导航:首页 > 网络数据 > 美国大数据应用

美国大数据应用

发布时间:2023-02-08 07:18:09

⑴ 盘点政府推动大数据应用及发展的举措

盘点政府推动大数据应用及发展的举措
一、政府:推动大数据应用的最关键力量
(一)政府掌握大量最具应用价值的核心数据,是推动大数据应用的最关键力量
根据麦肯锡大数据研究报告指出, 各个行业利用大数据价值的难易度以及发展潜力 对比下,政府利用大数据难度最低而潜力最大。
大数据
另一方面政府开放大数据运用已经是大势所趋:
1、 政府掌握了大量最具应用价值的核心数据。 过去十多年来政府投资进行了大量电子政务或者称为政府信息化的工作,后台积累了大量的数据,而这些数据和公众的生产生活息息相关。有研究表明政府所掌握的数据使政府成为了一个国家最重要的信息保有者,有百分之七十到八十的核心数据存在于政府的后台 。
2、 开放数据本身就是政府在大数据时代提供的一项公共服务。 政府数据本质上是国家机关在履行职责时所获取的数据,采集这些数据的经费来自于公共财政,因而这些数据是公共产品,归全社会所有,应取之于民,用之于民。
3、 政府开放数据供社会进行增值开放和创新应用,推动经济增长乃至整个经济增长方式的转型。 数据是互联网创新的重要基础,如果政府不开放这一部分数据,很多创新应用没有数据作为支持,数据开发者能利用政府开放的数据,提供更好的服务,创造更多的价值, 这个过程能够提高整个国家在大数据时代的竞争力。
4、 政府开放数据推动经济增长获得的税收高于单纯卖数据获得的收入。 201 年世界经合组织在关于开放政府数据的报告中提到政府通过开放数据推动经济增长,从而获得的税收收入远高于单卖数据所能获得收入。开放数据激发经济活力从而得到税收提升,这是一个良 性循环,更是一个能创造巨大公共价值的全局性的战略。
(二) 国内外政府开放数据的情况
在 2009 年奥巴马签署开放政府数据的行政命令后,这些年来开放政府数据已成为了世界性的一个趋势。美国联邦数据平台 Data.gov 上线后,在美洲、欧洲、亚洲等地,开放政府数据已成为了政府的一项重要工作。美国联邦政府的开放政府数据平台开放了来自多个领 域的 13 万个数据集的数据。这些领域包括图中所列的农业、商业、气候、生态、教育、能源、金融、卫生、科研等十多个主题。这些主题下的数据都是美国联邦政府的各个部委所开放的。英国、加拿大、新西兰等国在 2009 年之后都建立起了政府数据开放平台,成为 了国际信息化和大数据领域的一个重要趋势。
大数据
在我国, 2011 年香港特区政府上线了 data.gov.hk,称为香港政府资料一线通。上海在 2012年 6 月推出了中国大陆第一个数据开放平台。之后,北京、武汉、无锡、佛山南海等城市也都上线了自己的数据平台。
大数据
(三)、 大数据对于政府治理具有极大的价值
大数据其实对政府的治理带来了全新的价值,无论是对宏观经济的决策能力、产业聚集能力、协同治理能力、社会管理能力、公众服务能力、快速响应能力的提升,大数据都可以在有很大层面上帮助政府治理。
大数据大数据
(四)、大数据上升至国家战略成为共识。
大数据时代,对大数据的开发、利用与保护的争夺日趋激烈,制信权成为继制陆权、制海权、制空权之后的新制权,大数据处理能力成为强国弱国区分的又一重要指标。国际上以美国为代表的发达国家纷纷布局大数据产业,相继推出大数据相关政策,大力支持大数据产 业在本国的发展。以美国为例,美国从开展关键技术研究、推动大数据应用和开放政府数据三方面布局大数据产业,尤其在开放政府数据方面非常积极,通过 Data.gov开放 37 万个数据集,并开放网站的 API 和源代码,提供上千个数据应用。我们认为,大数据未来将 引发新一轮大国竞争,大数据对整个世界的影响力会呈现爆发性增长趋势,因此包括我国在内的国家会在政策支持力度上不断提升,大数据战略将上升至国家战略已毋庸臵疑。
大数据
(五)、 我国 高度重视大数据未来发展
自去年 3 月“大数据”首次出现在《政府工作报告》中以来,国务院常务会议一年内 6次提及大数据运用。近期在 6 月 17 日的国务院常务会议上,李克强总理再次强调“我们正在推进简政放权,放管结合、优化服务,而大数据手段的运用十分重要。” 7 月 1 日, 国务院办公厅印发了《关于运用大数据加强对市场主体服务和监管的若干意见》。
大数据
大数据大数据
(六). 各部委行动时间表已经确,我国大数据发展面临历史性机遇
值得注意的是,近期国务院出台文件对各个部委推进大数据任务制定了明确的时间表,很多推进工作任务要求在 2015 年 12 月底前出台政策并实施,近期将是我国大数据发展政策出台的密集期。

表 3: 各部委推进大数据应用时间表
序号工作任务负责单位时间进度1加快建立公民、法人和其他组织统一社会信用代码制度。发展改革委、中央编办、公安部、民政部、人民银行、税务总局、工商总局、质检总局2015 年 12 月底前出台并实施2全面实行工商营业执照、组织机构代码证和税务登记证“三证合一”、 “一照一码”登记制度改革。工商总局、中央编办、发展改革委、质检总局、税务总局2015 年 12 月底前实施3建立多部门网上项目并联审批平台,实现跨部门、跨层级项目审批、核准、备案的“统一受理、同步审查、信息共享、透明公开”。发展改革委会同有关部门2015 年 12 月底前完成4推动政府部门整合相关信息,紧密结合企业需求,利用网站和微博、微信等新兴媒体为企业提供服务。网信办、工业和信息化部持续实施5研究制定在财政资金补助、政府采购、政府购买服务、政府投资工程建设招投标过程中使用信用信息和信用报告的政策措施。财政部、发展改革委2015 年 12 月底前出台并实施6充分运用大数据技术,改进经济运行监测预测和风险预警,并及时向社会发布相关信息,合理引导市场预期。发展改革委、统计局持续实施7支持银行、证券、信托、融资租赁、担保、保险等专业服务机构和行业协会、商会运用大数据为企业提供服务。人民银行、银监会、证监会、保监会、民政部持续实施8健全事中事后监管机制,汇总整合和关联分析有关数据,构建大数据监管模型,提升政府科学决策和风险预判能力。各市场监管部门2015 年 12 月底前取得阶段性成果9在办理行政许可等环节全面建立市场主体准入前信用承诺制度。 信用承诺向社会公开,并纳入市场主体信用记录。各行业主管部门2015 年广泛开展试点, 2017 年 12 月底前完成10加快建设地方信用信息共享交换平台、部门和行业信用信息系统,通过国家统一的信用信息共享交换平台实现互联共享。各省级人民政府,各有关部门2016 年 12 月底前完成11建立健全失信联合惩戒机制,将使用信用信息和信用报告嵌入行政管理和公共服务的各领域、各环节,作为必要条件或重要参考依据。在各领域建立跨部门联动响应和失信约束机制。建立各行业“黑名单”制度和市场退出机制。推动将申请人良好的信用状况作为各类行政许可的必备条件。各有关部门,各省级人民政府2015 年 12 月底前取得阶段性成果12建立产品信息溯源制度,加强对食品、药品、农产品、日用消费品、特种设备、地理标志保护产品等重要产品的监督管理,利用物联网、射频识别等信息技术,建立产品质量追溯体系,形成来源可查、去向可追、责任可究的信息链条。商务部、网信办会同食品药品监管总局、农业部、质检总局、工业和信息化部2015 年 12 月底前出台并实施13加强对电子商务平台的监督管理,加强电子商务信息采集和分析,指导开展电子商务网站可信认证服务,推广应用网站可信标识,推进电子商务可信交易环境建设。健全权益保护和争议调处机制。工商总局、商务部、网信办、工业和信息化部持续实施14进一步加大政府信息公开和数据开放力度。除法律法规另有规定外,将行政许可、行政处罚等信息自作出行政决定之日起 7 个工作日内上网公开。各有关部门,各省级人民政府持续实施15加快实施经营异常名录制度和严重违法失信企业名单制度。建设国家企业信用信息公示系统,依法对企业注册登记、行政许可、行政处罚等基本信用信息以及企业年度报告、经营异常名录和严重违法失信企业名单进行公示,并与国家统一的信用信息共享交换平台实现有机对接和信息共享。工商总局、其他有关部门,各省级人民政府持续实施16支持探索开展社会化的信用信息公示服务。建设“信用中国 ”网站,归集整合各地区、各部门掌握的应向社会公开的信用信息,实现信用信息一站式查询,方便社会了解市场主体信用状况。各级政府及其部门网站要与 “信用中国 ”网站连接,并将本单位政务公开信息和相关市场主体违法违规信息在“信用中国 ”网站公开。发展改革委、人民银行、其他有关部门,地方各级人民政府2015 年 12 月底前完成17推动各地区、各部门已建、在建信息系统互联互通和信息交换共享。在部门信息系统项目审批和验收环节,进一步强化对信息共享的要求。发展改革委、其他有关部门持续实施18健全国家电子政务网络,加快推进国家政务信息化工程建设,统筹建立人口、法人单位、自然资源和空间地理、宏观经济等国家信息资源库,加快建设完善国家重要信息系统。发展改革委、其他有关部门分年度推进实施, 2020 年前基本建成19加强对市场主体相关信息的记录,形成信用档案。对严重违法失信的市场主体,按照有关规定列入“黑名单”,并将相关信息纳入企业信用信息公示系统和国家统一的信用信息共享交换平台。各有关部门2015 年 12 月底前实施20探索建立政府信息资源目录。各有关部门2016 年 12 月底前出台目录编制指南21引导征信机构根据市场需求,大力加强信用服务产品创新,进一步扩大信用报告在行政管理和公共服务及银行、证券、保险等领域的应用。发展改革委、人民银行、银监会、证监会、保监会2017 年 12 月底前取得阶段性成果22落实和完善支持大数据产业发展的财税、金融、产业、人才等政策,推动大数据产业加快发展。发展改革委、工业和信息化部、财政部、人力资源社会保障部、人民银行、网信办、银监会、证监会、保监会2017 年 12 月底前取得阶段性成果23加快研究完善规范电子政务,监管信息跨境流动,保护国家经济安全、信息安全,以及保护企业商业秘密、个人隐私方面的管理制度,加快制定出台相关法律法规。网信办、公安部、工商总局、工业和信息化部、发展改革委等部门会同法制办2017 年 12 月底前出台(涉及法律、行政法规的,按照立法程序推进)24推动出台相关法规,对政府部门在行政管理、公共服务中使用信用信息和信用报告作出规定,为联合惩戒市场主体违法失信行为提供依据。发展改革委、人民银行、法制办2017 年 12 月底前出台(涉及法律、行政法规的,按照立法程序推进)25建立大数据标准体系,研究制定有关大数据的基础标准、技术标准、应用标准和管理标准等。加快建立政府信息采集、存储、公开、共享、使用、质量保障和安全管理的技术标准。引导建立企业间信息共享交换的标准规范。工业和信息化部、国家标准委、发展改革委、质检总局、网信办、统计局2020 年前分步出台并实施26推动实施大数据示范应用工程,在工商登记、统计调查、质量监管、竞争执法、消费维权等领域率先开展示范应用工程,实现大数据汇聚整合。在宏观管理、税收征缴、资源利用与环境保护、食品药品安全、安全生产、信用体系建设、健康医疗、劳动保障、教育文化、交通旅游、金融服务、中小企业服务、工业制造、现代农业、商贸物流、社会综合治理、收入分配调节等领域实施大数据示范应用工程。

⑵ 移动互联时代 大数据的应用价值

移动互联时代 大数据的应用价值
随着大数据的发展,企业也越来越重视数据相关的开发和应用,从而获取更多的市场机会。一方面,大数据能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。
一、大数据助企业挖掘市场机会探寻细分市场
大数据能够帮助企业分析大量数据而进一步挖掘市场机会和细分市场,然后对每个群体量体裁衣般的采取独特的行动。获得好的产品概念和创意,关键在于我们到底如何去搜集消费者相关的信息,如何获得趋势,挖掘出人们头脑中未来会可能消费的产品概念。用创新的方法解构消费者的生活方式,剖析消费者的生活密码,才能让吻合消费者未来生活方式的产品研发不再成为问题,如果你了解了消费者的密码,就知道其潜藏在背后的真正需求。大数据分析是发现新客户群体、确定最优供应商、创新产品、理解销售季节性等问题的最好方法。
在数字革命的背景下,对企业营销者的挑战是从如何找到企业产品需求的人到如何找到这些人在不同时间和空间中的需求;从过去以单一或分散的方式去形成和这群人的沟通信息和沟通方式,到现在如何和这群人即时沟通、即时响应、即时解决他们的需求,同时在产品和消费者的买卖关系以外,建立更深层次的伙伴间的互信、双赢和可信赖的关系。
大数据进行高密度分析,能够明显提升企业数据的准确性和及时性;大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平。因此,大数据有利于企业发掘和开拓新的市场机会;有利于企业将各种资源合理利用到目标市场;有利于制定精准的经销策略;有利于调整市场的营销策略,大大降低企业经营的风险。
企业利用用户在互联网上的访问行为偏好能为每个用户勾勒出一副“数字剪影”,为具有相似特征的用户组提供精确服务满足用户需求,甚至为每个客户量身定制。这一变革将大大缩减企业产品与最终用户的沟通成本。例如:一家航空公司对从未乘过飞机的人很感兴趣(细分标准是顾客的体验)。而从未乘过飞机的人又可以细分为害怕飞机的人,对乘飞机无所谓的人以及对乘飞机持肯定态度的人(细分标准是态度)。在持肯定态度的人中,又包括高收入有能力乘飞机的人(细分标准是收入能力)。于是这家航空公司就把力量集中在开拓那些对乘飞机持肯定态度,只是还没有乘过飞机的高收入群体。通过对这些人进行量身定制、精准营销取得了很好的效果。
二、大数据提高决策能力
当前,企业管理者还是更多依赖个人经验和直觉做决策,而不是基于数据。在信息有限、获取成本高昂,而且没有被数字化的时代,让身居高位的人做决策是情有可原的,但是大数据时代,就必须要让数据说话。
大数据能够有效的帮助各个行业用户做出更为准确的商业决策,从而实现更大的商业价值,它从诞生开始就是站在决策的角度出发。虽然不同行业的业务不同,所产生的数据及其所支撑的管理形态也千差万别,但从数据的获取,数据的整合,数据的加工,数据的综合应用,数据的服务和推广,数据处理的生命线流程来分析,所有行业的模式是一致的。
这种基于大数据决策的特点是:一是量变到质变,由于数据被广泛挖掘,决策所依据的信息完整性越来越高,有信息的理性决策在迅速扩大,拍脑袋的盲目决策在急剧缩小。二是决策技术含量、知识含量大幅度提高。由于云计算出现,人类没有被海量数据所淹没,能够高效率驾御海量数据,生产有价值的决策信息。三是大数据决策催生了很多过去难以想象的重大解决方案。如某些药物的疗效和毒副作用,无法通过技术和简单样本验证,需要几十年海量病历数据分析得出结果;做宏观经济计量模型,需要获得所有企业、居民以及政府的决策和行为海量数据,才能得出减税政策最佳方案;反腐倡廉,人类几千年历史都没解决,最近通过微博和人肉搜索,贪官在大数据的海洋中无处可藏,人们看到根治的希望等等。
如果在不同行业的业务和管理层之间,增加数据资源体系,通过数据资源体系的数据加工,把今天的数据和历史数据对接,把现在的数据和领导和企业机构关心的指标关联起来,把面向业务的数据转换成面向管理的数据,辅助于领导层的决策,真正实现了从数据到知识的转变,这样的数据资源体系是非常适合管理和决策使用的。
在宏观层面,大数据使经济决策部门可以更敏锐地把握经济走向,制定并实施科学的经济政策;而在微观方面,大数据可以提高企业经营决策水平和效率,推动创新,给企业、行业领域带来价值。
三、大数据创新企业管理模式,挖掘管理潜力
当下,有多少企业还会要求员工像士兵一样无条件服从上级的指示?还在通过大量的中层管理者来承担管理下属和传递信息的职责?还在禁止员工之间谈论薪酬等信息?《华尔街日报》曾有一篇文章就说,NO。这一切已经过时了,严格控制,内部猜测和小道消息无疑更会降低企业效率。一个管理学者曾经将企业内部关系比喻为成本和消耗中心,如果内部都难以协作或者有效降低管理成本和消耗,你又如何指望在今天瞬息万变的市场和竞争环境下生存、创新和发展呢?
我们试着想想,当购物、教育、医疗都已经要求在大数据、移动网络支持下的个性化的时代,创新已经成为企业的生命之源,我们还有什么理由还要求企业员工遵循工业时代的规则,强调那种命令式集中管理、封闭的层级体系和决策体制吗?当个体的人都可以通过佩戴各种传感器,搜集各种来自身体的信号来判断健康状态,那样企业也同样需要配备这样的传感系统,来实时判断其健康状态的变化情况。
今天信息时代机器的性能,更多决定于芯片,大脑的存储和处理能力,程序的有效性。因而管理从注重系统大小、完善和配合,到注重人,或者脑力的运用,信息流程和创造性,以及职工个性满足、创造力的激发。
在企业管理的核心因素中,大数据技术与其高度契合。管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以标称大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。
大数据时代,数据在各行各业渗透着,并渐渐成为企业的战略资产。数据分析挖掘不仅本身能帮企业降低成本:比如库存或物流,改善产品和决策流程,寻找到并更好的维护客户,还可以通过挖掘业务流程各环节的中间数据和结果数据,发现流程中的瓶颈因素,找到改善流程效率,降低成本的关键点,从而优化流程,提高服务水平。大数据成果在各相关部门传递分享,还可以提高整个管理链条和产业链条的投入回报率。
四、大数据变革商业模式催生产品和服务的创新
在大数据时代,以利用数据价值为核心,新型商业模式正在不断涌现。能够把握市场机遇、迅速实现大数据商业模式创新的企业,将在IT发展史上书写出新的传奇。
大数据让企业能够创造新产品和服务,改善现有产品和服务,以及发明全新的业务模式。回顾IT历史,似乎每一轮IT概念和技术的变革,都伴随着新商业模式的产生。如个人电脑时代微软凭借操作系统获取了巨大财富,互联网时代谷歌抓住了互联网广告的机遇,移动互联网时代苹果则通过终端产品的销售和应用商店获取了高额利润。
纵观国内,以金融业务模式为例,阿里金融基于海量的客户信用数据和行为数据,建立了网络数据模型和一套信用体系,打破了传统的金融模式,使贷款不再需要抵押品和担保,而仅依赖于数据,使企业能够迅速获得所需要的资金。阿里金融的大数据应用和业务创新,变革了传统的商业模式,对传统银行业带来了挑战。
还有,大数据技术可以有效的帮助企业整合、挖掘、分析其所掌握的庞大数据信息,构建系统化的数据体系,从而完善企业自身的结构和管理机制;同时,伴随消费者个性化需求的增长,大数据在各个领域的应用开始逐步显现,已经开始并正在改变着大多数企业的发展途径及商业模式。如大数据可以完善基于柔性制造技术的个性化定制生产路径,推动制造业企业的升级改造;依托大数据技术可以建立现代物流体系,其效率远超传统物流企业;利用大数据技术可多维度评价企业信用,提高金融业资金使用率,改变传统金融企业的运营模式等。
过去,小企业想把商品卖到国外要经过国内出口商、国外进口商、批发商、商场,最终才能到达用户手中,而现在,通过大数据平台可以直接从工厂送达到用户手中,交易成本只是过去的十分之一。以我们熟悉的网购平台淘宝为例,每天有数以万计的交易在淘宝上进行,与此同时相应的交易时间、商品价格、购买数量会被记录,更重要的是,这些信息可以与买方和卖方的年龄、性别、地址、甚至兴趣爱好等个人特征信息相匹配。运用匹配的数据,淘宝可以进行更优化的店铺排名和用户推荐;商家可以根据以往的销售信息和淘宝指数进行指导产品供应、生产和设计,经营活动成本和收益实现了可视化,大大降低了风险,赚取更多的钱;而与此同时,更多的消费者也能以更优惠的价格买到了更心仪的产品。
维克托曾预言2020年,大数据时代就会真正来临。在那个时候,最经常会用到的应用就是个性化生活所需要的,尤其是智能手机的应用。
五、大数据让每个人更加有个性
对个体而言,大数据可以为个人提供个性化的医疗服务。比如,我们的身体功能可能会通过手机、移动网络进行监控,一旦有什么感染,或身体有什么不适,我们都可以通过手机得到警示,接着信息会和手机库进行对接或者咨询相关专家,从而获得正确的用药和其他治疗。
过去我们去看病,医生只能对我们的当下身体情况做出判断,而在大数据的帮助下,将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。还可以在患者发生疾病症状前,提供早期的检测和诊断。早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。
还有,在传统的教育模式下,分数就是一切,一个班上几十个人,使用同样的教材,同一个老师上课,课后布置同样的作业。然而,学生是千差万别的,在这个模式下,不可能真正做到“因材施教”。
如一个学生考了90分,这个分数仅仅是一个数字,它能代表什么呢?90分背后是家庭背景、努力程度、学习态度、智力水平等,把它们和90分联系在一起,这就成了数据。大数据因其数据来源的广度,有能力去关注每一个个体学生的微观表现:如他在什么时候开始看书,在什么样的讲课方式下效果最好,在什么时候学习什么科目效果最好,在不同类型的题目上停留多久等等。当然,这些数据对其他个体都没有意义,是高度个性化表现特征的体现。同时,这些数据的产生完全是过程性的:课堂的过程,作业的情况,师生或同学的互动情景……而最有价值的是,这些数据完全是在学生不自知的情况下被观察、收集的,只需要一定的观测技术与设备的辅助,而不影响学生任何的日常学习与生活,因此它的采集也非常的自然、真实。
在大数据的支持下,教育将呈现另外的特征:弹性学制、个性化辅导、社区和家庭学习、每个人的成功……大数据支撑下的教育,就是要根据每一个人的特点,释放每一个人本来就有的学习能力和天分。
此外,维克托还建议中国政府要进一步补录数据库。政府以前提供财政补贴,现在可以提供数据库,打造创意服务。在美国就有完全基于政府提供的数据库,如为企业提供机场、高速公路的数据,提供航班可能发生延误的概率,这种服务这可以帮助个人、消费者更好地预测行程,这种类型的创新,就得益于公共的大数据。
六、智慧驱动下的和谐社会
美国作为全球大数据领域的先行者,在运用大数据手段提升社会治理水平、维护社会和谐稳定方面已先行实践并取得显着成效。
近年来,在国内,“智慧城市”建设也在如火如荼的开展。截止去年底,我国的国家智慧城市试点已达193个,而公开宣布建设智慧城市的城市超过400个。智慧城市的概念包含了智能安防、智能电网、智慧交通、智慧医疗、智慧环保等多领域的应用,而这些都要依托于大数据,可以说大数据是“智慧”的源泉。
在治安领域,大数据已用于信息的监控管理与实时分析、犯罪模式分析与犯罪趋势预测,北京、临沂等市已经开始实践利用大数据技术进行研判分析,打击犯罪。
在交通领域,大数据可通过对公交地铁刷卡、停车收费站、视频摄像头等信息的收集,分析预测出行交通规律,指导公交线路的设计、调整车辆派遣密度,进行车流指挥控制,及时做到梳理拥堵,合理缓解城市交通负担。
在医疗领域,部分省市正在实施病历档案的数字化,配合临床医疗数据与病人体征数据的收集分析,可以用于远程诊疗、医疗研发,甚至可以结合保险数据分析用于商业及公共政策制定等等。
伴随着智慧城市建设的火热进行,政府大数据应用已进入实质性的建设阶段,有效拉动了大数据的市场需求,带动了当地大数据产业的发展,大数据在各个领域的应用价值已得到初显。
七、大数据如何预言未来?
著名的玛雅预言,尽管背后有着一定的天文知识基础,但除催生了一部很火的电影《2012》外,其实很多人的生活尚未受到太大的影响。现在基于人类地球上的各种能源存量,以及大气受污染、冰川融化的程度,我们获取真的可以推算出按照目前这种工业生产、生活的方式,人类在地球上可以存活的年数。《第三次工业革命》中对这方面有很深入的解释,基于精准预测,发现现有模式是死路一条后,人类就可以进行一些改变,这其实就是一种系统优化。
这种结合之前情景研究,不断进行系统优化的过程,将赋予系统生命力,而大数据就是其中的血液和神经系统。通过对大数据的深入挖掘,我们将会了解系统的不同机体是如何相互协调运作的,同样也可以通过对他们的了解去控制机体的下一个操作,甚至长远的维护和优化。从这个角度讲,基于网络的大数据可以看作是人类社会的神经中枢,因为有了网络和大数据人类社会才开始灵活起来,而不像以前那么死板。基于大数据,个体之间相互连接有了基础,相互的交互过程得到了简化,各种交易的成本减少很多。厂家等服务提供方可以基于大数据研发出更符合消费者需求的服务,机构内部的管理也更为细致,有了血液和神经系统的社会才真的拥有生命活力。
结语
透过以上这些行业典型的大数据应用案例和场景,不难悟出大数据的典型的核心价值。大数据是看待现实的新角度,不仅改变了市场营销、生产制造,同时也改变了商业模式。数据本身就是价值来源,这也就意味着新的商业机会,没有哪一个行业能对大数据产生免疫能力,适应大数据才能在这场变革中继续生存下去。
当下,正处于数据大爆发的时代,如何获取这些数据并对这些数据进行有效分析就显得尤为重要。各种企业机构之间的竞争非常残酷。如何基于以往的运行数据,对未来的运行模式进行预测,从而提前进行准备或者加以利用、调整,对很多企业机构其实是一种生死存亡的问题。这样一种情况同样适用于国家级别。正因为这一点,目前无论是在企业级别还是国家级别都开始研究、部署大数据。
可见,大数据应用已经凸显出了巨大的商业价值,触角已延伸到零售、金融、教育、医疗、体育、制造、影视、政府等各行各业。你可能会问这些具体价值实现的推动者有哪些呢?就是所谓的大数据综合服务提供商,从实践情况看,主要包括大数据解决方案提供商、大数据处理服务提供商和数据资源提供商三个角色,分别向大数据的应用者提供大数据服务、解决方案和数据资源。
未来大数据还将彻底改变人类的思考模式、生活习惯和商业法则,将引发社会发展的深刻变革,同时也是未来最重要的国家战略之一。

⑶ 美国大数据第三轮行动中解决什么问题

美国大数据第三轮行动中解决大数据发展问题。2012年白宫科技政策办公室发布《大数据研究发展倡议》,以提升从海量和复杂数据中获取知识、挖掘价值的能力,进而推动科学与工程领域创新步伐加速。第二步调整政策框架与法律规章,积极应对大数据发展带来的隐私保护等问题。2014年美国发布《大数据:把握机遇,守护价值》白皮书,再次重申要把握大数据可为经济社会发展带来创新动力的重大机遇,同时也要高度警惕大数据应用所带来的隐私、公平等问题,以积极、务实的态度深刻剖析可能面临的治理挑战。

⑷ 大数据应用现状 从发现价值到创造价值

大数据应用现状:从发现价值到创造价值

从发现价值到创造价值, 大数据将成为“互联网+” 产业升级的驱动力。 过去,数据的价值主要应用在决策领域,典型应用是商业智能(BI, Business Intelligence)在企业经营管理层面的应用, 即通过数据收集、管理和分析等方法,将数据转化为知识, 发现数据的价值,进而提供决策支持。随着数据体量的不断增加和处理数据能力的提升, 大数据已经成为一类新的资产, 其应用场景正在不断扩宽,除了决策支持、 提高效率等发现价值功能之外,大数据还能创造价值的功能: 一方面,大数据可以帮助提供传统模式下所无法提供的产品, 满足用户需求, 例如大数据完善个人征信体系,帮助金融机构提供消费金融产品;又如千方旗下的掌城科技通过浮动车模型提供实时交通信息服务;另一方面,大数据还可以创造需求, 例如,大数据可以助力实现人工智能, 这是新技术创造的新需求。

大数据延伸 BI 内涵, 提高企业效率

大数据分析结果为企业经营决策提供支持,帮助企业提高效率,这实际上是传统 BI 范畴的延伸。 在人口红利逐渐消失的背景下, 我国企业传统的粗放型模式受到了 越来越大的挑战, 互联网与产业结合背景下的大数据应用将有助于提升企业经营管理效率,助力企业经营从粗放型向集约型转型, 实现产业升级。

大数据促进商业智能的加速发展,这是因为:第一,大数据的分析过程和结果更具有灵活性、可靠性和价值性;第二,大数据的存在提高了企业的商业智能意识, 引导企业主动寻求商业智能的帮助。一些大型企业往往拥有几十个甚至数百个信息系统,其所包含的大量数据反映了企业的日常经营情况,若能加以分析和利用,将为企业创造巨大的价值。

目前,大数据应用可以帮助企业实现户关系管理、盈利能力分析、控制成本、衡量绩效等功能:

客户关系管理(CRM):通过客户信息统计,使企业有针对性的根据客户需求来定制产品和服务,提高客户忠诚度,还可以通过分析偏好挖掘潜在客户;

赢利能力分析:帮助企业分析利润来源、各类产品赢利能力、费用支出是否与销售成正比等;

控制成本:根据统计信息优化流程,如降低库存、减少损耗等,助于企业控制成本;

绩效管理:利于商业智能确立对员工的期望,帮助他们跟踪并管理其绩效。

麦肯锡调查显示, 数据挖掘的商业价值巨大, 大数据在美国医疗行业每年能提高 0.7%的生产力,创造约 3000 亿美元的价值;在欧洲公共管理部门 ,每年能提高 0.5%的生产力,创造 2500 亿欧元的价值;在美国零售业,每年能提高 0.5%-1.0%的生产力 和 60%的净利率。

大数据满足需求, 市场空间巨大

大数据可以帮助提供过去所无法提供的产品, 满足用户需求。 这种模式在传统产业中比较常见, 过去,一些行业的用户需求虽然存在, 但是由于缺乏有效的技术手段,导致市场参与者无法提供合适的产品迎合市场需求。大数据技术兴起后,将带动一系列创新产品推出市场, 这在各行各业都能找到案例,考虑到传统产业的广度,这将是是一个正在挖掘的巨大市场。

以交通领域的实时交通信息服务和车险定价为例,这两个细分领域的需求本来就存在,但在大数据兴起之前,传统模式无法提供最优的产品,而大数据技术下的产品优化可以更好的满足需求,提高用户体验。

千方科技旗下掌城科技通过大数据技术提供实时交通信息服务。 掌城科技通过向出租车公司和公交车公司购买数据、 向政府部门臵换数据、利用千方自有数据的形式汇集城际交通数据, 基于浮动车的算法模型,对数据进行二次开发,以建立实时交通信息服务平台。 目前, 掌城科技运营着北京、上海等全国 30 余个大中城市的实时路况信息,准确率极高。 目前,千方已将交通数据收集从城际交通扩大至整个陆路交通和航空等领域,目标通过大数据技术提供更加全面的公众智慧出行服务。

大数据技术将参与车险定价,使定价更加科学。随着车联网的兴起,OBD(On-BoardDiagnostic车载诊断系统)等联网的车载设备,成为车联网中的智能节点,连接运动中的人、车和道路环境,读取行车数据,从而分析出车辆能耗、故障等车况信息以及驾驶者的行车习惯:通过G-sensor监测车主的诸如急刹车、急加速和急转弯等危险行为,通过破解Can-bus协议监测车主的诸如转弯不打灯、驻车不拉手刹等不良驾驶习惯,通过GPS获取车辆的位臵信息和里程数据,这些数据将改善车险定价技术与核保政策,提升精准定价能力。

大数据创造需求,拓宽市场边界

大数据创新产品拓宽市场边界, 供给创造需求。 大数据创造价值功能, 除了提供产品满足市场已经存在的需求外, 基于大数据的新产品还将创造新供给,带动新需求, 打破原有的市场边界,想象空间巨大:

一方面大数据能够前所未有的精准洞悉现在,深入挖掘现有商业价值:

例如 Airbnb 拥有海量的独有数据,包括旅游地、用户评论、房源描述、社区信息等, Airbnb还有一支队伍去各地和当地人交流,搜集所有的相关历史数据。当用户在搜寻一个住宿的地方时, Airbnb 利用大数据分析通过 Airbnb 社区告诉未来的客人哪里是更好的住宿地,甚至能够帮助用户更深入地了解某个地点,包括地理信息无法描述的文化或宗教上的区分。 Uber 则是利用地理位臵和其用户的综合数据,大大缩短司机开着空车去接下一位乘客的时间和乘客等待的时间。

另一方面大数据能够空前准确的预测未来,从而能获得前瞻性的商业价值:

例如社交数据分析公司 Topsy 准确预测了 iPhone 4S 上市后的市场表现,同时还成功预测美国大选结果和奥斯卡颁奖结果。它在商业分析、市场销售、新闻等领域拥有很高价值,因而苹果以 2 亿多美元的价格收购 Topsy。

大数据产业链分析

大数据产业链的主要参与方

大数据产业链可以分为四个部分: 数据采集和整合、数据存储和运算、数据分析和挖掘、数据应和消费。数据采集和整合是指通过技术手段从互联网、 移动终端、 物联网、 应用软件等采集数据,然后把数据按照一定的规则进行存储和运算,再按照需求调用数据并进行智能分析和挖掘,将数据转化成价值信息或者产品,为决策支持、提升效率、 创新产品提供依据。

数据资产开始成为核心资源

拥有数据,大数据时代的王者。在大数据时代, 数据资产已经成为核心资源, 2012 年,奥巴马政府明确提出 将“大数据战略”上升为国家意志,并将数据定义为“未来的新石油”, 因此,拥有数据可谓是大数据时代的王者。 拥有数据的机构可以分为三类:

一是既有数据、 又有大数据思维的互联网公司,如阿里巴巴、腾讯、京东、 Google、 Amazon等,在互联网端积累了大量的数据资源,而且此类公司 IT 起家, 对大数据有天生敏锐的嗅觉, 大数据技术也相对成熟, 因此,互联网公司 可谓是最早使用大数据的机构,成为大数据应用的先行者;

二是传统软件公司转型互联网,通过 SaaS 模式为用户提供服务, 例如用友软件推出畅捷通,以云模式为小微企业提供财务管理应用, 也可以认为是既有数据、 又有大数据思维的模式;

三是拥有数据,缺乏大数据思维的机构,这类机构手里掌握着大量的数据,但是没有能力自己有效利用, 例如金融机构、 运营商、政府部门等。

使用数据,数据变现的推动者。对于手里掌握大量数据,但没有能力变现的机构而言,需要专业的第三方公司提供大数据服务,主要是各类 IT 咨询机构和行业应用软件厂商,尤其是行业应用软件厂商, 在各自的领域具有天然的卡位优势: 软件公司提供了行业应用软件和相关的运营维护, 行业应用软件本身就是重要的数据来源,软件公司 属于不拥有数据,但可以接触到数据的机构, 且天然拥有大数据思维和大数据技术,以及良好的行业客户关系,从信息系统建设延伸到大数据运营顺理成章。因此,各个细分行业的应用软件提供商有望成为传统拥有数据机构的重要合作伙伴, 助力其探索大数据价值变现。

大数据技术是重要生产力

大数据应用好坏的关键除了 数据本身,还在于大数据技术, 大数据技术包括数据采集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现等环节,涉及的技术环节极广, 随着数据体量增大和数据复杂性程度提高,大数据技术本身也处于快速迭代的发展过程中。值得一提的是,大数据技术落地的一大重要因素在于如何实现技术与业务的融合, 这背后需要深厚的业务理解, 对于既有数据、 又有大数据思维的互联网公司 来说,技术和业务本身是相互驱动、共同发展的, 对于拥有数据,缺乏大数据思维的机构而言, 在行业深耕多难的应用软件提供商则是最好的选择。

以上是小编为大家分享的关于 大数据应用现状 从发现价值到创造价值的相关内容,更多信息可以关注环球青藤分享更多干货

⑸ 美国利用大数据进行国家治理的实例有哪些

虽然我没在 美国待过,但是知道一些。

  1. 利用大数据的数据分析,已经可以进行信用卡诈骗监测

  2. Google无人车也算是大数据一部分

  3. 提前预知犯罪的发生

  4. 人脸识别,在公众场所识别犯罪分子。

⑹ 谈谈美国是如何运用大数据来维护国家安全。300字

美国政府将大数据视为强化美国竞争力的关键因素之一,把大数据研究和生产计划提高到版国家战略层面。3月29日,权奥巴马政府宣布投资2亿美元启动《大数据研究和发展计划》,希望增强收集海量数据、分析萃取信息的能力。以美国科学与技术政策办公室(OSTP)为首,国土安全部、美国国家科学基金会、国防部、美国国家安全局、能源部等已经开始了与民间企业或大学开展多项大数据相关的各种研究开发。美国政府为之拨出超过2亿美元的研究开发预算。奥巴马指出,通过提高从大型复杂的数字数据集中提取知识和观点的能力,承诺帮助加快在科学与工程中的步伐,改变教学研究,加强国家安全。据悉,美国国防部已经在积极部署大数据行动,利用海量数据挖掘高价值情报,提高快速响应能力,实现决策自动化。而美国中央情报局通过利用大数据技术,将分析搜集的数据时间由63天缩减到27分钟。

⑺ 大数据在金融行业的应用与挑战

大数据在金融行业的应用与挑战
A 具有四大基本特征
金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。全球最大的金融数据公司Bloomberg在1981年成立时“大数据”概念还没有出现。Bloomberg的最初产品是投资市场系统(IMS),主要向各类投资者提供实时数据、财务分析等。
随着信息时代降临,1983年估值仅1亿美元的Bloomberg以30%股份的代价换取美林3000万美元投资,先后推出Bloomberg Terminal、News、Radio、TV等各类产品。1996年Bloomberg身价已达20亿美元,并以2亿美元从美林回购了10%的股份。2004年Bloomberg在纽约曼哈顿中心建成246米摩天高楼。到2008年次贷危机,美林面临崩盘,其剩余20%的Bloomberg股份成为救命稻草。Bloomberg趁美林之危赎回所有股份,估值跃升至225亿美元。2016年Bloomberg全球布局192个办公室,拥有1.5万名员工,年收入约100亿美元,估值约1000亿美元,超过同年市值为650亿美元的华尔街标杆高盛。
大数据概念形成于2000年前后,最初被定义为海量数据的集合。2011年,美国麦肯锡公司在《大数据的下一个前沿:创新、竞争和生产力》报告中最早提出:大数据指大小超出典型数据库软件工具收集、存储、管理和分析能力的数据集。
具体来说,大数据具有四大基本特征:
一是数据体量大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量。
二是数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据。
三是处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是数据的真实性高,随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限被打破,信息的真实性和安全性显得极其重要。
而相比其他行业,金融数据逻辑关系紧密,安全性、稳定性和实时性要求更高,通常包含以下关键技术:数据分析,包括数据挖掘、机器学习、人工智能等,主要用于客户信用、聚类、特征、营销、产品关联分析等;数据管理,包括关系型和非关系型数据、融合集成、数据抽取、数据清洗和转换等;数据使用,包括分布式计算、内存计算、云计算、流处理、任务配置等;数据展示,包括可视化、历史流及空间信息流展示等,主要应用于对金融产品健康度、产品发展趋势、客户价值变化、反洗钱反欺诈等监控和预警。
B 重塑金融行业竞争新格局
“互联网+”之后,随着世界正快速兴起“大数据+”,金融行业悄然出现以下变化:
大数据特征从传统数据的“3个V”增加到“5个V”。在数量(Volume)、速度(Velocity)、种类(Variety)基础上,进一步完善了价值(Value)和真实性(Veracity),真实性包括数据的可信性、来源和信誉、有效性和可审计性等。
金融业按经营产品分类变为按运营模式分类。传统金融业按经营产品划分为银行、证券、期货、保险、基金五类,随着大数据产业兴起和混业经营的发展,现代金融业按运营模式划分为存贷款类、投资类、保险类三大类别。
大数据市场从垄断演变为充分市场竞争。全球大数据市场企业数量迅速增多,产品和服务的差异增大,技术门槛逐步降低,市场竞争日益激烈。行业解决方案、计算分析服务、存储服务、数据库服务和大数据应用成为市场份额排名最靠前的五大细分市场。
大数据形成新的经济增长点。Wikibon数据显示,2016年,全球大数据硬件、软件和服务整体市场增长22%达到281亿美元,预计到2027年,全球在大数据硬件、软件和服务上的整体开支的复合年增长率为12%,将达到大约970亿美元。
数据和IT技术替代“重复性”业务岗位。数据服务公司Eurekahedge通过追踪23家对冲基金,发现5位对冲基金经理薪金总额为10亿美元甚至更高。过去10年,靠数学模型分析金融市场的物理学家和数学家“宽客”一直是对冲基金的宠儿,其实大数据+人工智能更精于此道。高盛的纽约股票现金交易部门2000年有600名交易员而如今只剩两人,其任务全由机器包办,专家称10年后高盛员工肯定比今天还要少。
美国大数据发展走在全球前列。美国政府宣称:“数据是一项有价值的国家资本,应对公众开放,而不是将其禁锢在政府体制内。”作为大数据的策源地和创新引领者,美国大数据发展一直走在全球最前列。自20世纪以来,美国先后出台系列法规,对数据的收集、发布、使用和管理等做出具体的规定。2009年,美国政府推出Data.gov政府数据开放平台,方便应用领域的开发者利用平台开发应用程序,满足公共需求或创新创业。2010年,美国国会通过更新法案,进一步提高了数据采集精度和上报频度。2012年3月,奥巴马政府推出《大数据研究与开发计划》,大数据迎来新一轮高速发展。
英国是欧洲金融中心,大数据成为其领先科技之一。2013年,英国投资1.89亿英镑发展大数据。2015年,新增7300万英镑,创建了“英国数据银行”data.gov.uk网站。2016年,伦敦举办了超过22000场科技活动,同年,英国数字科技投资逾68亿英镑,而收入则超过1700亿英镑。另外,英国统计局利用政府资源开展“虚拟人口普查”,仅此一项每年节省5亿英镑经费。
C 打造高效金融监管体系
大数据用已发生的总体行为模式和关联逻辑预测未来,决策未来,作为现代数字科技的核心,其灵魂就是——预测。
侦测、打击逃税、洗钱与金融诈骗
全球每年因欺诈造成的经济损失约3.7万亿美元,企业因欺诈受损通常为年营收额的5%。全球最大软件公司之一美国SAS公司与税务、海关等政府部门和全球各国银行、保险、医疗保健等机构合作,有效应对日益复杂化的金融犯罪行为。如在发放许可之前,通过预先的数据分析检测客户是否有过行受贿、欺诈等前科,再确定是否发放借贷或海关通关。SAS开发的系统已被国际公认为统计分析的标准软件,在各领域广泛应用。英国政府利用大数据检测行为模式检索出200亿英镑的逃税与诈骗,追回了数十亿美元损失。被福布斯评为美国最佳银行的德克萨斯资本银行(TCBank),不断投资大数据技术,反金融犯罪系统与银行发展同步,近3年资产从90亿美元增至210亿美元。荷兰第三大人寿保险公司CZ依靠大数据对骗保和虚假索赔行为进行侦测,在支付赔偿金之前先期阻断,有效减少了欺诈发生后的司法补救。
大数据风控建立客户信用评分、监测对照体系
美国注册舞弊审核师协会(ACFE)统计发现,缺乏反欺诈控制的企业会遭受高额损失。美国主流个人信用评分工具FICO能自动将借款人的历史资料与数据库中全体借款人总体信用习惯相比较,预测借款人行为趋势,评估其与各类不良借款人之间的相似度。美国SAS公司则通过集中浏览和分析评估客户银行账户的基本信息、历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如搜索到该客户从新出现的国家为特有用户转账,或在新位置在线交易等),进行实时反欺诈分析。
美国一家互联网信用评估机构通过分析客户在Facebook、Twitter等社交平台留下的信息,对银行的信贷和投保申请客户进行风险评估,并将结果出售给银行、保险公司等,成为多家金融机构的合作伙伴。
D 数据整合困难
应用经济指标预测系统分析市场走势
IBM使用大数据信息技术成功开发了“经济指标预测系统”,该系统基于单体数据进行提炼整合,通过搜索、统计、分析新闻中出现的“新订单”等与股价指标有关的单词来预测走势,然后结合其他相关经济数据、历史数据分析其与股价的关系,从而得出行情预测结果。
追踪社交媒体上的海量信息评估行情变化
当今搜索引擎、社交网络和智能手机上的微博、微信、论坛、新闻评论、电商平台等每天生成几百亿甚至千亿条文本、音像、视频、数据等,涵盖厂商动态、个人情绪、行业资讯、产品体验、商品浏览和成交记录、价格走势等,蕴含巨大财富价值。
2011年5月,规模为4000万美元的英国对冲基金DC Markets,通过大数据分析Twitter的信息内容来感知市场情绪指导投资,首月盈利并以1.85%的收益率一举战胜其他对冲基金仅0.76%的平均收益率。
美国佩斯大学一位博士则利用大数据追踪星巴克、可口可乐和耐克公司在社交媒体的围观程度对比其股价,证明Facebook、Twitter和 Youtube上的粉丝数与股价密切相关。
提供广泛的投资选择和交易切换
日本个人投资理财产品Money Design在应用程序Theo中使用算法+人工智能,最低门槛924美元,用户只需回答风险承受水平、退休计划等9个问题,就可使用35种不同货币对65个国家的1.19万只股票进行交易和切换,年度管理费仅1%。Money Design还能根据用户投资目标自动平衡其账户金额,预计2020年将超过2万亿美元投资该类产品。
利用云端数据库为客户提供记账服务
日本财富管理工具商Money Forward提供云基础记账服务,可管理工资、收付款、寄送发票账单、针对性推送理财新项目等,其软件系统连接并整合了2580家各类金融机构的各类型帐户,运用大数据分析的智能仪表盘显示用户当前财富状况,还能分析用户以往的数据以预测未来的金融轨迹。目前其已拥有50万商家和350万个体用户,并与市值2.5万亿美元的山口金融集团联合开发新一款APP。
为客户定制差异化产品和营销方案
金融机构迫切需要掌握更多用户信息,继而构建用户360度立体画像,从而对细分客户进行精准营销、实时营销、智慧营销。
一些海外银行围绕客户“人生大事”,分析推算出大致生活节点,有效激发其对高价值金融产品的购买意愿。如一家澳大利亚银行通过大数据分析发现,家中即将诞生婴儿的客户对寿险产品的潜在需求最大,于是通过银行卡数据监控准妈妈开始购买保胎药品和婴儿相关产品等现象,识别出即将添丁的家庭,精准推出定制化金融产品套餐,受到了客户的积极响应,相比传统的短信群发模式大幅提高了成功率。
催生并支撑人工智能交易
“量化投资之王”西蒙斯被公认为是最能赚钱的基金经理人,自1988年创立文艺复兴科技公司的旗舰产品——大奖章基金以来,其凭借不断更新完善的大数据分析系统,20年中创造出35%的年均净回报率,比索罗斯同期高10%,比股神巴菲特同期高18%,成为有史以来最成功的对冲基金,并于1993年基金规模达2.7亿美元时停止接受新投资。在美国《Alpha》杂志每年公布的对冲基金经理排行榜上,西蒙斯2005年、2006年分别以15亿美元、17亿美元净收入稳居全球之冠,2007年以13亿美元位列第五,2008年再以25亿美元重返榜首。
推动金融产品和服务创新
E 面临三大挑战
目前,全球各行业数据量的增长速度惊人,在我国尤其集中在金融、交通、电信、制造业等重点行业,信息化的不断深入正在进一步催生更多新的海量数据。
据统计,2015年中国的数据总量达到1700EB以上,同比增长90%,预计到2020年这一数值将超过8000EB。以银行业为例,每创收100万元,银行业平均产生130GB的数据,数据强度高踞各行业之首。但在金融企业内部数据处于割裂状态,业务条线、职能部门、渠道部门、风险部门等各个分支机构往往是数据的真正拥有者,缺乏顺畅的共享机制,导致海量数据往往处于分散和“睡眠”状态,虽然金融行业拥有的数据量“富可敌国”,但真正利用时却“捉襟见肘”。
数据安全暗藏隐患
大数据本质是开放与共享,但如何界定、保护个人隐私权却成为法律难题。大数据存储、处理、传输、共享过程中也存在多种风险,不仅需要技术手段保护,还需相关法律法规规范和金融机构自律。多项实际案例表明,即使无害的数据大量囤积也会滋生各种隐患。安全保护对象不仅包括大数据自身,也包含通过大数据分析得出的知识和结论。在线市场平台英国Handshake.uk.com就尝试允许用户协商个人数据被品牌分享所得的报酬。
人才梯队建设任重道远
人才是大数据之本。与信息技术其他细分领域人才相比,大数据发展对人才的复合型能力要求更高,需要掌握计算机软件技术,并具备数学、统计学等方面知识以及应用领域的专业知识。

⑻ 大数据的应用领域有哪些

1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.了解和优化业务流程
大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
5.提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。

⑼ Tiger:我眼中的大数据-新生大学分享(1)

【作者按:本文为2016/10/15晚在新生大学社群的公开分享,旨在和大家探讨个人对大数据的一点浅见。虽然专业知识和写作水平有限,但哪怕能帮到一个人亦会欣慰,同时也期待能得到更多反馈。】

** 1. 认知误区**

在日常生活和工作中,我发现很多人对大数据的理解存在如下两个误区 :

现在很多人,言必称大数据。可是,大数据这个说法本身非常模糊,不知道他们在说大数据时具体指什么。这让我想起许多年前在国内流行的另外一个概念:纳米,我相信你一定很耳熟。那会儿,随便逛个商场或者看个电视,你都会发现铺天盖地的打着纳米旗号的广告袭来:什么“纳米冰箱”,“纳米空调”,“纳米彩电”。。。 就好像纳米是能治百病的灵丹妙药,任何东西只要贴上“纳米”的标签就好使了,就升值了,就高大上了。
今天,很多人对待大数据的态度和纳米一样,人云亦云,自我忽悠,然后互相忽悠。

当你问很多言必称大数据的人:大数据到底是什么?不知道大数据是什么?大数据是怎么用的?大数据到底对你的生活带来了哪些收益和影响呢?80%的人都会一脸懵逼,他们根本说不出所以然。当然,我不是说每个人都这样,但这样的人的确不少。

个人以为,实事求是的态度很有必要,理应推崇。
知之为知之,不知就知乎之。
不知道没关系,但如果硬是为了虚荣心去说大数据,为赋新词强说愁,这样的态度没有益处。

如果你真的觉得大数据这个东西非常好,既有趣也有用,那我们就卷起袖口,去搞懂细节,搞懂它的前世今生,乃至它未来的发展趋势。这样的态度既接地气,更能增加个人价值。

2. 数据分析

在和大家探讨真正的“大数据”之前,我们先聊聊数据分析。
数据分析实际上已经存在很久了,它根本不是什么新东西。
它不是什么新事物,也并不神秘,一点都不!
你会用Excel罢?Excel就是用来做数据分析的,千万不要小看它。而数据分析比Excel的历史还要早的多。
数据分析大致可分成四个层面:
首先,获得数据;
其次,从数据中提取信息;
再次,从信息中提炼出知识;
最后,通过知识发掘智慧。
总结下来就是:Data(数据)->Information(信息)->Knowledge(知识)->Wisdom(智慧)。
从另外一个角度来看,数据分析是技术和艺术的混合体:

3. 大数据的通用特征

大数据目前没有一个通用的定义,个人理解的大数据具备如下几个特征:

4. 大数据的用途

那么,大数据有什么用呢?其实有很多著名的例子,如Alphago干掉了韩国殿堂级棋手李世石,当然,这样的例子已经烂大街了。
从我个人而言,我会分享一个亚马逊的例子。我是亚马逊的资深用户,用了八年多了,所以它有我很多的消费行为数据,它知道我的购物的爱好、特征和规律。这里有一个截图:

当我登录亚马逊账户之后,它的推荐页面就是上面这样。这个页面上展示的商品就是它根据我之前买过的一些商品,通过推荐算法猜测我喜欢什么种类的商品,还会买什么商品。总之就是通过已买商品的各个特征去给你做推荐。

另外,大数据还可以用来找男女朋友。这里也有一个真实的故事:大概在前几年,美国的加州大学洛杉矶分校(UCLA)有个数学系的博士生,大龄单身宅男,就为找女朋友的事情发愁。但他是个极客,就想办法写了一个程序(爬虫),爬虫里面设定了许多符合他个人喜好的规则,然后用这个爬虫到一些婚恋网站上去爬取目标对象。这样就找到一些符合他喜好的目标对象,同时,在这个过程中自然排除掉了很多不符合他设定参数的目标。通过和筛选后的目标对象约会,最后他果然找到一个非常合适的女朋友,然后快乐地在一起。

大数据的应用实例还有很多,曾经在2012年在纽约时报上登过一篇报道叫《大公司如何窃取你的秘密?》,文中一个例子就是关于Target超市的大数据应用(美国一家超大规模的连锁超市)。报道称Target给明尼苏达州一户人家的女儿寄婴儿用品的优惠券,但是这个女孩还是高中生。他爸爸看到优惠券后非常震怒,认为有诱导未成年人怀孕的嫌疑,就去找当地超市理论。当时超市的经理比较诚恳,一脸懵逼地给顾客道歉。后来,这个父亲却主动打电话给超市过来道歉,说回家和女儿交流后发现她真的怀孕了。

剧情180度大反转!

这到底是怎么回事?原来,是Target超市的数据部门开发的怀孕预测模型,根据算法结合购物记录发现这个女孩极有可能怀孕。所以,在得到这样一个判断后,他们的营销部门就给这样的潜在的目标客户精准推送母婴商品的优惠券。这事听起来还是蛮可怕的,大数据虽然没见过你,但它可能对你了如指掌,知道你是什么样的人,家住哪,收入什么水平,开什么样的车,穿什么衣服,抽什么烟等等。

大数据甚至还可以做舆情监督和民意调查。比如说,微信在2016年就做了一个大数据分析,推测全国人民的心情,最后的结论是,每逢节日大家的心情就特别好,其中中秋和春节的心情格外好;年轻人相对更多愁善感,老年人反而更乐观开朗阳光,很有意思。

根据上面的例子,我们对大数据的用途做一个抽象和总结。以上的例子告诉我们,大数据可以用来 从已知到未知 ,就是说根据手上掌握的一些已知的信息可以推测出未知的规律和趋势,就像亚马逊猜我喜欢购买的商品,或者像Target推测高中生已经怀孕了,或者像UCLA博士生通过写程序找到女朋友。这些都是从已知到未知的推理。
大数据另外一个用途,就是可以 纠正错觉 或错误认知。因为,真实的原始数据是不会撒谎的,这里面包含了许多信息,甚至一些潜在的反常识的东西。就以我曾经做过的一个分析 《顶级风投的宿命》 为例。因为之前有过创业经历,个人会对投融资比较敏感。而当时创投界有所谓的风口论,比如O2O、生鲜电商等,这些方向的互联网公司特别容易拿到融资。那我在做完相关的数据分析之后发现:
真正一流的投资机构从不会赌所谓的风口,他们会坚持去投资一些商业本质更清晰的的公司和业务模式,像电子商务、对企业的服务、文化娱乐等方向。

而这个认识是在我做数据分析之前完全不知道的,可以说颠覆了我此前的认知。进一步,我之前对风口论的认知就是错觉,而这个错觉就被数据分析很好地推翻了。所以,我认为大数据的第二个功能就是纠正错觉。

大数据分析确实有些必备的知识集合,这里有幅来自IBM研究院的图,阐明了数据科学的必备知识领域。

阅读全文

与美国大数据应用相关的资料

热点内容
评论区给一星保护的app是什么 浏览:356
设置怎么没有网络模式 浏览:711
什么app可以借5000 浏览:304
iqoo如何关闭一张卡的数据流量 浏览:212
人物建模教程 浏览:271
有什么ppt免费的网站 浏览:74
声音文件扩展名分别有哪些 浏览:476
复兴号叫外卖用什么App 浏览:478
网上医生app 浏览:307
java创建一个list 浏览:866
鸿蒙系统如何解除桌面文件夹 浏览:128
word嵌套文件打不开 浏览:982
最牛的数据是什么 浏览:291
家庭电脑如何安装数据 浏览:999
用ps如何将文件填充 浏览:986
linux打印文件命令 浏览:853
ps2奥特曼格斗进化重生bios文件 浏览:690
linux必学命令文件处理命令 浏览:896
翻贝花app怎么样 浏览:778
星矿数据是什么网站 浏览:70

友情链接