告,上升到泽字节范畴(给大家个概念,现在硬盘是太字节,1000太=1拍,阿里、Facebook的数据是几百拍字节,1000拍=1艾,网络是个位数艾字节,谷歌是两位数艾字节,1000艾=1泽);一家是麦肯锡,发布《大数据:创新、竞争和生产力的下一个前沿》;一家是《经济学人》,其中的重要写手是跟老舍同著《大数据时代》的肯尼思?库克耶;还有一家是Gartner,杜撰了3V(大、杂、快),其实这3V在2001年就已经被编出来了,只不过在大数据语境里有了全新的诠释。
咱们国内,欢总、国栋总也是在2011年左右开始呼吁对大数据的重视。
2012年子沛的书《大数据》教育政府官员有功。老舍和库克耶的《大数据时代》提出了三大思维,现在已经被奉为圭臬,但千万别当作放之四海而皆准的真理了。
比如要数据全集不要采样。现实地讲,1.没有全集数据,数据都在孤岛里;2.全集太贵,鉴于大数据信息密度低,是贫矿,投入产出比不见得好;3.宏观分析中采样还是有用的,盖洛普用5000个样本胜过几百万调查的做法还是有实践意义;4.采样要有随机性、代表性,采访火车上的民工得出都买到票的结论不是好采样,现在只做固定电话采样调查也不行了(移动电话是大头),在国外基于Twitter采样也发现不完全具有代表性(老年人没被包括);5.采样的缺点是有百分之几的偏差,更会丢失黑天鹅的信号,因此在全集数据存在且可分析的前提下,全量是首选。全量>好的采样>不均匀的大量。
再说混杂性由于精确性。拥抱混杂性(这样一种客观现象)的态度是不错的,但不等于喜欢混杂性。数据清洗比以前更重要,数据失去辨识度、失去有效性,就该扔了。老舍引用谷歌PeterNovig的结论,少数高质量数据+复杂算法被大量低质量数据+简单算法打败,来证明这一思维。Peter的研究是Web文本分析,确实成立。但谷歌的深度学习已经证明这个不完全对,对于信息维度丰富的语音、图片数据,需要大量数据+复杂模型。
最后是要相关性不要因果性。对于大批量的小决策,相关性是有用的,如亚马逊的个性化推荐;而对于小批量的大决策,因果性依然重要。就如中药,只到达了相关性这一步,但它没有可解释性,无法得出是有些树皮和虫壳的因导致治愈的果。西药在发现相关性后,要做随机对照试验,把所有可能导致“治愈的果”的干扰因素排除,获得因果性和可解释性。在商业决策上也是一样,相关性只是开始,它取代了拍脑袋、直觉获得的假设,而后面验证因果性的过程仍然重要。
把大数据的一些分析结果落实在相关性上也是伦理的需要,动机不代表行为。预测性分析也一样,不然警察会预测人犯罪,保险公司会预测人生病,社会很麻烦。大数据算法极大影响了我们的生活,有时候会觉得挺悲哀的,是算法觉得了你贷不贷得到款,谷歌每调整一次算法,很多在线商业就会受到影响,因为被排到后面去了。
下面时间不多了,关于价值维度,我贴一些以前讲过的东西。大数据思想中很重要的一点是决策智能化之外,还有数据本身的价值化。这一点不赘述了,引用马云的话吧,“信息的出发点是我认为我比别人聪明,数据的出发点是认为别人比我聪明;信息是你拿到数据编辑以后给别人,而数据是你搜集数据以后交给比你更聪明的人去处理。”大数据能做什么?价值这个V怎么映射到其他3V和时空象限中?
再贴上解释。“见微”与“知著”在Volume的空间维度。小数据见微,作个人刻画,我曾用《一代宗师》中“见自己”形容之;大数据知著,反映自然和群体的特征和趋势,我以“见天地、见众生”比喻之。“著”推动“微”(如把人群细分为buckets),又拉动“微”(如推荐相似人群的偏好给个人)。“微”与“著”又反映了时间维度,数据刚产生时个人价值最大,随着时间decay最后退化为以集合价值为主。
“当下”和“皆明”在Velocity的时间维度。当下在时间原点,是闪念之间的实时智慧,结合过往(负轴)、预测未来(正轴),可以皆明,即获得perpetual智慧。《西游记》里形容真假孙悟空,一个是“知天时、通变化”,一个是“知前后、万物皆明”,正好对应。为达到皆明,需要全量分析、预测分析和处方式分析(prescriptiveanalytics,为让设定的未来发生,需要采取什么样的行动)。
“辨讹”和“晓意”在Variety的空间维度。基于大体量、多源异质的数据,辨讹过滤噪声、查漏补缺、去伪存真。晓意达到更高境界,从非结构数据中提取语义、使机器能够窥探人的思想境界、达到过去结构化数据分析不能达到之高度。
先看知著,对宏观现象规律的研究早已有之,大数据的知著有两个新特点,一是从采样到全量,比如央视去年“你幸福吗”的调查,是街头的采样,前不久《中国经济生活大调查》关于幸福城市排名的结论,是基于10万份问卷(17个问题)的采样,而清华行为与大数据实验室做的幸福指数(继挺兄、我、还有多位本群群友参与),是基于新浪微博数据的全集(托老王的福),这些数据是人们的自然表达(而不是面对问卷时的被动应对),同时又有上下文语境,因此更真实、也更有解释性。北上广不幸福,是因为空气还是房价或教育,在微博上更容易传播的积极情绪还是消极情绪,数据告诉你答案。《中国经济生活大调查》说“再小的声音我们都听得见”,是过头话,采样和传统的统计分析方法对数据分布采用一些简化的模型,这些模型把异常和长尾忽略了,全量的分析可以看到黑天鹅的身影,听到长尾的声音。
另一个特点是从定性到定量。计算社会学就是把定量分析应用到社会学,已经有一批数学家、物理学家成了经济学家、宽客,现在他们也可以选择成为社会学家。国泰君安3I指数也是一个例子,它通过几十万用户的数据,主要是反映投资活跃程度和投资收益水平的指标,建立一个量化模型来推知整体投资景气度。
再看见微,我认为大数据的真正差异化优势在微观。自然科学是先宏观、具体,进入到微观和抽象,这时大数据就很重要了。我们更关注社会科学,那是先微观、具体,再宏观、抽象,许小年索性认为宏观经济学是伪科学。如果市场是个体行为的总和,我们原来看到是一张抽象派的画,看不懂,通过客户细分慢慢可以形成一张大致看得懂的现实图景,不过是马赛克的,再通过微分、甚至定位个人,形成高清图。我们每一个人现在都生活在零售商的bucket中(前面说的乐购创造了这个概念),最简单的是高收入、低收入这类反映背景的,再有就是反映行为和生活方式的,如“精打细算”、“右键点击一族”(使用右键的比较techsavvy)。反过来我们消费者也希望能够获得个性化的尊崇,Nobodywantstobenobodytoday。
了解并掌握客户比以往任何时候都更重要。奥巴马赢在大数据上,就是因为他知道西岸40-49岁女性的男神是乔治·克鲁尼,东岸同样年龄段女性的偶像则是莎拉·杰西卡·帕克(《欲望都市》的主角),他还要更细分,摇摆州每一个郡每一个年龄段每一个时间段在看什么电视,摇摆州(俄亥俄)1%选民随时间变化的投票倾向,摇摆选民在Reddit上还是Facebook上,都在其掌握之中。
对于企业来说,要从以产品为中心,转到以客户(买单者)甚至用户(使用者)为中心,从关注用户背景到关注其行为、意图和意向,从关注交易形成转到关注每一个交互点/触点,用户是从什么路径发现我的产品的,决定之前又做了什么,买了以后又有什么反馈,是通过网页、还是QQ、微博或是微信
再讲第三个,当下。时间是金钱,股票交易就是快鱼吃慢鱼,用免费股票交易软件有几秒的延迟,而占美国交易量60-70%的高频程序化交易则要发现毫秒级、低至1美分的交易机会。时间又是生命,美国国家大气与海洋管理局的超级计算机在日本311地震后9分钟发出海啸预警,已经太晚。时间还是机会。现在所谓的购物篮分析用的其实并不是真正的购物篮,而是结帐完的小票,真正有价值的是当顾客还拎着购物篮,在浏览、试用、选择商品的时候,在每一个触点影响他/她的选择。数据价值具有半衰期,最新鲜的时候个性化价值最大,渐渐退化到只有集合价值。当下的智慧是从刻舟求剑到见时知几,原来10年一次的人口普查就是刻舟求剑,而现在东莞一出事网络迁徙图就反映出来了。当然,当下并不一定是完全准确的,其实如果没有更多、更久的数据,匆忙对网络迁徙图解读是可能陷入误区的。
第四个,皆明。时间有限,就简单说了。就是从放马后炮到料事如神(predictiveanalytics),从料事如神到运筹帷幄(prescriptiveanalytics),只知道有东风是预测分析,确定要借箭的目标、并给出处方利用草船来借,就是处方性分析。我们现在要提高响应度、降低流失率、吸引新客户,需要处方性分析。
辨讹就是利用多源数据过滤噪声、查漏补缺和去伪存真。20多个省市的GDP之和超过全国的GDP就是一个例子,我们的GPS有几十米的误差,但与地图数据结合就能做到精确,GPS在城市的高楼中没有信号,可以与惯性导航结合。
晓意涉及到大数据下的机器智能,是个大问题,也不展开了。贴一段我的文章:有人说在涉及“晓意”的领域人是无法替代的。这在前大数据时代是事实。《点球成金(Moneyball)》讲的是数量化分析和预测对棒球运动的贡献,它在大数据背景下出现了传播的误区:一、它其实不是大数据,而是早已存在的数据思维和方法;二、它刻意或无意忽略了球探的作用。从读者看来,奥克兰竞技队的总经理比利·比恩用数量化分析取代了球探。而事实是,在运用数量化工具的同时,比恩也增加了球探的费用,军功章里有机器的一半,也有人的一半,因为球探对运动员定性指标(如竞争性、抗压力、意志力等)的衡量是少数结构化量化指标无法刻画的。大数据改变了这一切。人的数字足迹的无意识记录,以及机器学习(尤其是深度学习)晓意能力的增强,可能逐渐改变机器的劣势。今年我们看到基于大数据的情感分析、价值观分析和个人刻画,当这些应用于人力资源,已经或多或少体现了球探承担的作用。

以上是小编为大家分享的关于漫谈大数据的思想形成与价值维度的相关内容,更多信息可以关注环球青藤分享更多干货

㈢ DT时代,大数据的基本思维主要体现在哪几个方面

1 大数据思维的整体性
随着科技的不断创新,进入大数据时代的同时必然带动着大数据思维由一元思维升级至二元思维,目前根据人类思维的转变模式进行分析,其依然进行至多元思维状态,即追求和谐稳定社会的模式,但是研究大数据思维的发展进程发现,大数据的二元思维模式是一种高效率并适合现今社会发展的思维模式,其追求效率性、相关性、概率性,为创新发展提高了效率。根据当下社会的需求及其社会的快节奏发展,大数据思维已然在各领域发展处于主导地位,由其基本特征层面分析,大数据思维主要特征为整体性,整体性的理论基础在于人类认识世界的能力在自然观中的不断变革而体现,现今社会通过人类对于整体数据的整合及分析能力进行体现,大数据时代,整体性大数据思维模式成为解决问题的首选为必然趋势及结果,其原因在于整体性思维模式能够更加高效的完成复杂的数据统计及分析。以我国人口普查为例,我国近三次人口普查时间间隔为十年,而面对我国庞大的人口数量,大数据思维在数据统计中占领了绝对优势,据悉我国人口普查总投入超过六亿元人民币,以2010年进行的人口普查数据分析,我国耗费了巨大的人力财力以及时间,倘若运用大数据进行人口普查,以其优势进行仅使用百分之一的抽样调查进行数据分析,将大大减少人口普查为政府带来的难题。
2 大数据思维的互联性
“一切皆可量化。”道格拉斯。相对微观层面分析大数据思维特征,较为典型的为切合现今社会及科技发展的量化互联思维,量化为具体或明确目标的一种表述,而互联代表着两种事物间的连接,其作为大数据思维微观层面的一种表达方式,更加说明大数据思维的重要性,知名投资人孙正义对于大数据时代的发展提出:“要么数字化,要么死亡。”直接地表达出大数据思维目前所处的地位,研究发现,数字信息成为时代发展的代表已成为必然趋势,而量化思维为数字化特征带来的必然思维结果,换言之,量化可以解释为共性语言描述和解释世界的一种方式,其体现在于充分运用最新技术手段,对于各个领域进行信息全面定量采集以及信息互通,打通信息间隔阂,并进行全新的信息整合,实现分析实用性及数据科学性,创造更据价值的数据应用和信息资产。目前,大数据的运用不仅体现在网络平台当中,同时在人们的细微生活中、就业环境以及生态保护范围内都做到了广泛适用,gartner公司于2015年运用大数据分析出当下及未来人们就业环境,其调查结果表明,2015年全球范围内数据岗位的需求量高达440万,而2018年全球范围内仅大数据就业背景管理人员的缺乏将高达150万人,案例表明,全球范围的人才紧缺将成为必然趋势并不断增加,该案列清晰的体现出大数据环境下大数据思维的量化互联性,并且为未来就业环境做出了精准的预测。
3 大数据思维的价值性
由大数据思维的本质进行分析,大数据思维具有价值化特征,大数据时代信息的不断整合及分析已然使得信息及数据量化及互联转变为多维度的发展状态,换言之,大数据思维渗透至各个领域及行业的不同维度是大数据发展的初始动机和直接目的,现今社会看待其价值化特征将其价值性总结为大数据思维的本质,同时,万物的量化互联性及其整体性使得其价值性影响了多维度的发展,由此凸显了数据及大数据思维的创造性及重要性。通过对于事实的研究证明,大数据时代背景下,其价值化特征及其价值性的意义正在不断演进并处于不断被挖掘的状态,各个领域大数据思维模式相继被接受和适用也是大数据发展带来的益处之一,随着大数据思维的不断开发和研究,其运用不仅在处理数据分析上实行了高效率,也对于事件及数据的预测上实现了精准并具有概率性的分析结果,google公司于2008年运用大数据思维对于流感爆发地点及人数进行准确预测的经典案列分析,大数据思维对于社会发展体现出其必要的价值性,并且改变了社会对于大数据的看法,可谓大数据的运用成功到达了一个全新的高度,Google公司通过对于数十亿网络搜索请求的数据整合,对世界各地区的流感做出预测,该项目的成功引起了各国对于大数据的使用,同时带动了人们的大数据思维及思考模式,将大数据思维上升至被社会认可的高度。
根据现今社会发展现状分析,客观角度说明我国以基本进入大数据时代,大数据思维的特征已然体现在社会各领域当中,并且伴随着多维度的运用,因此大数据思维全面运用指日可待,高级思维带动我国科技及经济的发展势在必行。随着人工智能的不断推出以及数据分析的不断升级,并且基于大数据思维为社会带来的发展前景研究,大数据思维引领我国科技发展已成为未来的必然趋势。

㈣ 大数据定义、思维方式及架构模式

大数据定义、思维方式及架构模式
一、大数据何以为大
数据现在是个热点词汇,关于有了大数据,如何发挥大数据的价值,议论纷纷,而笔者以为,似乎这有点搞错了原因与结果,就象关联关系,有A的时候,B与之关联,而有B的时候,A却未必关联,笔者还是从通常的4个V来描述一下我所认为的大数据思维。
1、大数据的量,数据量足够大,达到了统计性意义,才有价值。笔者看过的一个典型的案例就是,例如传统的,收集几千条数据,很难发现血缘关系对遗传病的影响,而一旦达到2万条以上,那么发现这种影响就会非常明显。那么对于我们在收集问题时,是为了发现隐藏的知识去收集数据,还是不管有没有价值地收集,这还是值得商榷的。其实收集数据,对于数据本身,还是可以划分出一些标准,确立出层级,结合需求、目标来收集,当然有人会说,这样的话,将会导致巨大的偏差,例如说丧失了数据的完整性,有一定的主观偏向,但是笔者以为,这样至少可以让收集到的数据的价值相对较高。
2、大数据的种类,也可以说成数据的维度,对于一个对象,采取标签化的方式,进行标记,针对需求进行种类的扩充,和数据的量一样,笔者认为同样是建议根据需求来确立,但是对于标签,有一个通常采取的策略,那就是推荐标签和自定义标签的问题,分类法其实是人类文明的一大创举,采取推荐标签的方式,可以大幅度降低标签的总量,而减少后期的规约工作,数据收集时扩充量、扩充维度,但是在数据进入应用状态时,我们是希望处理的是小数据、少维度,而通过这种推荐、可选择的方式,可以在标准化基础上的自定义,而不是毫无规则的扩展,甚至用户的自定义标签给予一定的限制,这样可以使维度的价值更为显现。
3、关于时效性,现在进入了读秒时代,那么在很短的时间进行问题分析、关联推荐、决策等等,需要的数据量和数据种类相比以前,往往更多,换个说法,因为现在时效性要求高了,所以处理数据的方式变了,以前可能多人处理,多次处理,现在必须变得单人处理、单次处理,那么相应的信息系统、工作方式、甚至企业的组织模式,管理绩效都需要改变,例如笔者曾经工作的企业,上了ERP系统,设计师意见很大,说一个典型案例,以往发一张变更单,发出去工作结束,而上了ERP系统以后,就必须为这张变更单设定物料代码,设置需要查询物料的存储,而这些是以前设计师不管的,又没有为设计师为这些增加的工作支付奖励,甚至因为物料的缺少而导致变更单不能发出,以至于设计师工作没有完成,导致被处罚。但是我们从把工作一次就做完,提升企业的工作效率角度,这样的设计变更与物料集成的方式显然是必须的。那么作为一个工作人员,如何让自己的工作更全面,更完整,避免王府,让整个企业工作更具有时间的竞争力,提高数据的数量、种类、处理能力是必须的。
4、关于大数据价值,一种说法是大数据有大价值,还有一种是相对于以往的结构化数据、少量数据,现在是大数据了,所以大数据的单位价值下降。笔者以为这两种说法都正确,这是一个从总体价值来看,一个从单元数据价值来看的问题。而笔者提出一个新的关于大数据价值的观点,那就是真正发挥大数据的价值的另外一个思路。这个思路就是针对企业的问题,首先要说什么是问题,笔者说的问题不是一般意义上的问题,因为一说问题,大家都以为不好、错误等等,而笔者的问题的定义是指状态与其期望状态的差异,包括三种模式,
1)通常意义的问题,例如失火了,必须立即扑救,其实这是三种模式中最少的一种;
2)希望保持状态,
3)期望的状态,这是比原来的状态高一个层级的。
我们针对问题,提出一系列解决方案,这些解决方案往往有多种,例如员工的培训,例如设备的改进,例如组织的方式的变化,当然解决方案包括信息化手段、大数据手段,我们一样需要权衡大数据的方法是不是一种相对较优的方法,如果是,那么用这种手段去解决,那么也就是有价值了。例如笔者知道的一个案例,一个企业某产品部件偶尔会出现问题,企业经历数次后决定针对设备上了一套工控系统,记录材料的温度,结果又一次出现问题时,进行分析认为,如果工人正常上班操作,不应该有这样的数据记录,而经过与值班工人的质询,值班工人承认其上晚班时睡觉,没有及时处理。再往后,同样的问题再没有再次发生。
总结起来,笔者以为大数据思维的核心还是要落实到价值上,面向问题,收集足够量的数据,足够维度的数据,达到具有统计学意义,也可以满足企业生产、客户需求、甚至竞争的时效要求,而不是一味为了大数据而大数据,这样才是一种务实、有效的正确思维方式,是一线大数据的有效的项目推进方式,在这样的思维模式基础上,采取滚雪球方式,把大数据逐步展开,才真正赢来大数据百花齐放的春天。
二、大数据思维方式
大数据研究专家舍恩伯格指出,大数据时代,人们对待数据的思维方式会发生如下三个变化:
1)人们处理的数据从样本数据变成全部数据;
2)由于是全样本数据,人们不得不接受数据的混杂性,而放弃对精确性的追求;
3)人类通过对大数据的处理,放弃对因果关系的渴求,转而关注相关关系。
事实上,大数据时代带给人们的思维方式的深刻转变远不止上述三个方面。笔者认为,大数据思维最关键的转变在于从自然思维转向智能思维,使得大数据像具有生命力一样,获得类似于“人脑”的智能,甚至智慧。
1、总体思维
社会科学研究社会现象的总体特征,以往采样一直是主要数据获取手段,这是人类在无法获得总体数据信息条件下的无奈选择。在大数据时代,人们可以获得与分析更多的数据,甚至是与之相关的所有数据,而不再依赖于采样,从而可以带来更全面的认识,可以更清楚地发现样本无法揭示的细节信息。
正如舍恩伯格总结道:“我们总是习惯把统计抽样看作文明得以建立的牢固基石,就如同几何学定理和万有引力定律一样。但是,统计抽样其实只是为了在技术受限的特定时期,解决当时存在的一些特定问题而产生的,其历史不足一百年。如今,技术环境已经有了很大的改善。在大数据时代进行抽样分析就像是在汽车时代骑马一样。
在某些特定的情况下,我们依然可以使用样本分析法,但这不再是我们分析数据的主要方式。”也就是说,在大数据时代,随着数据收集、存储、分析技术的突破性发展,我们可以更加方便、快捷、动态地获得研究对象有关的所有数据,而不再因诸多限制不得不采用样本研究方法,相应地,思维方式也应该从样本思维转向总体思维,从而能够更加全面、立体、系统地认识总体状况。
2、容错思维
在小数据时代,由于收集的样本信息量比较少,所以必须确保记录下来的数据尽量结构化、精确化,否则,分析得出的结论在推及总体上就会“南辕北辙”,因此,就必须十分注重精确思维。然而,在大数据时代,得益于大数据技术的突破,大量的非结构化、异构化的数据能够得到储存和分析,这一方面提升了我们从数据中获取知识和洞见的能力,另一方面也对传统的精确思维造成了挑战。
舍恩伯格指出,“执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户”。也就是说,在大数据时代,思维方式要从精确思维转向容错思维,当拥有海量即时数据时,绝对的精准不再是追求的主要目标,适当忽略微观层面上的精确度,容许一定程度的错误与混杂,反而可以在宏观层面拥有更好的知识和洞察力。
3、相关思维
在小数据世界中,人们往往执着于现象背后的因果关系,试图通过有限样本数据来剖析其中的内在机理。小数据的另一个缺陷就是有限的样本数据无法反映出事物之间的普遍性的相关关系。而在大数据时代,人们可以通过大数据技术挖掘出事物之间隐蔽的相关关系,获得更多的认知与洞见,运用这些认知与洞见就可以帮助我们捕捉现在和预测未来,而建立在相关关系分析基础上的预测正是大数据的核心议题。
通过关注线性的相关关系,以及复杂的非线性相关关系,可以帮助人们看到很多以前不曾注意的联系,还可以掌握以前无法理解的复杂技术和社会动态,相关关系甚至可以超越因果关系,成为我们了解这个世界的更好视角。舍恩伯格指出,大数据的出现让人们放弃了对因果关系的渴求,转而关注相关关系,人们只需知道“是什么”,而不用知道“为什么”。我们不必非得知道事物或现象背后的复杂深层原因,而只需要通过大数据分析获知“是什么”就意义非凡,这会给我们提供非常新颖且有价值的观点、信息和知识。也就是说,在大数据时代,思维方式要从因果思维转向相关思维,努力颠覆千百年来人类形成的传统思维模式和固有偏见,才能更好地分享大数据带来的深刻洞见。
4、智能思维
不断提高机器的自动化、智能化水平始终是人类社会长期不懈努力的方向。计算机的出现极大地推动了自动控制、人工智能和机器学习等新技术的发展,“机器人”研发也取得了突飞猛进的成果并开始一定应用。应该说,自进入到信息社会以来,人类社会的自动化、智能化水平已得到明显提升,但始终面临瓶颈而无法取得突破性进展,机器的思维方式仍属于线性、简单、物理的自然思维,智能水平仍不尽如人意。
但是,大数据时代的到来,可以为提升机器智能带来契机,因为大数据将有效推进机器思维方式由自然思维转向智能思维,这才是大数据思维转变的关键所在、核心内容。众所周知,人脑之所以具有智能、智慧,就在于它能够对周遭的数据信息进行全面收集、逻辑判断和归纳总结,获得有关事物或现象的认识与见解。同样,在大数据时代,随着物联网、云计算、社会计算、可视技术等的突破发展,大数据系统也能够自动地搜索所有相关的数据信息,并进而类似“人脑”一样主动、立体、逻辑地分析数据、做出判断、提供洞见,那么,无疑也就具有了类似人类的智能思维能力和预测未来的能力。
“智能、智慧”是大数据时代的显著特征,大数据时代的思维方式也要求从自然思维转向智能思维,不断提升机器或系统的社会计算能力和智能化水平,从而获得具有洞察力和新价值的东西,甚至类似于人类的“智慧”。
舍恩伯格指出,“大数据开启了一个重大的时代转型。就像望远镜让我们感受宇宙,显微镜让我们能够观测到微生物一样,大数据正在改变我们的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发”。
大数据时代将带来深刻的思维转变,大数据不仅将改变每个人的日常生活和工作方式,改变商业组织和社会组织的运行方式,而且将从根本上奠定国家和社会治理的基础数据,彻底改变长期以来国家与社会诸多领域存在的“不可治理”状况,使得国家和社会治理更加透明、有效和智慧。

㈤ 谈谈对大数据的理解和认识!

随着大数据的概念提出,越来越多的人,开始关注数据,注重数据带来的巨大的价值。大家谈论的也都是与大数据相关的专业话题了,无论是商业BI,还是阿里云。都是越来越多的行业内部人员乃至关注大数据的看客的讨论热点了。

大数据的鼻祖又是什么呢?

大数据现实体现最初是人口普查,最早是在美国,10年为一个周期做一次人口普查工作,第一次,在1880年用了8年做完,到1890年,人口继续增长,经过科学的预测,如果还是按照老方法去做,需用13年做完,这显然跟不上时代的要求。所以人们开始从记录,采集,整理,分析等多个领域寻求加快数据分析的速度,大数据的概念也慢慢被提出。

大数据在我们现在生活有哪些体现?

现如今,大数据体现最多的可能是社交网络之中了比如:facebook,微信等网络社交平台。其中也不乏实际应用的例子。

微信几乎每个人都有,但微信的朋友圈可以向定向的人群发送指定的广告,还可以选择地区,可以选择性别,年纪分类,教育程度分类,给所有用户进行初步分类之后,再是根据你朋友圈的发文或者交流信息进行提取分析,进一步给每个客户贴上独特的标签,最后把相关信息给到销售部门,进行精准营销。

如今还有绝大多数的公司对于大数据渴望又不知道如何下手,其中大致包括两个方面。

1、想做数据分析,但是之前没有相关的数据意识,基础数据丢失或从未搜集,或者数据孤岛严重,行业数据相对独立而难以共享。

2、数据产生的体量大,维度高,提取难度大。例如某个知名商业银行的信用卡部门,每天收集大量的个人客户的多维度信息,面对大量信心无法价值化,因为涉及个人隐私和安全,数据不可买卖,又不知道如何内部进行分析促进其他相关业务增长。

此外,在整个企业的运作过程还可以分为交易数据和交互数据。

农夫山泉,几年前销量并不如今,当时他们基本上只掌握了大量的交易的数据,通过分析得出,农夫山泉的利润始终上不来,是因为运输成本很高,如何降低运输成本成为问题的关键点,交互数据的需求成为至关重要的一环,所以决定,每个采集人员每天到10至20个销售点,取收集大量的交互数据,其中包括水的位置,排列形状,天气,优惠活动,市场反馈等一系列交互数据,一个月一个人收集的信息量大约3个TB,继而委托sap公司进行分析开发出物流成本控制处理系统,从而进行运输预测,运输安排和中转站的一系列重新部署,最终直接降低运输成本,提高了运输效果,终于坐到饮用水市场第一的位置。

通过今天的介绍,希望给大家一些对于大数据的基本认识,也希望大家一同关注大数据发展,共同分享大数据带来的惊喜。如果您还存在疑惑或是想要了解更多,欢迎关注西线学院。

㈥ 大数据开发的四个维度

数量:数据量



数量也许是与大数据最相关的特征,指企业为了改进企业中的决策而试图利用的大量数据。数据量持续以前所未有的速度增加。然而,真正造成数据量“巨大”的原因在不同和行业和地区各有不同,而且没有达到通常引用的PB级(petabyte)和ZB级(zetabyte)。超过一半的受访者认为数据量达到Terabyte和Petabyte之间才称为大数据,而30%的受访者不知道“大”对于其组织应该有多大。所有受访者都同意,当前被认为“巨大的数量”在将来甚至会更大。



多样性:不同类型的数据和数据源



多样性是指管理多种数据类型的复杂性,包括结构化、半结构化和非结构化数据。企业需要整合并分析来自复杂的传统和非传统信息源的数据,包括企业内部和外部的数据。随着传感器、智能设备和社会协同技术的爆炸性增长,数据的类型无以计数,包括:文本、微博、传感器数据、音频、视频、点击流、日志文件等。



速度:数据在运动中



数据创建、处理和分析的速度持续在加快。加速的原因是数据创建的实时性天性,以及需要将流数据结合到业务流程和决策过程中的要求。速度影响数据时延 – 从数据创建或获取到数据可以访问的时间差。目前,数据以传统系统不可能达到的速度在产生、获取、存储和分析。对于对时间敏感的流程,例如实时欺诈监测或多渠道“即时”营销,某些类型的数据必须实时地分析,以对业务产生价值。



精确性:数据不确定性



精确性指与某些数据类型相关的可靠性。追求高数据质量是一项重要的大数据挑战,但是,即使最优秀的数据清理方法也无法消除某些数据固有的不可预测性,例如天气、经济或者客户最终的购买决定。不确定性的确认和规划的需求是大数据的一个维度,这是随着高管需要更好地了解围绕他们身边的不确定性而引入的维度。



关于大数据开发的四个维度,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。


以上是小编为大家分享的关于大数据开发的四个维度的相关内容,更多信息可以关注环球青藤分享更多干货

㈦ 大数据的七大核心价值

大数据的七大核心价值

随着移动互联网的飞速发展,信息的传输日益方便快捷,端到端的需求也日益突出,纵观整个移动互联网领域,数据已被认为是继云计算、物联网之后的又一大颠覆性的技术性革命,毋庸置疑,大数据市场是待挖掘的金矿,其价值不言而喻。可以说谁能掌握和合理运用用户大数据的核心资源,谁就能在接下来的技术变革中进一步发展壮大。

大数据,可以说是史上第一次将各行各业的用户、方案提供商、服务商、运营商以及整个生态链上游厂商,融入到一个大的环境中,无论是企业级市场还是消费级市场,亦或政府公共服务,都正或将要与大数据发生千丝万缕的联系。

近期有不少文章畅谈大数据的价值,以及其价值主要凸显在哪些方面,这里我们对大数据的核心具体价值进行了分门别类的梳理汇总,希望能帮助读者更好的获悉大数据的大价值。

核心价值究其用户到底是谁?

谈及价值,首先必须要弄清楚其用户到底是谁?有针对企业数据市场的,还有针对终端消费者的,还有针对政府公共服务的;其次要弄清楚大数据核心价值的表现形式、价值的体现过程以及最后呈现的结果。

商业的发展天生就依赖于大量的数据分析来做决策,对于企业用户,更关心的还是决策需求,其实早在BI时代这就被推上了日程,经过十余年的探索,如今已形成了数据管理、数据可视化等细分领域,来加强对决策者的影响,达到决策支持的效果。还有企业营销需求,从本质上来说,主要聚焦在针对消费者市场的精准营销。

对于消费者用户,他们对大数据的需求主要体现在信息能按需搜索,并能提供友好、可信的信息推荐,其次是提供高阶服务,例如智能信息的提供、用户体验更快捷等等。

还有,大数据也不断被应用到政府日常管理和为民服务中,并成为推动政府政务公开、完善服务、依法行政的重要力量。从户籍制度改革,到不动产登记制度改革,再到征信体系建设等等都对数据库建设提出了更高的目标要求,而此时的数据库更是以大数据为基础的,可见,大数据已成为政府改革和转型的技术支撑杠杆。

数据,除了它第一次被使用时提供的价值以外,那些积累下来的数据海洋并不是无用的废物,它还有着无穷无尽的“剩余价值”,关于这一点,人们已经有了越来越多的认识。事实上,大数据已经开始并将继续影响我们的生活,接下来让我们共同探索大数据的核心价值吧!当然这是需要借助于一些具体的应用模式和场景才能得到集中体现的。

《大数据时代》一书作者维克托认为大数据时代有三大转变:“第一,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不是依赖于随机采样。更高的精确性可使我们发现更多的细节。第二,研究数据如此之多,以至于我们不再热衷于追求精确度。适当忽略微观层面的精确度,将带来更好的洞察力和更大的商业利益。第三,不再热衷于寻找因果关系,而是事物之间的相关关系。例如,不去探究机票价格变动的原因,但是关注买机票的最佳时机。”大数据打破了企业传统数据的边界,改变了过去商业智能仅仅依靠企业内部业务数据的局面,而大数据则使数据来源更加多样化,不仅包括企业内部数据,也包括企业外部数据,尤其是和消费者相关的数据。

随着大数据的发展,企业也越来越重视数据相关的开发和应用,从而获取更多的市场机会。

一方面,大数据能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。

一、大数据助企业挖掘市场机会探寻细分市场

大数据能够帮助企业分析大量数据而进一步挖掘市场机会和细分市场,然后对每个群体量体裁衣般的采取独特的行动。获得好的产品概念和创意,关键在于我们到底如何去搜集消费者相关的信息,如何获得趋势,挖掘出人们头脑中未来会可能消费的产品概念。用创新的方法解构消费者的生活方式,剖析消费者的生活密码,才能让吻合消费者未来生活方式的产品研发不再成为问题,如果你了解了消费者的密码,就知道其潜藏在背后的真正需求。大数据分析是发现新客户群体、确定最优供应商、创新产品、理解销售季节性等问题的最好方法。

在数字革命的背景下,对企业营销者的挑战是从如何找到企业产品需求的人到如何找到这些人在不同时间和空间中的需求;从过去以单一或分散的方式去形成和这群人的沟通信息和沟通方式,到现在如何和这群人即时沟通、即时响应、即时解决他们的需求,同时在产品和消费者的买卖关系以外,建立更深层次的伙伴间的互信、双赢和可信赖的关系。

大数据进行高密度分析,能够明显提升企业数据的准确性和及时性;大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平。因此,大数据有利于企业发掘和开拓新的市场机会;有利于企业将各种资源合理利用到目标市场;有利于制定精准的经销策略;有利于调整市场的营销策略,大大降低企业经营的风险。

企业利用用户在互联网上的访问行为偏好能为每个用户勾勒出一副“数字剪影”,为具有相似特征的用户组提供精确服务满足用户需求,甚至为每个客户量身定制。这一变革将大大缩减企业产品与最终用户的沟通成本。例如:一家航空公司对从未乘过飞机的人很感兴趣(细分标准是顾客的体验)。而从未乘过飞机的人又可以细分为害怕飞机的人,对乘飞机无所谓的人以及对乘飞机持肯定态度的人(细分标准是态度)。在持肯定态度的人中,又包括高收入有能力乘飞机的人(细分标准是收入能力)。于是这家航空公司就把力量集中在开拓那些对乘飞机持肯定态度,只是还没有乘过飞机的高收入群体。通过对这些人进行量身定制、精准营销取得了很好的效果。

二、大数据提高决策能力

当前,企业管理者还是更多依赖个人经验和直觉做决策,而不是基于数据。在信息有限、获取成本高昂,而且没有被数字化的时代,让身居高位的人做决策是情有可原的,但是大数据时代,就必须要让数据说话。

大数据能够有效的帮助各个行业用户做出更为准确的商业决策,从而实现更大的商业价值,它从诞生开始就是站在决策的角度出发。虽然不同行业的业务不同,所产生的数据及其所支撑的管理形态也千差万别,但从数据的获取,数据的整合,数据的加工,数据的综合应用,数据的服务和推广,数据处理的生命线流程来分析,所有行业的模式是一致的。

这种基于大数据决策的特点是:一是量变到质变,由于数据被广泛挖掘,决策所依据的信息完整性越来越高,有信息的理性决策在迅速扩大,拍脑袋的盲目决策在急剧缩小。二是决策技术含量、知识含量大幅度提高。由于云计算出现,人类没有被海量数据所淹没,能够高效率驾御海量数据,生产有价值的决策信息。三是大数据决策催生了很多过去难以想象的重大解决方案。如某些药物的疗效和毒副作用,无法通过技术和简单样本验证,需要几十年海量病历数据分析得出结果;做宏观经济计量模型,需要获得所有企业、居民以及政府的决策和行为海量数据,才能得出减税政策最佳方案;反腐倡廉,人类几千年历史都没解决,最近通过微博和人肉搜索,贪官在大数据的海洋中无处可藏,人们看到根治的希望等等。

如果在不同行业的业务和管理层之间,增加数据资源体系,通过数据资源体系的数据加工,把今天的数据和历史数据对接,把现在的数据和领导和企业机构关心的指标关联起来,把面向业务的数据转换成面向管理的数据,辅助于领导层的决策,真正实现了从数据到知识的转变,这样的数据资源体系是非常适合管理和决策使用的。

在宏观层面,大数据使经济决策部门可以更敏锐地把握经济走向,制定并实施科学的经济政策;而在微观方面,大数据可以提高企业经营决策水平和效率,推动创新,给企业、行业领域带来价值。

三、大数据创新企业管理模式,挖掘管理潜力

当下,有多少企业还会要求员工像士兵一样无条件服从上级的指示?还在通过大量的中层管理者来承担管理下属和传递信息的职责?还在禁止员工之间谈论薪酬等信息?《华尔街日报》曾有一篇文章就说,NO。这一切已经过时了,严格控制,内部猜测和小道消息无疑更会降低企业效率。一个管理学者曾经将企业内部关系比喻为成本和消耗中心,如果内部都难以协作或者有效降低管理成本和消耗,你又如何指望在今天瞬息万变的市场和竞争环境下生存、创新和发展呢?

我们试着想想,当购物、教育、医疗都已经要求在大数据、移动网络支持下的个性化的时代,创新已经成为企业的生命之源,我们还有什么理由还要求企业员工遵循工业时代的规则,强调那种命令式集中管理、封闭的层级体系和决策体制吗?当个体的人都可以通过佩戴各种传感器,搜集各种来自身体的信号来判断健康状态,那样企业也同样需要配备这样的传感系统,来实时判断其健康状态的变化情况。

今天信息时代机器的性能,更多决定于芯片,大脑的存储和处理能力,程序的有效性。因而管理从注重系统大小、完善和配合,到注重人,或者脑力的运用,信息流程和创造性,以及职工个性满足、创造力的激发。

在企业管理的核心因素中,大数据技术与其高度契合。管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以标称大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。

大数据时代,数据在各行各业渗透着,并渐渐成为企业的战略资产。数据分析挖掘不仅本身能帮企业降低成本:比如库存或物流,改善产品和决策流程,寻找到并更好的维护客户,还可以通过挖掘业务流程各环节的中间数据和结果数据,发现流程中的瓶颈因素,找到改善流程效率,降低成本的关键点,从而优化流程,提高服务水平。大数据成果在各相关部门传递分享,还可以提高整个管理链条和产业链条的投入回报率。

四、大数据变革商业模式催生产品和服务的创新

在大数据时代,以利用数据价值为核心,新型商业模式正在不断涌现。能够把握市场机遇、迅速实现大数据商业模式创新的企业,将在IT发展史上书写出新的传奇。

大数据让企业能够创造新产品和服务,改善现有产品和服务,以及发明全新的业务模式。回顾IT历史,似乎每一轮IT概念和技术的变革,都伴随着新商业模式的产生。如个人电脑时代微软凭借操作系统获取了巨大财富,互联网时代谷歌抓住了互联网广告的机遇,移动互联网时代苹果则通过终端产品的销售和应用商店获取了高额利润。

纵观国内,以金融业务模式为例,阿里金融基于海量的客户信用数据和行为数据,建立了网络数据模型和一套信用体系,打破了传统的金融模式,使贷款不再需要抵押品和担保,而仅依赖于数据,使企业能够迅速获得所需要的资金。阿里金融的大数据应用和业务创新,变革了传统的商业模式,对传统银行业带来了挑战。

还有,大数据技术可以有效的帮助企业整合、挖掘、分析其所掌握的庞大数据信息,构建系统化的数据体系,从而完善企业自身的结构和管理机制;同时,伴随消费者个性化需求的增长,大数据在各个领域的应用开始逐步显现,已经开始并正在改变着大多数企业的发展途径及商业模式。如大数据可以完善基于柔性制造技术的个性化定制生产路径,推动制造业企业的升级改造;依托大数据技术可以建立现代物流体系,其效率远超传统物流企业;利用大数据技术可多维度评价企业信用,提高金融业资金使用率,改变传统金融企业的运营模式等。

过去,小企业想把商品卖到国外要经过国内出口商、国外进口商、批发商、商场,最终才能到达用户手中,而现在,通过大数据平台可以直接从工厂送达到用户手中,交易成本只是过去的十分之一。以我们熟悉的网购平台淘宝为例,每天有数以万计的交易在淘宝上进行,与此同时相应的交易时间、商品价格、购买数量会被记录,更重要的是,这些信息可以与买方和卖方的年龄、性别、地址、甚至兴趣爱好等个人特征信息相匹配。运用匹配的数据,淘宝可以进行更优化的店铺排名和用户推荐;商家可以根据以往的销售信息和淘宝指数进行指导产品供应、生产和设计,经营活动成本和收益实现了可视化,大大降低了风险,赚取更多的钱;而与此同时,更多的消费者也能以更优惠的价格买到了更心仪的产品。

维克托曾预言2020年,大数据时代就会真正来临。在那个时候,最经常会用到的应用就是个性化生活所需要的,尤其是智能手机的应用。

五、大数据让每个人更加有个性

对个体而言,大数据可以为个人提供个性化的医疗服务。比如,我们的身体功能可能会通过手机、移动网络进行监控,一旦有什么感染,或身体有什么不适,我们都可以通过手机得到警示,接着信息会和手机库进行对接或者咨询相关专家,从而获得正确的用药和其他治疗。

过去我们去看病,医生只能对我们的当下身体情况做出判断,而在大数据的帮助下,将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。还可以在患者发生疾病症状前,提供早期的检测和诊断。早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。

还有,在传统的教育模式下,分数就是一切,一个班上几十个人,使用同样的教材,同一个老师上课,课后布置同样的作业。然而,学生是千差万别的,在这个模式下,不可能真正做到“因材施教”。

如一个学生考了90分,这个分数仅仅是一个数字,它能代表什么呢?90分背后是家庭背景、努力程度、学习态度、智力水平等,把它们和90分联系在一起,这就成了数据。大数据因其数据来源的广度,有能力去关注每一个个体学生的微观表现:如他在什么时候开始看书,在什么样的讲课方式下效果最好,在什么时候学习什么科目效果最好,在不同类型的题目上停留多久等等。当然,这些数据对其他个体都没有意义,是高度个性化表现特征的体现。同时,这些数据的产生完全是过程性的:课堂的过程,作业的情况,师生或同学的互动情景……而最有价值的是,这些数据完全是在学生不自知的情况下被观察、收集的,只需要一定的观测技术与设备的辅助,而不影响学生任何的日常学习与生活,因此它的采集也非常的自然、真实。

在大数据的支持下,教育将呈现另外的特征:弹性学制、个性化辅导、社区和家庭学习、每个人的成功……大数据支撑下的教育,就是要根据每一个人的特点,释放每一个人本来就有的学习能力和天分。

此外,维克托还建议中国政府要进一步补录数据库。政府以前提供财政补贴,现在可以提供数据库,打造创意服务。在美国就有完全基于政府提供的数据库,如为企业提供机场、高速公路的数据,提供航班可能发生延误的概率,这种服务这可以帮助个人、消费者更好地预测行程,这种类型的创新,就得益于公共的大数据。

六、智慧驱动下的和谐社会

美国作为全球大数据领域的先行者,在运用大数据手段提升社会治理水平、维护社会和谐稳定方面已先行实践并取得显着成效。

近年来,在国内,“智慧城市”建设也在如火如荼的开展。截止去年底,我国的国家智慧城市试点已达193个,而公开宣布建设智慧城市的城市超过400个。智慧城市的概念包含了智能安防、智能电网、智慧交通、智慧医疗、智慧环保等多领域的应用,而这些都要依托于大数据,可以说大数据是“智慧”的源泉。

在治安领域,大数据已用于信息的监控管理与实时分析、犯罪模式分析与犯罪趋势预测,北京、临沂等市已经开始实践利用大数据技术进行研判分析,打击犯罪。

在交通领域,大数据可通过对公交地铁刷卡、停车收费站、视频摄像头等信息的收集,分析预测出行交通规律,指导公交线路的设计、调整车辆派遣密度,进行车流指挥控制,及时做到梳理拥堵,合理缓解城市交通负担。

在医疗领域,部分省市正在实施病历档案的数字化,配合临床医疗数据与病人体征数据的收集分析,可以用于远程诊疗、医疗研发,甚至可以结合保险数据分析用于商业及公共政策制定等等。

伴随着智慧城市建设的火热进行,政府大数据应用已进入实质性的建设阶段,有效拉动了大数据的市场需求,带动了当地大数据产业的发展,大数据在各个领域的应用价值已得到初显。

七、大数据如何预言未来?

著名的玛雅预言,尽管背后有着一定的天文知识基础,但除催生了一部很火的电影《2012》外,其实很多人的生活尚未受到太大的影响。现在基于人类地球上的各种能源存量,以及大气受污染、冰川融化的程度,我们获取真的可以推算出按照目前这种工业生产、生活的方式,人类在地球上可以存活的年数。《第三次工业革命》中对这方面有很深入的解释,基于精准预测,发现现有模式是死路一条后,人类就可以进行一些改变,这其实就是一种系统优化。

这种结合之前情景研究,不断进行系统优化的过程,将赋予系统生命力,而大数据就是其中的血液和神经系统。通过对大数据的深入挖掘,我们将会了解系统的不同机体是如何相互协调运作的,同样也可以通过对他们的了解去控制机体的下一个操作,甚至长远的维护和优化。从这个角度讲,基于网络的大数据可以看作是人类社会的神经中枢,因为有了网络和大数据人类社会才开始灵活起来,而不像以前那么死板。基于大数据,个体之间相互连接有了基础,相互的交互过程得到了简化,各种交易的成本减少很多。厂家等服务提供方可以基于大数据研发出更符合消费者需求的服务,机构内部的管理也更为细致,有了血液和神经系统的社会才真的拥有生命活力。

结语

透过以上这些行业典型的大数据应用案例和场景,不难悟出大数据的典型的核心价值。大数据是看待现实的新角度,不仅改变了市场营销、生产制造,同时也改变了商业模式。数据本身就是价值来源,这也就意味着新的商业机会,没有哪一个行业能对大数据产生免疫能力,适应大数据才能在这场变革中继续生存下去。

当下,正处于数据大爆发的时代,如何获取这些数据并对这些数据进行有效分析就显得尤为重要。各种企业机构之间的竞争非常残酷。如何基于以往的运行数据,对未来的运行模式进行预测,从而提前进行准备或者加以利用、调整,对很多企业机构其实是一种生死存亡的问题。这样一种情况同样适用于国家级别。正因为这一点,目前无论是在企业级别还是国家级别都开始研究、部署大数据。

可见,大数据应用已经凸显出了巨大的商业价值,触角已延伸到零售、金融、教育、医疗、体育、制造、影视、政府等各行各业。你可能会问这些具体价值实现的推动者有哪些呢?就是所谓的大数据综合服务提供商,从实践情况看,主要包括大数据解决方案提供商、大数据处理服务提供商和数据资源提供商三个角色,分别向大数据的应用者提供大数据服务、解决方案和数据资源。

未来大数据还将彻底改变人类的思考模式、生活习惯和商业法则,将引发社会发展的深刻变革,同时也是未来最重要的国家战略之一。

以上是小编为大家分享的关于大数据的七大核心价值的相关内容,更多信息可以关注环球青藤分享更多干货

㈧ 大数据是什么有什么价值作用

“大数据”是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。在企业对企业销售的情况下,这些数据可能得自社交网络、电子商务网站、顾客来访纪录,还有许多其他来源。这些数据,并非公司顾客关系管理数据库的常态数据组。
大数据的应用其实早已渗透到人们生活中的方方面面:亚马逊运用大数据为客户推荐商品信息,阿里用大数据成立了小微金融服务集团,而谷歌更是计划用大数据接管世界??当下,很多行业都开始增加对大数据的需求。大数据时代不仅处理着海量的数据,同时也加工、传播、分享它们。不知不觉中,数据可视化已经遍布我们生活的每一个角落,毕竟普通用户往往更关心结果的展示。伴随去年底网络地图采用LBS定位春运的可视化大数据,就引起了学界对新闻创新和大数据可视化的热议。


一、技术价值

大数据,根本上与数学、统计学、计算机学、数据学等基本理论知识无法分割,技术水平突飞猛进给数字领域带来最直接的跃进。

App研发应用、数据库编写应用等促进人类社会技术进步的价值都来源于大数据的发明和运营。

大数据不仅创造了新的计算方式、技术处理方式,更加为其他技术的研发、应用和落地提供基础,例如人工智能等。

大数据中客户与企业进行交易的数据,是大数据技术价值的核心映射。客户的交易行为通过企业内部系统留存,基本以“事后”数据为主。

交易数据是推进企业数据驱动业务,与客户联系沟通、获得有效和分析数据的初级门槛,无论大数据获取能力如何发展,直接的交易信息永远都是第一有效和值得关注的。

淘宝的交易分析报告中提到,大额买单后的重购次单和同店重购次单比例分别为25.0%和16.8%,要明显高于普通买单的18.8%和10.7%,则表示在首次买单获取了对卖家服务和商品质量的信任后,次单完全存在放大金额的可能,并且比普通买单的可能要高得多。

由此引导卖家增进服务、坚守质量,并适时推出捆绑推荐,以求同类商品同店大额下单的几率。

只有有了大数据的处理技术,交易行为才能够得到记录分析,企业的大数据技术研发、应用和落地才能拥有基础,以开发更新更适合时代的企业产业。

目前有很多传统企业盲目行走大数据的道路,但其实大数据技术能力并没有建立起来,真正获得了有效数据并得以分析利用的就很少,很多该做的“埋点”没有做,数据的统计也缺乏技术支撑。

这时大数据的技术价值就会显得尤为重要,且是所有价值的基础,一梁塌,全屋倒。

无法自主革新的企业会求助一些以提供大数据服务为产品的新型公司,也就催生了各种大数据公司雨后春笋般的出现,至于这些公司如何为传统转型服务在后面会提到。

二、商业价值

在实际的升级运行中,习惯于传统经营的企业也许经常会为这样几个基础的问题感到困惑:如何提升运营现状?目标客群是谁?有哪些特点?与竞品相比竞争优势在哪?现有经营问题又是什么?

而这些看似简单的问题背后却隐藏着海量数据的分析挖掘:客流数据、经营数据、以往活动相关数据、场内店铺信息、竞品数据,类此种种的深入透析才能帮助企业画像潜客、分析经营、建立会员体系、策划活动执行。

单就运营而论,数据作为一种度量方式,能够真实的反映运营状况,帮助企业进一步了解产品、了解用户、了解渠道进而优化运营策略。

㈨ 什么是大数据思维,数据思维划分哪几个维度

在中国“互联网时代”这个词汇似乎显得那么火热,但在美国还未听说过。这是因为互联网思维更契合传统东方思维方式。东方文化强调智慧,而西方更强调知识,智慧来源于经验,而知识来源于数据。如何来证明这个论点?那么,我们来看一下诸葛亮和司马懿,他们两个人可以说是一组典型的智慧PK知识的代表。司马懿是诸葛亮的最大对手,他可能是早期的大数据最佳应用者。

从诸葛亮几点睡觉,吃几碗饭,他就能判断诸葛亮活不长了;而诸葛亮则凭借智慧猜出司马义胆子小,不敢进入空城。中国人崇尚智慧,可能更注重互联网思维,但光有互联网思维还不够,还要对数据有更深的认识和更好的运用,才能实现最佳效果。 已经为大家精心准备了大数据的系统学习资料,从Linux-Hadoop-spark-......,需要的小伙伴可以点击进入

其实,大数据思维不像互联网思维那样令人热血沸腾。从最近一项研究来看,采用大数据的公司比不采用大数据的公司利润平均高6个百分点。6个百分点,也许不那么起眼,但“积少成多、聚沙成塔”,在激烈的竞争环境中,则是让企业生存下来、脱颖而出的最大资本。比如说在美国排名前十的电商网站中,8家是传统零售商,只有2家是纯电商。传统零售商拥有大量数据的沃尔玛,一天的数据量达到PB级,这个数据资源可以转化为企业赢得比赛的有效耐力。

那么对于大数据思维,其实是有三个纬度的,包含定量思维、相关思维、实验思维。第一,定量思维,即提供更多描述性的信息,其原则是一切皆可测。不仅销售数据、价格这些客观标准可以形成大数据,甚至连顾客情绪(如对色彩、空间的感知等)都可以测得,大数据包含了与消费行为有关的方方面面;第二,相关思维,一切皆可连,消费者行为的不同数据都有内在联系。这可以用来预测消费者的行为偏好;第三,实验思维,一切皆可试,大数据所带来的信息可以帮助制定营销策略。这就是三个大数据运用递进的层次:首先是描述,然后是预测,最后产生攻略。而也正是大数据的这些有效耐力,让企业赢了更多的市场。 已经为大家精心准备了大数据的系统学习资料,从Linux-Hadoop-spark-......,需要的小伙伴可以点击进入

阅读全文

与漫谈大数据的思想形成与价值维度相关的资料

热点内容
maya粒子表达式教程 浏览:84
抖音小视频如何挂app 浏览:283
cad怎么设置替补文件 浏览:790
win10启动文件是空的 浏览:397
jk网站有哪些 浏览:134
学编程和3d哪个更好 浏览:932
win10移动硬盘文件无法打开 浏览:385
文件名是乱码还删不掉 浏览:643
苹果键盘怎么打开任务管理器 浏览:437
手机桌面文件名字大全 浏览:334
tplink默认无线密码是多少 浏览:33
ipaddgm文件 浏览:99
lua语言编程用哪个平台 浏览:272
政采云如何导出pdf投标文件 浏览:529
php获取postjson数据 浏览:551
javatimetask 浏览:16
编程的话要什么证件 浏览:94
钱脉通微信多开 浏览:878
中学生学编程哪个培训机构好 浏览:852
荣耀路由TV设置文件共享错误 浏览:525

友情链接