❶ Python 适合大数据量的处理吗
是否“适合”,不是重要的。重要的是要有人来做这些事。
Python提供的开源算法库(如Pandas\Numpy等)都是内专用的数据容处理的;
各大数据处理程序也基本都会有python的库,方便用python的程序调用。比如大数据处理的hadoop|storm|spark等,专门的数据处理的程序接口如 R\spss||sas等。
当然,理论上python写的代码会慢点,但现在的机器性能完全够用的情况下,提高开发速度的python优势是必然的。
当然,用其他编程语言也一样可以完成这些事。所以重要的要有 “适合” 的人来做,而不是考虑到底用哪个语言。
❷ Python 适合大数据量的处理吗
不知道题主的“大数据量”有多大,而且“合适”具体指什么。
首先肯定一点,python是可以处理的。
但某些时候你可能需要最优的解决方法。
比如处理超过10G的文本,用python和linux下的awk差距就很明显了。
不是说python不够好,而是awk是专门用来干这事的。
❸ Python 适合大数据量的处理吗
适合大数据处理抄。而不是大数袭据量处理。 如果大数据量处理,需要采用并用结构,比如在hadoop上使用python,或者是自己做的分布式处理框架。
大数据量处理使用python的也多。如果单机单核单硬盘大数据量(比如视频)处理。显然只能用c/c++语言了。
大数据与大数据量区别还是挺大的。 大数据意思是大数据的智慧算法和应用。 大数据量,早在50年前就有大数据量处理了。 中国大约在95年左右,大量引入PC机的大数据量处理。一个模型计算数据量大,而且计算时间通常超过一个星期,有时候要计算半年。
气象,遥感,地震,模式识别,模拟计算的数据量与计算量都是巨大的。当时远远超过互联网。 后来互联网发起起来以后数据量才上去。即使如此,数据的复杂度也还是比不上科学研究领域的数据。
python早些年就在科学研究和计算领域有大量的积累。所以现在python应用到大数据领域就是水到渠成。
❹ Python 适合大数据量的处理吗
适合啊,python可以用来处理大数据
❺ python怎么做大数据分析
数据获取:公开数据、Python爬虫外部数据的获取方式主要有以下两种。(推荐学习:Python视频教程)
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urlpb、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显著性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python怎么做大数据分析的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
❻ Python处理大数据的技巧, 2022-06-21
(2022.06.21 Tues)
收集整理了Python处理大量数据的方法,基于Pandas,Numpy等数据处理工具。
用df的 info 方法并指定 memory_usage='deep' 参数,或使用df的 memory_usage 方法,并指定 deep=True 参数。
在读取数据文件的方法中加入 nrows 参数选择前n行数据读取。
也可以跳过m行之后,读取从m行开始的n行
当然也可以在 skiprows 选项中指定范围,保留headers,即保留列名
可以指定 skiprows 中需要忽略的行,用list或array导入即可。下面是随机
如果在这个指令中忽略 nrows=10 指令,则读取跳过100行之后的所有数据。
预先指定读入的列,缩小加载范围
不同的数据类型占用了不同大小的空间,对于尚未读取的数据,可以提前指定类型( dtype );对于已经读入的数据,通过 astype 方法修改成占空间更小的数据类型。
在读入数据之前,通过字典指定每列对应的数据类型,读入之后按照此类型显示数据。
通过改变数据类型减少空间的案例。修改DataFrame d 中的一列 Sctcd ,注意到该列的数据都是1、2、0,而保存类型是object,果断改成 uint8 ,通过 df.info(memory_usage='deep') 方法对比内存的使用情况。仅仅修改了一个列的类型,数据大小减小3MB。
一个特殊而高效的案例是当某一列的值只有有限个,不管是int还是string格式,且该列unque值远小于列的长度,可以将该列转变为 category 类,将节省大量空间。这么做当然也有代价,比如转换成 category 类的数据将无法做max/min等运算,由数字转换成的 category 也不能进行数值运算。这种转换对内存的节省效果显著,下面是对比。 dcol 只有两列, Stkcd 和 Stknme ,查看unique的个数与总长度,显示unique远小于总长度,分别转换为 category 类型,内存节省超过90%!
通过Pandas的 read_csv 方法中的 chunksize 选项指定读取的块大小,并迭代地对读取的块做运算。
1 https冒号//www点dataquest点io/blog/pandas-big-data/
2 CSDN - python 处理大量数据_如何用python处理大量数据
2 How to Work with BIG Datasets on 16G RAM (+Dask), on kaggle
❼ Python 适合大数据量的处理吗
python可以处理大数据,python处理大数据不一定是最优的选择。适合大数据处理。而不是大数据量处理。 如果大数据量处理,需要采用并用结构,比如在hadoop上使用python,或者是自己做的分布式处理框架。
python的优势不在于运行效率,而在于开发效率和高可维护性。针对特定的问题挑选合适的工具,本身也是一项技术能力。
Python处理数据的优势(不是处理大数据):
1. 异常快捷的开发速度,代码量巨少
2. 丰富的数据处理包,不管正则也好,html解析啦,xml解析啦,用起来非常方便
3. 内部类型使用成本巨低,不需要额外怎么操作(java,c++用个map都很费劲)
4. 公司中,很大量的数据处理工作工作是不需要面对非常大的数据的
5. 巨大的数据不是语言所能解决的,需要处理数据的框架(hadoop, mpi)虽然小众,但是python还是有处理大数据的框架的,或者一些框架也支持python。
(7)pythonexport大数据量扩展阅读:
Python处理数据缺点:
Python处理大数据的劣势:
1、python线程有gil,通俗说就是多线程的时候只能在一个核上跑,浪费了多核服务器。在一种常见的场景下是要命的:并发单元之间有巨大的数据共享或者共用(例如大dict)。
多进程会导致内存吃紧,多线程则解决不了数据共享的问题,单独的写一个进程之间负责维护读写这个数据不仅效率不高而且麻烦
2、python执行效率不高,在处理大数据的时候,效率不高,这是真的,pypy(一个jit的python解释器,可以理解成脚本语言加速执行的东西)能够提高很大的速度,但是pypy不支持很多python经典的包,例如numpy。
3. 绝大部分的大公司,用java处理大数据不管是环境也好,积累也好,都会好很多。
参考资料来源:网络-Python
❽ Python 适合大数据量的处理吗
百万级别数据是小数据,python处理起来不成问题,但python处理数据还是有些问题的Python处理大数据的劣势:1、python线程有gil,通俗说就是多线程的时候只能在一个核上跑,浪费了多核服务器。在一种常见的场景下是要命的:并发单元之间有巨大的数据共享或者共用(例如大dict),多进程会导致内存吃紧,多线程则解决不了数据共享的问题,单独的写一个进程之间负责维护读写这个数据不仅效率不高而且麻烦2、python执行效率不高,在处理大数据的时候,效率不高,这是真的,pypy(一个jit的python解释器,可以理解成脚本语言加速执行的东西)能够提高很大的速度,但是pypy不支持很多python经典的包,例如numpy(顺便给pypy做做广告,土豪可以捐赠一下PyPy-Callfordonations)3、绝大部分的大公司,用java处理大数据不管是环境也好,积累也好,都会好很多Python处理数据的优势(不是处理大数据):1、异常快捷的开发速度,代码量巨少2、丰富的数据处理包,不管正则也好,html解析啦,xml解析啦,用起来非常方便3、内部类型使用成本巨低,不需要额外怎么操作(java,c++用个map都很费劲)4、公司中,很大量的数据处理工作工作是不需要面对非常大的数据的5、巨大的数据不是语言所能解决的,需要处理数据的框架(hadoop,mpi。。。。)虽然小众,但是python还是有处理大数据的框架的,或者一些框架也支持python6、编码问题处理起来太太太方便了综上所述:1、python可以处理大数据2、python处理大数据不一定是最优的选择3.python和其他语言(公司主推的方式)并行使用是非常不错的选择4.因为开发速度,你如果经常处理数据,而且喜欢linux终端,而且经常处理不大的数据(100m一下),最好还是学一下python
❾ Python 适合大数据量的处理吗
这要看具体的复应用场景,制从本质上来说,我们把问题分解为两个方面:
1、CPU密集型操作
即我们要计算的大数据,大部分时间都在做一些数据计算,比如求逆矩阵、向量相似度、在内存中分词等等,这种情况对语言的高效性非常依赖,Python做此类工作的时候必然性能低下。
2、IO密集型操作
假如大数据涉及到频繁的IO操作,比如从数据流中每次读取一行,然后不做什么复杂的计算,频繁的输入输出到文件系统,由于这些操作都是调用的操作系统接口,所以用什么语言已经不在重要了。
结论
用Python来做整个流程的框架,然后核心的CPU密集操作部分调用C函数,这样开发效率和性能都不错,但缺点是对团队的要求又高了(尤其涉及到Python+C的多线程操作)...所以...鱼与熊掌不可兼得。
❿ Python 适合大数据量的处理吗
需要澄清两点之后才可以比较全面的看这个问题:
1. 百万行级不算大数据量,以目前的互联网应用来看,大数据量的起点是10亿条以上。
2.
处理的具体含义,如果是数据载入和分发,用python是很高效的;如果是求一些常用的统计量和求一些基本算法的结果,python也有现成的高效的
库,C实现的和并行化的;如果是纯粹自己写的算法,没有任何其他可借鉴的,什么库也用不上,用纯python写是自讨苦吃。