① 大数据运维工程师的具体职责描述
大数据运维工程师需要负责公司大数据平台的运维管理工作,集群容量规划、扩容及性能优化。下面是我为您精心整理的大数据运维工程师的具体职责描述。
大数据运维工程师的具体职责描述1
职责:
1、负责数据平台的运维管理工作(部署、监控、优化、故障处理);
2、负责Hadoop/Spark/Flink/Elasticsearch/Kafka等系统的架构审核、容量规划、成本优化;
3、负责大数据平台的用户管理、权限分配、资源分配;
4、参与数据挖掘、机器学习的平台的设计、并给出可执行的运维方案;
5、参与数据平台的相关工具开发(包括自动化部署、监控、ETL等);
6、深入理解数据平台架构,发现并解决故障隐患及性能瓶颈;
7、ETL工具、调度工具、关系型数据库的运维。
任职资格:
1、本科以上学历,计算机软件相关专业;
2、1年以上大数据相关组件运维经验(hadoop/yarn/hbase/hive/spark/kafka等),1年以上的CDH或HDP维护经验,3年以上系统运维相关经验;
3、深入理解linux系统,能独立部署开源软件,熟练掌握一门以上脚本语言(shell/perl/python等),熟悉python开发语言优先;
4、逻辑思维能力强,做事有条理,责任心强,工作积极主动,执行力强,有良好的团队协作意识。
大数据运维工程师的具体职责描述2
职责
1. 负责大数据ETL系统,运维及保障服务稳定可用;
2. 负责数据采集交换方案以及联调测试;
3. 负责采集交换任务的评审和上线;
4. 负责及时排除ETL流程故障,形成知识库,完善运维文档;
5. 负责监控和优化ETL的性能,持续性地提出改进自动化运维平台建议
技能要求
1. 计算机科学或相关专业本科及以上学历;
2. 熟悉Linux系统,熟练编写shell/perl/python一种或多种脚本语言;
3. 熟悉Hive、Hadoop、MapRece集群原理,有hadoop大数据平台运维经验者优先;
4. 熟悉数据库的性能优化、SQL调优,有相应经验;
5. 抗压能力强,有强烈的责任心,良好的沟通能力、学习能力及团队合作能力。
大数据运维工程师的具体职责描述3
职责:
1、负责分布式大数据平台产品的运维和运维开发,保证其高可用和稳定性;
2、负责大数据系统架构的可运维性设计、容量规划、服务监控,持续优化服务架构、集群性能;
3、通过技术手段控制和优化成本,通过自动化工具及流程提升大数据平台运维效率;
4、为项目开发人员提供大数据技术指导及解决大数据平台应用中遇到的技术难题;
任职资格:
1、三年以上大数据运维相关工作经验,有大型互联网公司工作经验者优先,全日制本科及以上学历;
2、熟练掌握至少一门开发语言,有Java或Python语言开发经验优先;
3、精通Hadoop生态及高性能缓存相关的各种工具并有实战经验,包括但不限于Hadoop、HBase、Hive、Presto、Kafka、Spark、Yarn、Flink、Logstash、Flume、ClickHouse等;
4、熟悉Mysql等常用关系数据库,熟练编写SQL语句,有分布式nosql数据库应用、性能调优经验优先;
5、熟悉Linux环境,能够熟悉使用shell脚本;
6、对大数据技术有强烈兴趣,有志于往大数据方向深层次发展;
7、具有很强的责任心、执行力、服务意识、学习能力和抗压能力;
8、具备较好的沟通能力、主动性及责任感。
大数据运维工程师的具体职责描述4
职责:
1、负责大数据集群的日常维护、监控、异常处理等工作,保障集群稳定运行;
2、负责大数据批处理管理以及运维;
3、负责大数据集群的用户管理、权限管理、资源管理、性能优化等;
4、深入理解数据平台架构,发现并解决重大故障及性能瓶颈,打造一流的数据平台;
5、跟进大数据前沿技术,不断优化数据集群;
6、有华为大数据平台运维经验优先;
岗位要求:
1、1年以上大数据运维或开发经验;
2、有良好的计算机和网络基础,熟悉linux文件系统、内核、性能调优,TCP/IP、HTTP等协议;
3、熟悉大数据生态,有相关(HDFS、Hive、Hbase、Sqoop、Spark、Flume、Zookeeper、ES、Kafka)的运维及开发经验;
4、熟练使用shell、python等脚本语言开发相关运维管理工具;
5、良好的文档撰写习惯;
大数据运维工程师的具体职责描述5
职责:
1、负责公司内部及项目中大数据集群的构建,任务调度、监控预警,持续完善大数据平台,保证稳定性、安全性;
2、负责集群容量规划、扩容、集群性能优化及日常巡检和应急值守,参与大数据基础环境的架构设计与改进;
3、深入研究大数据业务相关运维技术,探索新的运维技术及发展方向。
任职要求:
1、熟悉Linux基础命令操作,能够独立编写Shell脚本开展日常服务器的运维;
2、熟悉Hadoop生态圈Hadoop、Kafka、Zookeeper、Hbase、Spark的安装与调优;
3、熟悉软硬件设备,网络原理,有丰富的大数据平台部署,性能优化和运维经验;
4、工作认真负责,有较强的学习能力,动手能力和分析解决问题的能力;
5、能够利用各种开源监控工具、运维工具,HA、负载均衡软件完成工作任务;
6、熟悉JVM虚拟机调优;
② 大数据开发工程师的基本职责-岗位职责
大数据开发工程师的基本职责-岗位职责
在学习、工作、生活中,很多情况下我们都会接触到岗位职责,明确岗位职责能让员工知晓和掌握岗位职责,能够最大化的进行劳动用工管理,科学的进行人力配置,做到人尽其才、人岗匹配。我们该怎么制定岗位职责呢?以下是我为大家整理的大数据开发工程师的基本职责-岗位职责,仅供参考,欢迎大家阅读。
职责:
1、参与大数据平台搭建以及项目技术架构。
2、数据分析,挖掘,模型具体的产品化;
3、根据产品需求,分析编写和制定大数据相关解决方案
岗位要求:
1、计算机相关专业本科以上学历,编程基础扎实,有2年以上大数据开发经验
2、熟悉Hadoop生态和体系架构,熟悉Flink、Spark,Hive等常用开源工具
3、熟悉Flume,kakfa,scribe等日志收集体系
4、熟悉主流数据库(Oracle、postgresql、Mysql、Sql Server)中的1种及以上,有较好的SQL性能调优经验
5、有数据仓库ETL经验者优先
6、有用户行为日志采集、海量数据处理、数据建模方面经验者优先
7、有持续学习的能力;喜欢开源软件,乐于知识分享;对工作认真负责;可以独立承担较大工作压力
职责:
1、数字货币领域数据统计分析,负责数字货币量化投资策略的设计、管理以及实际投资运作
2、与交易员对接,制定切实可行的的'策略测试计划,开展新策略模型的开发和验证
3、协助交易员进行交易、风险管理,并对实际交易结果进行量化的绩效分析,推动交易自动化
4、上级交办的其他工作
任职要求:
1、数学/计算机/金融专业毕业,有扎实的算法和机器学习的理论基础
2、有量化实盘交易经验,具备丰富的数学建模经验及较强的数据处理能力优先
3、对金融市场的价格波动有独特理解和深入的量化分析,具备一定对冲策略研究经验;
4、对数字货币领域感兴趣,结果导向;
5、有网页抓取和爬虫程序编写经验者优先。
职责:
1、大数据日志分析系统的设计,选型和开发;
2、配合各业务给予数据支持,对产品和运营数据总结和优化;
3、处理用户海量数据,提取、分析、归纳用户属性,行为等信息,完成分析结果;
4、发现并指出数据异常情况,分析数据合理性;
5、公司大数据基础架构平台的运维,保障数据平台服务的稳定性和可用性;
6、大数据基础架构平台的监控、资源管理、数据流管理;
7、基于数据分析的可预测的云平台弹性扩展解决方案。
任职要求:
1、日志分析数据系统实际经验;
2、3年以上互联网行业研发经验,有使用Hadoop/hive/spark分析海量数据的能力;
3、掌握Hadoop、Flume,Kafka、Zookeeper、HBase、Spark的安装与调试;
4、熟悉大数据周边相关的数据库系统,关系型数据库和NoSQL。
5、掌握Linux操作系统的配置,管理及优化,能够独立排查及解决操作系统层的各类问题;
6、有良好的沟通能力,具备出色的规划、执行力,强烈的责任感,以及优秀的学习能力。
职责:
1、负责数据分析、加工、清理、处理程序的开发;
2、负责数据相关平台的搭建、维护和优化;
3、负责基于Hadoop/Spark/Hive/kafka等分布式计算平台实现离线分析、实时分析的计算框架的开发;
岗位要求:
1、本科学历须211院校以上,硕士及以上学历不限院校,计算机软件及相关专业
2、熟悉Java和Scala语言、熟悉常用设计模式、具有代码重构意识;
3、熟练使用hadoop、hbase、Kafka、hive、spark、presto,熟悉底层框架和实现原理;
4、使用Spark Streaming和Spark SQL进行数据处理,并具有SPARK SQL优化经验;
5、需要有至少2年开发经验,有flink开发经验优先;
6、学习能力强,喜欢研究新技术,有团队观念,具备独立解决问题的能力。
职责:
1、负责大数据平台的基础环境搭建与性能优化,完成平台的构建与维护、实时流计算平台、分布式调度、可视化报表等平台的架构与研发;
2、对各种开源框架进行深入的代码剖析和优化;
3、参与大数据技术方案评审;
4、指导初中级大数据工程师工作;
岗位要求:
1、计算机相关专业全日制专科及以上学历,具有3年或以上的分布式计算平台研发工作经验;
2。对大数据相关组件:Hadoop、Spark、Hbase、Hive、Flink、Kafka、Flume等架构与底层实现有深入理解,具备相应的定制和研发能力,尤其需要精通Flink框架;
3。具备构建稳定的大数据基础平台的能力,具备数据收集、数据清洗、数据仓库建设、实时流计算等系统研发经验;
4。对技术有热情,有不错的数据思维和敏感度,有一定的数据分析能力优先,对深度学习、机器学习有一定的了解优先;
5。工作有计划性,责任心和执行能力强,具备高度的责任心、诚信的工作作风、优秀沟通能力及团队精神。
;③ 大数据都有哪些就业方向
当下,大数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师。对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。
大数据就业前景
在就业“钱景”方面,各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。以基本的Hadoop开发工程师为例,入门月薪已经达到了8K以上,工作1年月薪可达到12K以上,资深的hadoop人才年薪可达到30万—50万。
大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。
大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。
大数据分析师
基于各种分析手段,利用大数据技术对大数据进行科学分析、挖掘、展现并用于决策支持。
数据挖掘工程师
数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。
算法工程师
数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。
数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。
④ 大数据开发工程师以后可以从事哪些岗位
大数据开发工程师,其实包括的具体的岗位很多,包括:
大数据开发工程师、大数据架构工程师、大数据运维工程师、数据可视化工程师、数据采集工程师、数据挖掘工程师、机器学习工程师、深度学习工程师、算法工程师等等,都可以算是大数据开发工程师的范畴。
从定义上来说,研究和开发大数据采集、清洗、存储及管理、分析及挖掘、展现及应用等有关岗位的从业者,都可以称为大数据开发工程师。
⑤ 大数据运维工程师的基本职责
大数据运维工程师需要处理公司大数据平台各类异常和故障,确保系统平台的稳定运行。下面是我为您精心整理的大数据运维工程师的基本职责。
大数据运维工程师的基本职责1
职责:
1、技术保障各底层支撑系统的可靠性与稳定性;
2、负责车辆网平台的运行监控的解决方案编制、实施与二次功能开发;
3、负责技术文档手册编写,更新,经验总结沉淀,培训分享;
4、负责对新技术和方案进行调研,评估和引进,用技术去提升运维生产效率
任职资格:
1、熟悉常见的应用服务部署和调优(Nginx、MySQL、Redis、MongoDB、ELK,Hadoop等),熟悉高可用集群、负载均衡集群的规划与搭建;
2、熟练使用Linux、TCP/IP网络协议栈,了解常用的Troubleshooting手段和常见性能指标
3、具有车联网平台运维的经验,精于容量规划、架构设计、性能优化;
4、熟悉主流PaaS云产品的使用,具有运维平台开发经验者、参与过开源产品的开发者优先;
5、优秀的沟通能力,出色的学习与钻研能力,良好的问题分析与解决能力;
6、对行业技术敏感度高且细致,善于思考,乐于发现,对解决具有挑战性问题充满激情。
大数据运维工程师的基本职责2
职责:
1、负责维护服务器的运行,包括巡检、故障排除、数据备份等业务,保证服务器高质量、高效率运行状态;
2、负责服务器漏洞整改及补丁升级;
3、负责hadoop运维相关工作;
4、负责大数据平台的日常部署、升级、扩容、迁移;
5、负责高并发,大存储和实时流的Hadoop/spark大数据平台规划,运维,监控和优化工作。
任职资格:
1、2年左右服务器运维经验;
2、对linux基础运维命令熟悉,shell,python至少精通一种,如会scala语言可优先考虑;
3、熟悉Linux的维护和管理,熟悉bat及Shell脚本开发,能看懂Python/Scala优先;
4、做过大规模hadoop集群优先;
5、大数据项目:包括不限于hadoop、hive、kafka、hbase、spark、Ku、Impala等大数据生态的平台搭建,监控,运维,调优、生产环境hadoop集群trouble shooting 、hadoop版本升级管理及优化支持。
大数据运维工程师的基本职责3
职责:
1、负责Hadoop平台搭建,运维,管理,故障处理。
2、负责保障大数据平台的高效运转、提升系统稳定性和安全性。
3、对平台的Hadoop,Hbase,Kafka,Hive等进行优化。
4、建立Hadoop集群管理和维护规范,包括版本管理和变更记录等。
岗位要求:
1、有丰富的Hadoop生态系统的运维经验,了解Hadoop、Storm、Spark、Kafka这些组件的原理,具备部署、实施、维护hadoop 及相关组件的能力;
2、至少精通 Perl/Python/Shell脚本语言中的一种;
3、掌握Linux操作系统的配置,管理、优化以及各种常用命令,能够独立排查及解决操作系统层的各类问题;
4、分析问题能力优秀,善于从各种系统、应用日志中寻找出问题的原因。
5、有独立分析问题和解决问题的能力,能出差。
大数据运维工程师的基本职责4
职责:
1.负责Hadoop、spark、hbase、oozie、hive等平台运营和优化工作,保障平台服务运行稳定、高效。
2.负责大数据方案架构及方案落地;
3.开发Hadoop大数据管理平台与监控建设;
3.负责hadoop平台部署、维护;生产问题、告警、故障处理及服务器维护、日常值班;
4.负责集群网络架构、机器管理等。
任职资格:
1. 全日制本科以上学历,三年以上后台系统运营工作经验;
2. 熟悉hadoop原理,具有Hadoop平台应用及管理经验,熟悉hadoop、hive、spark、hbase、oozie、druid、kylin、flink等开源项目及部署、维护、调优;
3. 熟悉linux操作系统及调优;熟悉sql编程,熟悉Shell/Python/Java/Perl语言的一种或多种,有开发经验优先, 熟悉nagios,cacti,ganglia,zabbix,zenoss优先;
4. 对大数据和自动化运维开发有浓厚兴趣,有大规模hadoop运维经验者优先;有hadoop/hbase/spark/hive 开发经验者优先。
大数据运维工程师的基本职责5
职责:
1. 负责大数据平台的稳定性和性能优化;
2. 负责大数据项目的运维工作;
3. 针对业务需求制定统一的运维解决方案;
4. 完善自动监控报警系统,对业务层面关键指标进行监控与报警通知;
任职要求:
1、熟练掌握hadoop平台搭建、维护,有平台优化经验;
2、熟悉HDFS、Hive、Spark、HBbase、Kafka、Flume等组件的原理,有阅读源码能力者优先;
3、熟悉腾讯云产品,有腾讯云EMR使用经验者优先考虑;
⑥ 云计算大数据专业可以做什么工作 主要有这些岗位
在当前的大数据时代背景下,选择大数据专业是不错的选择,目前我国这方面人才紧缺,那么大数据有哪些工作岗位呢?
从大的岗位划分上来看,当前大数据岗位可以分为开发岗、算法岗(数据分析)、运维岗等,开发岗的任务涉及到两大方面,其一是完成业务实现,其二是完成数据生产,目前很多传统软件开发任务正在逐渐向大数据开发过渡,这也导致当前大数据开发岗的人才需求量更大一些。从事大数据开发岗,还需要重点学习云计算相关的知识,尤其是PaaS(平台即服务)。
大数据开发岗位是当前人才需求量比较大的岗位之一,不论是本科生还是研究生,当前选择大数据开发岗位会有相对较大的选择空间。大数据开发岗位分为平台研发岗位和行业场景开发岗位两大类,通常大数据平台研发岗位对于从业者的要求相对比较高,属于研发级岗位,而大数据行业应用场景开发则相对要容易一些。
大数据专业是一个比较典型的交叉学科,涉及到的内容包括数学、统计学和计算机三大学科,所以学习的内容还是比较多的,如果不能做好一个系统的学习规划,很容易导致学得杂而不精,这对于就业会产生一定的负面影响。所以,本科期间应该选择一个主攻方向,围绕这个主攻方向来组织知识结构和提升实践能力。
众所周知大数据的方向主要分三个:1、大数据开发方向:涉及的岗位诸如大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;2、数据挖掘、数据分析和机器学习方向:涉及的岗位诸如大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;3、大数据运维和云计算方向:涉及的岗位诸如大数据运维工程师等。
由此可见,大数据的就业岗位是非常多的,而且只要能熟练掌握或者精通一门,就能取得非常不错的成绩。甚至在该方向能独当一面的话,那个人价值就不言而喻了。
⑦ 大数据开发工程师以后可以从事哪些岗位
首先大数据开发工程师有两个方面,一个是工作内容,一个是岗位要求
工作内容:主要是基于Hadoop、Spark等平台上面进行开发,各种开源技术框架平台很多,需要看企业实际的选择是什么,但目前Hadoop、Spark仍然占据广大市场。
岗位要求:精通Java技术知识,熟悉Spark、kafka、Hive、HBase、zookeeper、HDFS、MR等应用设计及开发。
1、大数据工程师
大数据工程师的话其实包含了很多,比如大数据开发,测试,运维,挖据等等,各个岗位不同薪资水平也不大相同。
2、Hadoop开发工程师
职位描述:参与优化改进新浪集团数据平台基础服务,参与日传输量超过百TB的数据传输体系优化,日处理量超过PB级别的数据处理平台改进,多维实时查询分析系统的构建优化。
3、大数据研发工程师
职位描述:构建分布式大数据服务平台,参与和构建公司包括海量数据存储、离线/实时计算、实时查询,大数据系统运维等系统;服务各种业务需求,服务日益增长的业务和数据量。
4、大数据架构师
职位描述:这个就是全能的大数据岗位,技术要求是非常全面的,更多的站在架构角度出发。
5、大数据分析师
工作职责:根据公司产品和业务需求,利用数据挖掘等工具对多种数据源进行诊断分析,建设征信分析模型并优化,为公司征信运营决策、产品设计等方面提供数据支持;负责项目的需求调研、数据分析、商业分析和数据挖掘模型等,通过对运行数据进行分析挖掘背后隐含的规律及对未来的预测。
⑧ 大数据工程师主要做什么
当前大数据平台开发岗位的附加值还是比较高的,大数据平台开发岗位往往集中在大回型互联网企业,随着云计算逐渐答从IaaS向PaaS过渡,大数据平台开发也会基于行业特点来开发针对性比较强的PaaS平台,这是整合行业资源并搭建技术生态的一个关键。搭建PaaS平台不仅需要掌握大数据知识,同时还需要掌握云计算知识,实际上大数据和云计算本身就有比较紧密的联系,二者在技术体系结构上都是以分布式存储和分布式计算为基础,只不过关注点不同而已。
大数据运维工程师以搭建大数据平台为主,虽然这部分岗位的门槛相对比较低,但是需要学习的内容还是比较多的,而且内容也比较杂,网络知识、数据库管理知识、操作系统(Linux)知识、大数据平台(含开源和商用平台)知识都需要掌握一些,对于实践操作的要求会比较高。
最后,当前大数据工程师往往并不包含专业的数据分析岗位,一般数据分析岗位都会单独列出来,这部分岗位涉及到算法岗、开发岗(实现)和数据呈现岗等,数据分析岗位对于从业者的数学基础要求比较高,同时还需要掌握大量的数据分析工具,当然也离不开Python、Sql等知识。