导航:首页 > 网络数据 > 大数据介绍演讲

大数据介绍演讲

发布时间:2023-02-10 11:14:40

A. 什么是大数据,大数据为什么重要,如何应用大数据

“大数据”简单理解为:

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。大数据是一个抽象的概念,对当前无论是企业还是政府、高校等单位面临的数据无法存储、无法计算的状态。大数据,在于海量,单机无法快速处理,需要通过垂直扩展,即大内存高效能,水平扩展,即大磁盘大集群等来进行处理。

大数据为什么重要:

获取大数据后,用这些数据做:数据采集、数据存储、数据清洗、数据分析、数据可视化

大数据技术对这些含有意义的数据进行专业化处理,对企业而言,大数据可提高工作效率,降低企业成本,精准营销带来更多客户。对政府而言,可以利用大数进行统筹分析、提高管理效率、管理抓获犯罪分子等。对个人而言,可以利用大数据更了解自己等。

如何应用大数据:

大数据的应用对象可以简单的分为给人类提供辅助服务,以及为智能体提供决策服务

大数据不仅包括企业内部应用系统的数据分析,还包括与行业、产业的深度融合。具体场景包括:互联网行业、政府行业、金融行业、传统企业中的地产、医疗、能源、制造、电信行业等等。通俗地讲“大数据就像互联网+,可以应用在各行各业",如电信、金融、教育、医疗、军事、电子商务甚至政府决策等。



B. 大数据的介绍语20字

2. 大数据用一句话总结
数据(big data)指承受间范围内用规软件工具进行捕捉、管理处理数据集合
数据比喻蕴 藏能量煤矿煤炭按照性质焦煤、烟煤、肥煤、贫煤等类露煤矿、深山煤矿挖掘本与类似数据并于用价值含量、挖掘本比数量更重要于行业言何利用些规模数据赢竞争关键
数据价值体现几面:
1)量消费者提供产品或服务企业利用数据进行精准营销;
2) 做美模式尾企业利用数据做服务转型;
3) 面临互联网压力必须转型传统企业需要与俱进充利用数据价值

C. “大数据之父” 数据是创新的驱动力

“大数据之父”:数据是创新的驱动力

“有时候不一定是理念驱动世界的变化,可能是实实在在的数据,在数据的基础上产生理念,新的理念是创造性破坏的核心,而数据则是创新的驱动力。”“大数据之父”维克托·迈尔-舍恩伯格26日下午广州中山大学[微博]黄埔论坛上作《大数据时代的变革与创新》主题演讲时说。

作为牛津大学网络学院互联网治理与监管专业教授,舍恩伯格是开大数据系统研究先河的学者,《经济学人》曾评论说,在大数据领域,他是最受人尊敬的权威发言人。他有多达一百多篇论文发表在《科学》《自然》等著名学术期刊上,是《大数据时代》和《删除:大数据取舍之道》等畅销书的作者。

在当天的演讲中,舍恩伯格指出,我们尽其所能去观察这个世界,而这个观察的过程实际上就是一个搜集数据的过程。通过搜集数据,我们进一步理解数据,通过理解数据我们理解了世界。

搜集数据、分析数据需要花费大量的时间、精力、财力,舍恩伯格进一步说道:“我们是否可以搜集最有必要的数据,然后对这些数据进行挤压,从大量的数据中挤出最精华的东西来,然后在此基础之上进行意义的构建?也就是说,我们从大数据中可以提取小数据,数据对我们来说成为了一种可以应用的、有价值的资产。”

今天的世界变得如此广阔,其中所包含的信息海量的,过去20年中,我们数据的量翻了100倍,而且现在还在不断地增长,在短短的4年内世界已经从一个模拟化的世界变成了数字化的世界。

舍恩伯格表示,这一变化意味着我们要理解我们的生活方式,就必须从过去小数据的世界走入真正的大数据时代。我们要思考数据搜集的方法和机制,要从最需要的数据中来。对所搜集到的数据进行转化,成为了我们做出决策的一种最好方式。

他认为,数据的价值在于它可以循环使用、多次使用。“过去,人们对数据的使用只是冰山一角,只是有了问题才去搜集数据,然后分析数据,回答问题,然后把数据扔掉。”他指出,事实上,冰山下的那一块才是数据更大的价值所在,也是我们能够推动更多创新的地方。

他以特斯拉[微博]汽车、打车软件Uber以及谷歌[微博]曾经斥巨资收购的NEST等为例指出,这些产品取得巨大成功,不仅仅是因为他们产品本身,更在于他们都是一个数据收集平台,“这意味着你只要能够充分的使用信息,你就可以用数据来进行创新,进行突破,而且创造出一个新的环境。”

大数据给人们带来了一个全新的社会,大家都在使用大数据提高决策能力,然而,舍恩伯格也提醒人们,在分析数据、解释数据的时候,必须了解它的局限性,要非常小心,避免滥用数据。“问题不在数据本身,问题在我们对数据的使用上。

以上是小编为大家分享的关于“大数据之父” 数据是创新的驱动力的相关内容,更多信息可以关注环球青藤分享更多干货

D. 马云在什么时候第一次提到数据时代或者在哪能找到马云关于大数据的首次演讲

第一次提及大数据时代内容的演讲已经不可考,大致15年左右,受麦肯锡在12年提出大数回据时代论点发酵,答马云这段时间不少演讲中提及大数据时代的概念,但是这时候他的目的性并不明确,并没有形成专门的商业逻辑。
大致在16-17年区间马云该阶段提及大数据的概念,其已经逐步将大数据与零售预测以及生产、物流等方面逐步完善起来,直到2018年2月提出了新零售的概念。
当完成了新零售与大数据的商业逻辑闭环之后,在2018年年中之后公开的演讲里,马云将大数据未来与阿里商业模式的结合的重点放在了普惠金融方面了。
这个是公开场合中马云演讲中大数据与其商业逻辑逐步结合并不断产生新的应用方向的时间线,希望你能满意。
具体比较深入阐述其大数据的演讲内容,应该是2018年贵州中国国际大数据产业博览会上的演讲。
受贵州区域优越的水电资源优势,国内大数据储存中心偏贵州,所以其每年大数据峰会算是大数据行业国内比较高端的大会。相关视频不少网站都有链接,就不一一指出了。

E. 什么是大数据有什么特征与性质

大数据必然无法用单台的计算机进行处理,必须采用分布式架构。大数据也是具备有一定的特征与性质的。以下是由我整理的大数据的内容,希望大家喜欢!

大数据的主要介绍
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产,

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实性)。
大数据的特征
容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;

种类(Variety):数据类型的多样性;

速度(Velocity):指获得数据的速度;

可变性(Variability):妨碍了处理和有效地管理数据的过程。

真实性(Veracity):数据的质量

复杂性(Complexity):数据量巨大,来源多 渠道

价值(value):合理运用大数据,以低成本创造高价值
大数据的意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[7] 阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。

大数据的价值体现在以下几个方面:

1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销

2) 做小而美模式的中小微企业可以利用大数据做服务转型

3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

3)分析所有SKU,以利润最大化为目标来定价和清理库存。

4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

5)从大量客户中快速识别出金牌客户。

6)使用点击流分析和数据挖掘来规避欺诈行为。
大数据的结构
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
大数据的应用
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

麻省理工学院利用手机定位数据和交通数据建立城市规划。

梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
大数据的主要特点
第一,数据体量巨大。从TB级别,跃升到PB级别。

第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。

第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。

第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。

F. 商院案例:大数据安全隐患与体系建设

商院案例:大数据安全隐患与体系建设

着互联网、云计算、物联网等网络技术快速发展和智能终端、智慧城市广泛应用及大范围建设,全球数据量呈现爆炸式增长,驱动着整个互联网世界迈入大数据时代。

为应对大数据时代的挑战,推广大数据基础分析、技术研发与应用、安全技术,以及推进大数据技术创新管理能力和业务能力、加强大数据安全与隐私管理,广东省信息协会、广东省计算机信息网络安全协会、广东省大数据技术联盟联合主办的“2014广东省大数据应用与安全高峰论坛”定于10月21日(星期二)上午在广东亚洲国际大酒店召开且圆满结束。

蓝盾股份作为中国信息安全行业领先的专业网络安全企业和服务提供商,也应邀参加该次峰会,并围绕“大数据应用安全隐患与安全体系建设”作出了重要演讲。

下文就演讲的几个重要方面整理成文,重点归纳总结了大数据的应用价值、大数据背景下面临的安全问题以及对大数据时代安全建设的几点考虑。

一、大数据背景介绍

1、大数据特性

大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的基本特征。

一是数据体量巨大(Volume)。据国际知名数据公司IDC 提供的更为复杂的新数据已经出现,而且生成的速度达到了前所未有的程度,IBM预计,到2020年将增至40万亿GB的水平。

二是数据类型繁多(Variety)。大数据来源种类丰富,更为复杂的新数据已经出现,社交网络数据、网络日志、存档数据和传感器数据、地理位置信息都属于人们在分析中关注的新数据源。

三是价值密度低(Value)。虽然每天产生25亿GB数据,但其中只有接近0.5%的经检测数据才具有分析价值。

四是处理速度快(Velocity)。面对如此海量的数据,非结构化数据也越来越多,如何快速地处理这些数据并挖掘出有价值的信息,这也是大数据区分于传统数据挖掘的最显著特征。

2、大数据技术趋势

1)Hadoop技术的应用

Apache

hadoop是一个开源的分布式计算框架,通过集成MapRece技术,Hadoop将大数据分布到多个数据节点上进行处理。Hadoop遵循Apache 2.0许可证,可以轻松处理结构化、半结构化和非结构化数据,一举成为现在非常流行的大数据解决方案,可以用来应对PB甚至ZB级的海量数据存储。

2)与云计算的融合

大数据和云是两个不同的概念,但两者之间有很多交集。支撑大数据以及云计算的底层原则是一样的,即规模化、自动化、资源配置、自愈性,因此实际上大数据和云之间存在很多合力的地方。可以说大数据和云计算是相伴而生的,大数据的处理离不开云,大数据应用是在云上跑的、非常典型的应用。

二、大数据的应用价值

《华尔街日报》将大数据时代、智能化生产和无线网络革命称为引领未来繁荣的三大技术变革。麦肯锡公司的报告指出数据是一种生产资料,大数据是下一个创新、竞争、生产力提高的前沿。更有世界经济论坛报告认定:大数据为新财富,价值堪比石油。

就国内外对大数据的研究与投入来看,2014年,Intel、IBM、微软、阿里巴巴[微博]等行业巨头纷纷布局大数据。IDC预测2014年产生2万TB数据,2014年大数据产值超6亿,2016年将可望突破100亿。

那么,这些看似平凡的数据能为我们带来什么?事实上当你把微博等社交平台当作发泄工具时,专业的敛财高手们却正在挖掘这些互联网的“数据财富”,先人一步用这些数据来预判市场走势,做出正确的决定,并取得不俗的收益。

大数据的核心价值是能够为政府、企业提供决策服务,帮助企业把握市场机遇、迅速实现大数据商业模式创新,协助政府建设智慧城市和应对公共安全,帮助公安进行犯罪预测与预防。

例如,华尔街根据民众情绪抛售股票;美国疾控中心依据国民搜索,分析全球范围内流感等病疫的传播状况;投资机构搜集并分析上市企业声明,从中寻找破产的蛛丝马迹;电信行业利用大数据帮助电信业对业务的分析和优化;电子商务收集、分析海量的消费者数据,从中挖掘消费者多变、复杂的需求。

总之,在大数据时代,以利用数据价值为核心,合理挖掘和利用大数据,已经为各行各业带来了巨额财富。

三、大数据的安全隐患

随着大数据应用的爆发性增长,大数据衍生出独特架构,并推动存储、网络及计算机技术的发展,同时也引发了新的安全问题。

1、网络化社会使大数据成攻击目标

开放的网络化社会,大数据的数据量大且相互关联,对于攻击者而言,相对低的成本可以获得“滚雪球”的收益。用户数据泄露,个人账号信息失窃的事件时有发生,一旦遭受攻击,失窃的数据量也是巨大的。

最近几年来数以百万计的信息大泄密和大量的网络犯罪案件说明,大数据和云环境下的信息安全的风险度已非昔时可比。

2、大数据加大隐私泄露风险

大数据是把“双刃剑”,快捷的网络、精准的营销,虽能带给人们一个更加便捷的生活方式,同时,却也让个人隐私的保护几成空谈。数据分析技术的发展,势必对用户隐私产生极大威胁。如今的大数据营销,对于消费者而言,就好似被一双眼睛盯着,每时每刻窥探着你的一举一动,作为个体消费者,我们早就无法避免自己的个人隐私被网络系统记取被商家掌握并挖掘利用,甚至被恶意使用。

3、技术短板带来的安全隐患

NOSQL(非关系型数据库)作为大数据处理的基础技术,与当前广泛应用的SQL(关系型数据库)技术不同,没有经过长期改进和完善,在维护数据安全方面也未设置严格的访问控制和隐私管理,缺乏保密性和完整性特质。

4、大数据环境打破传统安全壁垒

大数据的处理和存储离不开云,其运营环境的特殊性打破了传统的网络边界壁垒,使得传统的安全技术手段无法做到有效的安全防护。

大数据本身的安全防护存在漏洞,虽然云计算对大数据提供了便利,但对大数据的安全控制力度仍然不够。

5、大数据可能成为高级可持续攻击的载体

APT攻击是一个持续的过程,不具有被实时检测到的明显特征。同时,隐藏在大量数据中的APT攻击代码也很难被发现。此外,攻击者还可以利用社交网络和系统漏洞进行攻击,在威胁特征库无法检测出来的时间段发起攻击行为。

四、大数据时代下的安全体系建设

1、大数据存储安全

大量的数据产生、存储和分析,数据安全存储问题将在未来几年内成为一个更大的问题。行业必须尽快尽早规划和布局大数据安全存储防护措施,协同技术的发展,加大安全防护投入。安全存储是大数据安全的最基本需求,我们可以从集中存储、加密存储、加密传输、认证授权和日志审计等方面来对大数据的安全存储环境加大保护力度。

2、个人隐私信息的保护

大数据和个人隐私之间的“战争”早已打响,必须从技术和法规层面上保障大数据时代的隐私安全,完善用户个人信息的保障体系。

法规层面应从标准和法律两个方面界定数据属性和销售许可,出台相应资质认证和法律法规,建立健全大数据隐私安全保障体系。

技术层面应使用大数据清洗、去隐私化等技术完成对客户隐私数据的隐藏化处理。

3、大数据云安全

大数据一般都需要在云中实现上传、下载及交互,在吸引越来越多黑客和病毒攻击的云端及客户端做好安全保护必不可少。

我们可基于虚拟化的云数据中心提供系统性的安全解决方案,以安全虚拟器件代替原有硬件设备的产品交付方式,确保物理、虚拟和云环境中服务器的应用程序和数据的安全,可以为云和虚拟化环境提供主动防御、自动安全保护,将传统数据中心的安全策略扩展到云计算平台上。

4、建立防御机制

在规划大数据发展的同时,建立并完善大数据信息安全体系很有必要。结合传统信息安全技术和考量大数据收集、处理和应用时的实际环境安全需求,建立面向大数据信息安全的事件监测机制,及时发现信息系统安全问题,当大数据运营环境遭到攻击前或已经遭到攻击时,快速、准确地发现攻击行为,并迅速启动处置和应急机制。

5、重新规范管理员的权限

大数据的跨平台传输应用在一定程度上会带来内在风险,可以根据大数据的密级程度和用户需求的不同,将大数据和用户设定不同的权限等级,并严格控制访问权限。而且,通过单点登录的统一身份认证与权限控制技术,对用户访问进行严格的控制,有效地保证大数据应用安全。

总之,大数据时代机遇与挑战并存,在推进大数据技术创新管理能力和业务能力的同时,要加强大数据安全与隐私管理相关研究的力度,通过政策法规与技术手段相互作用,使大数据在我国各个行业得以沿着正确的方向更快、更深入的发展。

特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。

以上是小编为大家分享的关于商院案例:大数据安全隐患与体系建设的相关内容,更多信息可以关注环球青藤分享更多干货

G. 技术干货:SQL on Hadoop在快手大数据平台的实践与优化

快手大数据架构工程师钟靓近日在 A2M 人工智能与机器学习创新峰会分享了题为《SQL on Hadoop 在快手大数据平台的实践与优化》的演讲,主要从 SQL on Hadoop 介绍、快手 SQL on Hadoop 平台概述、SQL on Hadoop 在快手的使用经验和改进分析、快手 SQL on Hadoop 的未来计划四方面介绍了 SQL on Hadoop 架构。

SQL on Hadoop,顾名思义它是基于 Hadoop 生态的一个 SQL 引擎架构,我们其实常常听到 Hive、SparkSQL、Presto、Impala 架构。接下来,我会简单的描述一下常用的架构情况。

HIVE,一个数据仓库系统。它将数据结构映射到存储的数据中,通过 SQL 对大规模的分布式存储数据进行读、写、管理。

根据定义的数据模式,以及输出 Storage,它会对输入的 SQL 经过编译、优化,生成对应引擎的任务,然后调度执行生成的任务。

HIVE 当前支持的引擎类型有:MR、SPARK、TEZ。

基于 HIVE 本身的架构,还有一些额外的服务提供方式,比如 HiveServer2 与 MetaStoreServer 都是 Thrift 架构。

此外,HiveServer2 提供远程客户端提交 SQL 任务的功能,MetaStoreServer 则提供远程客户端操作元数据的功能。

Spark,一个快速、易用,以 DAG 作为执行模式的大规模数据处理的统一分析引擎,主要模块分为 SQL 引擎、流式处理 、机器学习、图处理。

SPARKSQL 基于 SPARK 的计算引擎,做到了统一数据访问,集成 Hive,支持标准 JDBC 连接。SPARKSQL 常用于数据交互分析的场景。

SPARKSQL 的主要执行逻辑,首先是将 SQL 解析为语法树,然后语义分析生成逻辑执行计划,接着与元数据交互,进行逻辑执行计划的优化,最后,将逻辑执行翻译为物理执行计划,即 RDD lineage,并执行任务。

PRESTO,一个交互式分析查询的开源分布式 SQL 查询引擎。

因为基于内存计算,PRESTO 的计算性能大于有大量 IO 操作的 MR 和 SPARK 引擎。它有易于弹性扩展,支持可插拔连接的特点。

业内的使用案例很多,包括 FaceBook、AirBnb、美团等都有大规模的使用。

我们看到这么多的 SQL on Hadoop 架构,它侧面地说明了这种架构比较实用且成熟。利用 SQL on Hadoop 架构,我们可以实现支持海量数据处理的需求。

查询平台每日 SQL 总量在 70 万左右,DQL 的总量在 18 万左右。AdHoc 集群主要用于交互分析及机器查询,DQL 平均耗时为 300s;AdHoc 在内部有 Loacl 任务及加速引擎应用,所以查询要求耗时较低。

ETL 集群主要用于 ETL 处理以及报表的生成。DQL 平均耗时为 1000s,DQL P50 耗时为 100s,DQL P90 耗时为 4000s,除上述两大集群外,其它小的集群主要用于提供给单独的业务来使用。

服务层是对上层进行应用的。在上层有四个模块,这其中包括同步服务、ETL 平台、AdHoc 平台以及用户程序。在调度上层,同样也有四方面的数据,例如服务端日志,对它进行处理后,它会直接接入到 HDFS 里,我们后续会再对它进行清洗处理;服务打点的数据以及数据库信息,则会通过同步服务入到对应的数据源里,且我们会将元数据信息存在后端元数据系统中。

网页爬取的数据会存入 hbase,后续也会进行清洗与处理。

HUE、NoteBook 主要提供的是交互式查询的系统。报表系统、BI 系统主要是 ETL 处理以及常见的报表生成,额外的元数据系统是对外进行服务的。快手现在的引擎支持 MR、Presto 及 Spark。

管理系统主要用于管理我们当前的集群。HiveServer2 集群路由系统,主要用于引擎的选择。监控系统以及运维系统,主要是对于 HiveServer2 引擎进行运维。

我们在使用 HiveServer2 过程中,遇到过很多问题。接下来,我会详细的为大家阐述快手是如何进行优化及实践的。

当前有多个 HiveServer2 集群,分别是 AdHoc 与 ETL 两大集群,以及其他小集群。不同集群有对应的连接 ZK,客户端可通过 ZK 连接 HiveServer2 集群。

为了保证核心任务的稳定性,将 ETL 集群进行了分级,分为核心集群和一般集群。在客户端连接 HS2 的时候,我们会对任务优先级判定,高优先级的任务会被路由到核心集群,低优先级的任务会被路由到一般集群。

BeaconServer 服务为后端 Hook Server 服务,配合 HS2 中的 Hook,在 HS2 服务之外实现了所需的功能。当前支持的模块包括路由、审计、SQL 重写、任务控制、错误分析、优化建议等。

•无状态,BeaconServer 服务支持水平扩展。基于请求量的大小,可弹性调整服务的规模。

•配置动态加载,BeaconServer 服务支持动态配置加载。各个模块支持开关,服务可动态加载配置实现上下线。比如路由模块,可根据后端加速引擎集群资源情况,进行路由比率调整甚至熔断。

•无缝升级,BeaconServer 服务的后端模块可单独进行下线升级操作,不会影响 Hook 端 HS2 服务。

•Hive 支持 SPARK 与 TEZ 引擎,但不适用于生产环境。

•SQL on Hadoop 的 SQL 引擎各有优缺点,用户学习和使用的门槛较高。

•不同 SQL 引擎之间的语法和功能支持上存在差异,需要大量的测试和兼容工作,完全兼容的成本较高。

•不同 SQL 引擎各自提供服务会给数仓的血缘管理、权限控制、运维管理、资源利用都带来不便。

•在 Hive 中,自定义实现引擎。

•自动路由功能,不需要设置引擎,自动选择适合的加速引擎。

•根绝规则匹配 SQL,只将兼容的 SQL 推给加速引擎。

•复用 HiveServer2 集群架构。

基于 HiveServer2,有两种实现方式。JDBC 方式是通过 JDBC 接口,将 SQL 发送至后端加速引擎启动的集群上。PROXY 方式是将 SQL 下推给本地的加速引擎启动的 Client。

JDBC 方式启动的后端集群,均是基于 YARN,可以实现资源的分时复用。比如 AdHoc 集群的资源在夜间会自动回收,作为报表系统的资源进行复用。

路由方案基于 HS2 的 Hook 架构,在 HS2 端实现对应 Hook,用于引擎切换;后端 BeaconServer 服务中实现路由 服务,用于 SQL 的路由规则的匹配处理。不同集群可配置不同的路由规则。

为了保证后算路由服务的稳定性,团队还设计了 Rewrite Hook,用于重写 AdHoc 集群中的 SQL,自动添加 LIMIT 上限,防止大数据量的 SCAN。

•易于集成,当前主流的 SQL 引擎都可以方便的实现 JDBC 与 PROXY 方式。再通过配置,能简单的集成新的查询引擎,比如 impala、drill 等。

•自动选择引擎,减少了用户的引擎使用成本,同时也让迁移变得更简单。并且在加速引擎过载 的情况下,可以动态调整比例,防止因过载 对加速性能的影响。

•自动降级,保证了运行的可靠性。SQL 路由支持 failback 模块,可以根据配置选择是否再路由引擎执行失败后,回滚到 MR 运行。

•模块复用,对于新增的引擎,都可以复用 HiveServer2 定制的血缘采集、权限认证、并发锁控制等方案,大大降低了使用成本。

•资源复用,对于 adhoc 查询占用资源可以分时动态调整,有效保证集群资源的利用率。

当查询完成后,本地会轮询结果文件,一直获取到 LIMIT 大小,然后返回。这种情况下,当有大量的小文件存在,而大文件在后端的时候,会导致 Bad Case,不停与 HDFS 交互,获取文件信息以及文件数据,大大拉长运行时间。

在 Fetch 之前,对结果文件的大小进行预排序,可以有数百倍的性能提升。

示例:当前有 200 个文件。199 个小文件一条记录 a,1 个大文件混合记录 a 与 test 共 200 条,大文件名 index 在小文件之后。

Hive 中有一个 SimpleFetchOptimizer 优化器,会直接生成 FetchTask,减小资源申请时间与调度时间。但这个优化会出现瓶颈。如果数据量小,但是文件数多,需要返回的条数多,存在能大量筛掉结果数据的 Filter 条件。这时候串行读取输入文件,导致查询延迟大,反而没起到加速效果。

在 SimpleFetchOptimizer 优化器中,新增文件数的判断条件,最后将任务提交到集群环境,通过提高并发来实现加速。

示例:读取当前 500 个文件的分区。优化后的文件数阈值为 100。

一个表有大量的子分区,它的 DESC 过程会与元数据交互,获取所有的分区。但最后返回的结果,只有跟表相关的信息。

与元数据交互的时候,延迟了整个 DESC 的查询,当元数据压力大的时候甚至无法返回结果。

针对于 TABLE 的 DESC 过程,直接去掉了跟元数据交互获取分区的过程,加速时间跟子分区数量成正比。

示例:desc 十万分区的大表。

•复用 split 计算的数据,跳过 rece 估算重复统计输入过程。输入数据量大的任务,调度速率提升 50%。

•parquetSerde init 加速,跳过同一表的重复列剪枝优化,防止 map task op init 时间超时。

•新增 LazyOutputFormat,有 record 输出再创建文件,避免空文件的产生,导致下游读取大量空文件消耗时间。

•statsTask 支持多线程聚合统计信息,防止中间文件过多导致聚合过慢,增大运行时间。

•AdHoc 需要打开并行编译,防止 SQL 串行编译导致整体延迟时间增大的问题。

HS2 启动时会对物化视图功能进行初始化,轮询整个元数据库,导致 HS2 的启动时间非常长,从下线状态到重新上线间隔过大,可用性很差。

将物化视图功能修改为延迟懒加载,单独线程加载,不影响 HS2 的服务启动。物化视图支持加载中获取已缓存信息,保证功能的可用性。

HS2 启动时间从 5min+提升至<5s。

HS2 本身上下线成本较高,需要保证服务上的任务全部执行完成才能进行操作。配置的修改可作为较高频率的操作,且需要做到热加载。

在 HS2 的 ThriftServer 层我们增加了接口,与运维系统打通后,配置下推更新的时候自动调用,可实现配置的热加载生效。

HiveServer2 的 scratchdir 主要用于运行过程中的临时文件存储。当 HS2 中的会话创建时,便会创建 scratchdir。在 HDFS 压力大的时候,大量的会话会阻塞在创建 scratchdir 过程,导致连接数堆积至上限,最终 HS2 服务无法再连入新连接,影响服务可用性。

对此,我们先分离了一般查询与 create temporay table 查询的 scratch 目录,并支持 create temporay table 查询的 scratch 的懒创建。当 create temporay table 大量创建临时文件,便会影响 HDFS NameNode 延迟时间的时候,一般查询的 scratchdir HDFS NameNode 可以正常响应。

此外,HS2 还支持配置多 scratch,不同的 scratch 能设置加载比率,从而实现 HDFS 的均衡负载。

Hive 调度其中存在两个问题。

一、子 Task 非执行状态为完成情况的时候,若有多轮父 Task 包含子 Task,导致子 Task 被重复加入调度队列。这种 Case,需要将非执行状态修改成初始化状态。

二、当判断子 Task 是否可执行的过程中,会因为状态检测异常,无法正常加入需要调度的子 Task,从而致使查询丢失 Stage。而这种 Case,我们的做法是在执行完成后,加入一轮 Stage 的执行结果状态检查,一旦发现有下游 Stage 没有完成,直接抛出错误,实现查询结果状态的完备性检查。

•HS2 实现了接口终止查询 SQL。利用这个功能,可以及时终止异常 SQL。

•metastore JDOQuery 查询优化,关键字异常跳过,防止元数据长时间卡顿或者部分异常查询影响元数据。

•增加开关控制,强制覆盖外表目录,解决 insert overwrite 外表,文件 rename 报错的问题。

•hive parquet 下推增加关闭配置,避免 parquet 异常地下推 OR 条件,导致结果不正确。

•executeForArray 函数 join 超大字符串导致 OOM,增加限制优化。

•增加根据 table 的 schema 读取分区数据的功能,避免未级联修改分区 schema 导致读取数据异常。

•部分用户并没有开发经验,无法处理处理引擎返回的报错。

•有些错误的报错信息不明确,用户无法正确了解错误原因。

•失败的任务排查成本高,需要对 Hadoop 整套系统非常熟悉。

•用户的错误 SQL、以及需要优化的 SQL,大量具有共通性。人力维护成本高,但系统分析成本低。

SQL 专家系统基于 HS2 的 Hook 架构,在 BeaconServer 后端实现了三个主要的模块,分别是 SQL 规则控制模块、SQL 错误分析模块,与 SQL 优化建议模块。SQL 专家系统的知识库,包含关键字、原因说明、处理方案等几项主要信息,存于后端数据库中,并一直积累。

通过 SQL 专家系统,后端可以进行查询 SQL 的异常控制,避免异常 SQL 的资源浪费或者影响集群稳定。用户在遇到问题时,能直接获取问题的处理方案,减少了使用成本。

示例:空分区查询控制。

SQL 专家系统能解决一部分 HS2 的任务执行的错误诊断需求,但是比如作业 健康 度、任务执行异常等问题原因的判断,需要专门的系统来解决,为此我们设计了作业诊断系统。

作业诊断系统在 YARN 的层面,针对不同的执行引擎,对搜集的 Counter 和配置进行分析。在执行层面,提出相关的优化建议。

作业诊断系统的数据也能通过 API 提供给 SQL 专家系统,补充用于分析的问题原因。

作业诊断系统提供了查询页面来查询运行的任务。以下是命中 map 输入过多规则的任务查询过程:

H. 什么是大数据的40页ppt免费下载

不要用设计模板,用修改背景的方法1、在幻灯片空白地方单击右键选择背景,可以选择填充效果 2、在填充效果立选择你需要的图片背景或者其他 3、最后选择全部应用就可以了

I. 「SAECCE议程剧透」新能源汽车大数据应用——机遇与融合

导读

新能源 汽车 大数据的利用不仅在 汽车 产业内部释放了巨大的数据红利,未来也必将成为 汽车 产业与其他产业融合的重要纽带。随着我国“新基建”的不断推进,高速低延迟的5G网络覆盖与新能源 汽车 充电桩的建设,势必会加速新能源 汽车 的发展与数据井喷。由此可见,大数据技术在新能源 汽车 上的应用会加快 汽车 产业向信息化与智能化迈进的脚步,而新能源 汽车 大数据与电力等行业的融合还将产生出巨大的蓝海市场。

2020中国 汽车 工程学会年会暨展览会(SAECCE 2020) 将于 2020年10月27-29日 上海 汽车 会展中心 举办。迄今为止,SAECCE年会已成功举办26届,成为在国内举办的 汽车 行业标杆活动之一。

本专题分会以 “新能源 汽车 大数据应用——融合与机遇” 为主题,邀请国内外权威专家主旨演讲和互动讨论。通过聚焦“大数据背景下新能源车辆全局优化式能量管理方法研究”等若干议题,共同交流新能源 汽车 大数据应用的主流技术与最新发展趋势,加速新能源 汽车 大数据技术成熟,并加大 汽车 产业的辐射带动能力。

N01:新能源 汽车 大数据应用——机遇与融合

会议时间&地点

2020年10月27日 13:30-18:00

上海 汽车 会展中心

协办单位

吉林大学 汽车 工程学院

会议主席

王震坡

博士/教授/博士生导师,北京理工大学电动车辆国家工程实验室主任、新能源 汽车 国家大数据联盟秘书长

王震坡,教授、博士生导师,北京理工大学电动车辆国家工程实验室主任、新能源 汽车 国家大数据联盟秘书长。入选了教育部“新世纪优秀人才”、北京市“ 科技 北京百名领军人才”、 科技 部“中青年 科技 创新领军人才”、 国家“万人计划”和机械行业“‘十二五’先进 科技 工作者”。主持了国家自然基金重点项目(动力电池系统热失控与安全管理)、国家重点研发计划项目(分布式驱动电动 汽车 集成与控制)、国家863计划项目(电动 汽车 充换电设施设计集成与管理)等纵向项目12项,发表第一作者或通讯作者SCI论文29篇(ESI高被引3篇),第一作者EI论文60余篇。第一作者出版专(译)著4部(“电动车辆动力电池系统及应用技术”入选“十二五”高等教育本科国家级规划教材),授权第一发明人发明专利24项。获国家 科技 进步二等奖1项,省部级科研一等奖3项,二等奖2项(1项排名第一),中国 汽车 工业科学技术一等奖1项(排名第一),北京市教学成果一等奖1项。

联合会议主席

许楠

博士/副教授/博士生导师,吉林大学 汽车 工程学院

许楠,吉林大学 汽车 工程学院车辆工程专业 副教授兼博士生导师,工学博士,博士后,新能源 汽车 国家大数据联盟理事,美国电气电子工程师学会(IEEE)会员,目前担任Applied Energy、IEEE Transaction on Vehicular Technology、IEEE Transaction on Power Electronics、International Journal of Electronics和SAE Journal等国际期刊审稿专家。发表新能源 汽车 领域论文二十余篇,授权发明专利10项,软件著作权13项。作为项目负责人承担国家自然科学基金青年基金项目、国家博士后科学基金面上项目、吉林省 科技 发展计划项目以及企业的合作研究等项目。荣获国家教育部博士生新人奖,入选国家留学基金委国际清洁能源拔尖创新人才培养项目(iCET2019),吉林大学优秀青年教师重点培养计划等。

主要研究城市智能交通系统规划与评价、车辆全局优化式能量管理、人-车-路系统数据挖掘与分析、新能源车辆动力系统控制与评价、开放式绕组电机控制、智能辅助驾驶。

01

演讲嘉宾简介及演讲摘要提前看

大数据+区块链在新能源 汽车 动力电池溯源管理方面的应用研究


刘鹏

北京理工大学副教授,硕士生导师,新能源 汽车 大数据联盟副秘书长

演讲要点

1、新能源 汽车 动力电池发展现状。

2、新能源 汽车 动力电池溯源管理平台建设及应用现状介绍。

3、大数据及区块链技术在新能源 汽车 动力电池溯源管理方面的应用现状及最新研究。

4、动力电池数据管理所面临的问题和挑战。

演讲摘要

概述近年来新能源 汽车 和动力电池发展数据研究现状,以及大数据平台建设及应用状况,并对大数据及区块链技术在新能源 汽车 动力电池溯源管理方面的应用及研究进行介绍,对动力电池数据管理方面所面临的挑战进行分析和展望。

一种基于数据的电动 汽车 全工况行驶能耗评价方法

袁新枚

吉林大学 汽车 工程学院教授

演讲要点

1、电动 汽车 能耗评价的需求。

2、一种新型的电动 汽车 能耗模型及基于数据的能耗评价方法。

3、仿真实验结果及讨论。

4、该方法在高速路充电站规划上的一个应用。

演讲摘要

智能网联新能源 汽车 的能量管理策略

宋珂

同济大学 汽车 学院燃料电池创新研究所所长

演讲要点

1、智能网联 汽车 概述。

2、智能网联 汽车 的通信技术。

3、智能网联新能源 汽车 能量管理技术发展历程。

4、智能网联新能源 汽车 能量管理技术发展趋势。

演讲摘要

智能网联 汽车 与新能源 汽车 将是未来 汽车 技术发展的两个重要方向。当今 社会 和人们对这两项技术的协调发展提出了更高的要求。通过使用智能网联技术(ICT),新能源 汽车 可以与外部世界(例如其他行驶车辆、道路基础设施,互联网等)进行信息实时交互,这就是所谓的车联网系统(V2X)。在对各种交通信息进行深入分析的基础上,车辆可以识别当前行驶状况并对未来驾驶状况进行有效预测,从而实现车辆动力系统能量管理的实时优化,以满足不同驾驶条件下的车辆驾驶需求。这不仅能大大改善新能源 汽车 的燃油经济性,也能够有效缓解了交通拥堵问题。介绍近年来智能网联技术在新能源 汽车 上的应用情况,基于智能网联技术的新能源 汽车 能量管理策略研究现状以及智能网联技术与新能源 汽车 技术协调发展的趋势。

大数据在新能源 汽车 安全风险防控的应用研究


张照生

北京理工大学机械与车辆学院副教授

演讲要点

1、新能源 汽车 安全情况统计分析。

2、新能源 汽车 安全预警与防控方法研究。

3、典型事故案例数据分析。

演讲摘要

基于新能源 汽车 国家监管平台数据,统计分析车辆报警、事故车辆相关情况,从大数据角度分析影响新能源 汽车 安全相关因素,提出新能源 汽车 安全预警和防控方法,并以具体事故案例分析新能源 汽车 预警情况,为新能源 汽车 安全管控及产业 健康 发展提供技术支撑。

大数据背景下新能源车辆全局优化式能量管理方

法研究


许楠

吉林大学 汽车 工程学院 副教授,博士生导师,新能源 汽车 大数据联盟理事

演讲要点

1、新能源车辆能量管理方法研究现状。

2、大数据背景下全局优化式能量管理方法所面临的机遇和挑战。

3、"信息-物质-能量"三层式全局优化架构的建立及应用。

4、全局优化式能量管理平台的应用前景。

演讲摘要

概述近年来新能源车辆能量管理方法研究现状,介绍大数据为全局优化式能量管理带来的机遇,明确全局优化式能量管理方法所面临的问题和挑战,提出“信息-物质-能量”三层式全局优化架构以解决全局优化式能量管理方法实际应用问题。最后,针对全局优化式能量管理平台未来在区域交通能耗优化等方面的应用,提出了相关建议与展望。

数据驱动的锂离子动力电池管理算法 探索 研究

韩雪冰

清华大学车辆与运载学院助理研究员

演讲要点

1、基于云端大数据的电池管理是未来的发展方向。

2、基于数据可以有效的实现电池的安全预警。

3、基于数据可以有效的实现电池的寿命估计。

演讲摘要

在新能源 汽车 使用过程中,伴随着电池的使用,电池性能不断衰减,电池组内单体间的不一致性持续增加,一致性问题还可能导致电池组的失效,引发安全问题。随着云端数据的广泛应用,电动 汽车 的数据能被监测、记录。基于这些数据可以有效的评估电池组一致性、估计电池寿命,进行电池安全预警,实现更加安全可靠的电池管理。

大数据背景下基于储能应用的电动 汽车 电池的

二次利用

班伯源

中国科学院合肥物质科学研究院副研究员

演讲要点

1、退役电动 汽车 电池二次利用的必要性。

2、电动 汽车 锂电池的衰减现象的本质。

3、退役电动 汽车 电池二次利用的关键技术 SOH估算。

4、退役电动 汽车 电池二次利用国内应用实例。

演讲摘要

近年来电动 汽车 (EV)产业飞速发展,为了保证 汽车 的动态性能和行驶安全,电动 汽车 电池在一定服役时间或性能下降后就需要更换。退役 汽车 电池二次利用是将保留了足够的性能的退役电动 汽车 电池组,用于特定的储能系统中。在本报告中整理了锂离子 汽车 蓄电池二次利用的相关法律法规,收集了SOH估算的相关方法,特别是针对目前大数据背景下的提出了整合电动车能源管理系统的SOH估算方法,列举了退役 汽车 电池可能的二次利用的利用场景。最后,根据目前国内退役电动 汽车 电池二次利用的现状,提出了相关建议与展望。

新能源车与外部环境的数据融合带来的机遇和

挑战

王川久

北京泓达九通 科技 发展有限公司董事长

演讲要点

1、大数据让新能源车看的更远,了解的更多,同时我们对车辆也有了更深的了解。

2、车辆与道路交通系统的关系。

3、大数据能给我们带来什么。

4、几个大数据的应用场景。

演讲摘要

新能源 汽车 与外部环境的大数据交换,将使车辆更好的融入道路交通系统,提高整个交通系统的效率,同时车辆的设计、生产、销售、质量控制等各个环节均发挥出与以往不同的作用。

关于SAECCE 2020

2020中国 汽车 工程学会年会暨展览会(SAECCE 2020) 将于 2020年10月27-29日 上海 汽车 会展中心 举办,诚邀 汽车 及相关行业的企业高层、技术领军人物、资深专家学者、广大 科技 工作者参与会议。SAECCE以“ 汽车 +,协同创新”为主题,围绕新能源 汽车 技术、智能网联 汽车 技术、 汽车 关键共性技术,深度探讨如何快速推动技术创新,重塑新型产业格局。

中国 汽车 工程学会年会暨展览会(SAECCE)已成功举办26届,成为在国内举办的 汽车 行业标杆活动之一。此外,原定于今年5月在北京召开的第七届国际智能网联 汽车 技术年会(CICV 2020)将和2020中国 汽车 工程学会年会暨展览会(SAECCE 2020)合并举办。

SAECCE2020将组织1天(2场)全体大会、50多场专题分会、20多场(论文交流)技术分会,展览面积约10000平米,预计将吸引3000多位来自政府机构及行业组织、整车企业、零部件企业、高校及科研院所的代表参会及参观。

欢迎广大企业、高校、科研院所等机构、以及广大 科技 工作者通过组团或个人报名的方式积极参与!

02

SAECCE 2020 日程架构

阅读全文

与大数据介绍演讲相关的资料

热点内容
linuxdb2删除数据库命令 浏览:610
excel跨文件表引用 浏览:119
快手调帧数教程 浏览:519
线切割割一个圆怎么编程 浏览:930
ps6关闭多个文件 浏览:899
农行掌上银行app怎么看账单 浏览:31
苹果6plus怎样查询真伪 浏览:229
文件未响应怎么办 浏览:593
哪个数据恢复软件价格低 浏览:755
为什么米动app显示步数 浏览:189
word2007图片裁剪工具 浏览:902
安卓一般使用什么材料数据线 浏览:596
移动网络磁力链接 浏览:698
网络上热门明星有哪些 浏览:880
勒索病毒win10知乎 浏览:602
cognosjs导出 浏览:194
linux下gcc版本查看命令 浏览:423
iphone4通知中心壁纸 浏览:289
卡西欧编程怎么越来越好 浏览:938
win10鼠标文件右键黑屏 浏览:455

友情链接