导航:首页 > 网络数据 > 大数据金融段子

大数据金融段子

发布时间:2023-02-06 08:08:00

① 如何缓解大数据带来的尴尬

如何缓解大数据带来的尴尬
关于大数据,最近爆出的一个笑话:在电影业一次内部行业会议上,一位巨无霸级别的电影业发言人说:通过数据挖掘,我们发现不同观众的相关卖品偏好。比如《芳华》的观众比《战狼》观众消费了更多的热饮。这些都是之前我们不知道的,也是无法预测的。
上面这样一个基于两部影片的观影数据分析得出来的结论,看似客观正确,实则因为模型不完善(缺少观影季节的考量)等原因,而闹出笑话。
在近期,我们在给金融科技做盘点的时候,就发现大数据自身就是一个“尴尬”。我们找遍新闻,也没有发现这个词有什么特别值得说道的地方。只能靠着一点时政资料凑齐了这个关键词的盘点。
2017年,大数据如此重要,却又如此没有料。
大数据模型不完善,是因为根基不牢大数据一直不温不火,和他的发展缺陷有很大的关系。虽然大家极力看好它,但未能迎来行业的爆发。
和一些做大数据的朋友聊天,他们甚至会很直白地吐槽自己家的数据模型。
“那些所谓的数据模型之类的鬼东西,你只需瞄上一眼,就能头疼一整天。模型里的数据巨大无比,线索逻辑纷繁复杂。很多数据看似很重要却极其无聊,对结果判断毫无意义,食之无味弃之可惜,鸡肋一般的存在。”
“说实在的,根本原因不在于技术的落后,而是整个行业的发展根基太浅,无法对数据的有效性进行勘误、归纳和合理解释。”
“粗略地说,合理的大数据架构是,数据模型完善,能根据特定领域做出全面合理的数据精简,去掉无关数据和干扰数据,梳理出一条合理的客观建议,并根据数据分析师的主观判断和勘误,再总结出合理的结论,对相关行业做出准确的预判。”
“现在呢?本来数据模型都存在这样和那样的漏洞,却还想着数据处理的完全自动化。”
“而完全依靠客观数据,完成所谓的人工智能演算,那都是扯淡的事儿。”
“刚才说的那个《芳华》和《战狼》的笑话其实就是一个看似客观,实则可笑的分析结论。”
“这是因为,大家一说到大数据,就太拿数据想当然了。如果只靠着这点意识去做消费金融领域的数据分析,肯定有很多投资人被坑得底儿朝天!”
“所以现在挣钱的还是那些靠着倒买倒卖用户资料的数据公司,一个数据包,加点水分,到处卖,收益无限。”
“不过,最近似乎也没那么容易整了,因为官方越查越严,有些所谓的大数据公司搞不动了,怕是要凉了。”
物联网或许是大数据公司的真正机会“除了行业经验的累积,还需要更多数据做线上支撑。”
“当然,并不是说数据越多越好,而是说,线上的数据越丰富,越有利于我们组织有效数据。”
“核心问题就在于,如何产生大量的有效数据。”
“有效数据,简单了说,就某个领域,比如,消费金融领域的某一个小细分的消费品的相关数据,在合理组合和解构之后,对行业发展做出合理预判,对投资人预期负责的数据。否则,数据越大,负担越重,越成不了事儿。”
积累经验到什么时候才算是个头呢?
“或许要等到物联网时代的真正到来。”
为什么?
“物联网可以让更多的消费金融数据和物流数据线上化,个人消费信用信息也将进一步线上化,数据的归集和处理将更加高效和全面。”
“不过,随着移动支付的快速发展,更多人的金融消费能力在线上就基本被呈现了出来,包括个人的消费习惯和个人征信信息都被线上化,而由此产生的物流信息、住房、贷款信息等都在逐步完成终极线上化,这些对大数据来说,都是极好的机会。”
“大数据行业机会很大,但大数据是一个不稳定的行业,因为一切的数据都归结到机器里,而机器由人来掌控,相关的操作风险完全看自己的风险意识和人品。行业随时爆发大规模风险,运气好只影响数据安全,运气不好,很企业和个人的信用会破产。这会给行业,甚至整个社会带来巨大的灾难。”
“因此,从业企业的相关准则需要进一步细化和规范,对人也需要有个职业操守方面的管制。”
什么样的人怎么用数据,其目的和效果都是不一样的。
这又和一个大数据相关的段子有点关系,正好段子开头,笑话结尾,也还算圆满。

② 金融大数据是什么

金融大数据是指收集海量非结构化数据,分析挖掘客户的交易和消费信息,掌握客户的消费习惯,准确预测客户的行为,提高金融机构的服务、营销和风控能力。
1、大数据金融主要体现在三个方面:一是数据客观准确匹配;二是交易成本低,客户群大;最后,数据及时有效,有助于控制风险。
2、大数据金融通过大数据技术收集客户交易信息、在线社区交流行为、资金流动趋势等数据。大数据金融了解客户的消费习惯,针对不同的客户推出不同的营销和广告,或分析客户的信用状况。
拓展资料:
1)因为大数据金融数据是根据客户自己的行为收集的大数据金融是客观真实的。因此,大数据金融为客户制定的回售方案和偏好推荐也能精准大数据金融匹配度高。大数据金融基于云计算技术 云计算是一种超大规模分布式计算技术,通过预设程序,大数据金融云计算可以搜索、计算和分析各类客户数据,无需人工参与。
2)大数据金融云计算技术降低了收集和分析数据的成本,不仅整合了碎片化的需求和供应,而且大大降低了大数据金融交易的成本,实现了跨区域的信息流动和交换,客户群也随之增长。在大数据金融模型中,互联网公司设置了各种风险指标,如违约率、延迟交货率、售后投诉率等,大数据金融收集的客户数据是实时的,因为其信用评价也是实时的。时间,有利于数据需求方及时分析对方的信用状况,控制和防范交易风险。
3)大数据,或称海量数据,是指所涉及的海量数据,无法通过主流软件工具进行检索、管理、处理和整理成信息,帮助企业在合理的时间内做出更积极的业务决策。 “大数据”研究院Gartner给出了这样的定义。 “大数据”需要一种新的处理模式,具有更强的决策力、洞察力和发现力和流程优化能力,以适应海量、高增长率和多样化的信息资产。

③ 大数据怎样影响着金融业

大数据可以挖掘和分析金融信息深层次的内容,使决策者能够把握重点,引导战略方向。

正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。

中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势:一方面,金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。
总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展带来重要机遇。

首先,大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。


其次,大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。


第三,大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。

当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。

一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。

二是大数据的基础设施和安全管理亟待加强。在大数据时代,除传统的账务报表外,金融机构还增加了影像、图片、音频等非结构化数据,传统分析方法已不适应大数据的管理需要,软件和硬件基础设施建设都亟待加强。同时,金融大数据的安全问题日益突出,一旦处理不当可能遭受毁灭性损失。近年来,国内金融企业一直在数据安全方面增加投入,但业务链拉长、云计算模式普及、自身系统复杂度提高等,都进一步增加了大数据的风险隐患。

三是大数据的技术选择存在决策风险。当前,大数据还处于运行模式的探索和成长期,分析型数据库相对于传统的事务型数据库尚不成熟,对于大数据的分析处理仍缺乏高延展性支持,而且它主要仍是面向结构化数据,缺乏对非结构化数据的处理能力。在此情况下,金融企业相关的技术决策就存在选择错误、过于超前或滞后的风险。大数据是一个总体趋势,但过早进行大量投入,选择了不适合自身实际的软硬件,或者过于保守而无所作为都有可能给金融机构的发展带来不利影响。

应该怎样将大数据应用于金融企业呢?

尽管大数据在金融企业的应用刚刚起步,目前影响还比较小,但从发展趋势看,应充分认识大数据带来的深远影响。在制订发展战略时,董事会和管理层不仅要考虑规模、资本、网点、人员、客户等传统要素,还要更加重视对大数据的占有和使用能力,以及互联网、移动通讯、电子渠道等方面的研发能力;要在发展战略中引入和践行大数据的理念和方法,推动决策从“经验依赖”型向“数据依靠”型转化;要保证对大数据的资源投入,把渠道整合、信息网络化、数据挖掘等作为向客户提供金融服务和创新产品的重要基础。

(一)推进金融服务与社交网络的融合

我国金融企业要发展大数据平台,就必须打破传统的数据源边界,注重互联网站、社交媒体等新型数据来源,通过各种渠道获取尽可能多的客户和市场资讯。首先要整合新的客户接触渠道,充分发挥社交网络的作用,增强对客户的了解和互动,树立良好的品牌形象。其次是注重新媒体客服的发展,利用各种聊天工具等网络工具将其打造成为与电话客服并行的服务渠道。三是将企业内部数据和外部社交数据互联,获得更加完整的客户视图,进行更高效的客户关系管理。四是利用社交网络数据和移动数据等进行产品创新和精准营销。五是注重新媒体渠道的舆情监测,在风险事件爆发之前就进行及时有效的处置,将声誉风险降至最低。

(二)处理好与数据服务商的竞争、合作关系

当前各大电商平台上,每天都有大量交易发生,但这些交易的支付结算大多被第三方支付机构垄断,传统金融企业处于支付链末端,从中获取的价值较小。为此,金融机构可考虑自行搭建数据平台,将核心话语权掌握在自己的手中。另一方面,也可以与电信、电商、社交网络等大数据平台开展战略合作,进行数据和信息的交换共享,全面整合客户有效信息,将金融服务与移动网络、电子商务、社交网络等融合起来。从专业分工角度讲,金融机构与数据服务商开展战略合作是比较现实的选择;如果自办电商,没有专业优势,不仅费时费力,还可能丧失市场机遇。
(三)增强大数据的核心处理能力

首先是强化大数据的整合能力。这不仅包括金融企业内部的数据整合,更重要的是与大数据链条上其他外部数据的整合。目前,来自各行业、各渠道的数据标准存在差异,要尽快统一标准与格式,以便进行规范化的数据融合,形成完整的客户视图。同时,针对大数据所带来的海量数据要求,还要对传统的数据仓库技术,特别是数据传输方式ETL(提取、转换和加载)进行流程再造。其次是增强数据挖掘与分析能力,要利用大数据专业工具,建立业务逻辑模型,将大量非结构化数据转化成决策支持信息。三是加强对大数据分析结论的解读和应用能力,关键是要打造一支复合型的大数据专业团队,他们不仅要掌握数理建模和数据挖掘的技术,还要具备良好的业务理解力,并能与内部业务条线进行充分地沟通合作。

(四)加大金融创新力度,设立大数据实验室

可以在金融企业内部专门设立大数据创新实验室,统筹业务、管理、科技、统计等方面的人才与资源,建立特殊的管理体制和激励机制。实验室统一负责大数据方案的制定、实验、评价、推广和升级。每次推行大数据方案之前,实验室都应事先进行单元试验、穿行测试、压力测试和返回检验;待测试通过后,对项目的风险收益作出有数据支撑的综合评估。实验室的另一个任务是对“大数据”进行“大分析”,不断优化模型算法。在“方法论上。

(五)加强风险管控,确保大数据安全。

大数据能够在很大程度上缓解信息不对称问题,为金融企业风险管理提供更有效的手段,但如果管理不善,“大数据”本身也可能演化成“大风险”。大数据应用改变了数据安全风险的特征,它不仅需要新的管理方法,还必须纳入到全面风险管理体系,进行统一监控和治理。为了确保大数据的安全,金融机构必须抓住三个关键环节:一是协调大数据链条中的所有机构,共同推动数据安全标准,加强产业自我监督和技术分享;二是加强与监管机构合作交流,借助监管服务的力量,提升自身的大数据安全水准;三是主动与客户在数据安全和数据使用方面加强沟通,提升客户的数据安全意识,形成大数据风险管理的合力效应。

④ 大数据在金融科技领域有哪些运用

我觉得大数据在金融科技方面的运用蛮多的,在大数据时代进行抽样分析就像在汽车时代骑马一样,一切都在改变。我们得到的数据再也不是随机的抽样,而是所有的数据。“样本=总体”。大数据的核心:预测。 它是把数学算法运用到海量的数据上来预测事情发生的可能性。例如,名为Farecast的公司,找到了一个行业机票的预定数据库,系统预测的结果是根据美国商业航空产业中,每一条航线上每一架飞机内的每一个座位一年内的综合票价记录而得出的。通过预测机票价格的走势以及增降幅度,Farecast票价预测工具能帮助消费者抓住最佳购买时机。到2012年为止,Faecast系统用了将近十万亿条价格记录来帮助预测美国国内航班的票价,Farecast票价预测的准确度已经高达75%,使用Fcat票价预测工具购买机票的旅客,平均每张机票可节省50美元。

⑤ 大数据技术在金融行业的典型应用

大数据技术在金融行业的典型应用
近年来,大数据技术结合云计算、区块链、人工智能等新技术向金融领域渗透融合,释放出裂变式的创新活力和应用潜能,为金融行业包括财务公司带来巨大的机遇。
近年来,我国金融科技快速发展,在多个领域已经走在世界前列。大数据、人工智能、云计算、移动互联网等技术与金融业务深度融合,大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。

大数据在金融行业的典型应用场景
大数据涉及的行业过于广泛,除金融外,还包括政治、教育、传媒、医学、商业、工农业、互联网等多个方面,各行业对大数据的定义目前尚未统一。大数据的特点可归纳为“4V”。
第一,数据体量大(Volume), 海量性也许是与大数据最相关的特征。
第二,数据类型繁多(Variety),大数据既包括以事务为代表的传统结构化数据,还包括以网页为代表的半结构化数据和以视频、语音信息为代表的非结构化数据。
第三,价值密度低(Value),大数据的体量巨大,但数据中的价值密度却很低。比如几个小时甚至几天的监控视频中,有价值的线索或许只有几秒钟。
第四,处理速度快(Velocity),大数据要求快速处理,时效性强,要进行实时或准实时的处理。
金融行业一直较为重视大数据技术的发展。相比常规商业分析手段,大数据可以使业务决策具有前瞻性, 让企业战略的制定过程更加理性化,实现生产资源优化分配,依据市场变化迅速调整业务策略,提高用户体验以及资金周转率,降低库存积压的风险,从而获取更高的利润。
当前,大数据在金融行业典型的应用场景有以下几个方面:
在银行业的应用主要表现在两个方面:一是信贷风险评估。以往银行对企业客户的违约风险评估多基于过往的信贷数据和交易数据等静态数据,内外部数据资源整合后的大数据可提供前瞻性预测。二是供应链金融。利用大数据技术,银行可以根据企业之间的投资、控股、借贷、担保及股东和法人之间的关系,形成企业之间的关系图谱,利于企业分析及风险控制。
在证券行业的应用主要表现为:
一是股市行情预测。大数据可以有效拓宽证券企业量化投资数据维度, 帮助企业更精准地了解市场行情,通过构建更多元的量化因子,投研模型会更加完善。
二是股价预测。大数据技术通过收集并分析社交网络如微博、朋友圈、专业论坛等渠道上的结构化和非结构化数据,形成市场主观判断因素和投资者情绪打分,从而量化股价中人为因素的变化预期。
三是智能投资顾问。智能投资顾问业务提供线上投资顾问服务,其基于客户的风险偏好、交易行为等个性化数据,依靠大数据量化模型,为客户提供低门槛、低费率的个性化财富管理方案。
在互联网金融行业的应用,一是精准营销。大数据通过用户多维度画像,对客户偏好进行分类筛选,从而达到精准营销的目的。二是消费信贷。基于大数据的自动评分模型、自动审批系统和催收系统可降低消费信贷业务违约风险。
金融大数据的典型案例分析
为实时接收电子渠道交易数据,整合银行内系统业务数据。中国交通银行通过规则欲实现快速建模、实时告警与在线智能监控报表等功能,以达到实时接收官网业务数据,整合客户信息、设备画像、位置信息、官网交易日志、浏览记录等数据的目的。
该系统通过为交通银行卡中心构建反作弊模型、实时计算、实时决策系统,帮助拥有海量历史数据,日均增长超过两千万条日志流水的银行卡中心,形成电子渠道实时反欺诈交易监控能力。利用分布式实时数据采集技术和实时决策引擎,帮助信用卡中心高效整合多系统业务数据,处理海量高并发线上行为数据,识别恶意用户和欺诈行为,并实时预警和处置;通过引入机器学习框架,对少量数据进行分析、挖掘构建并周期性更新反欺诈规则和反欺诈模型。
系统上线后,该银行迅速监控电子渠道产生的虚假账号、伪装账号、异常登录、频繁登录等新型风险和欺诈行为;系统稳定运行,日均处理逾两千万条日志流水、实时识别出近万笔风险行为并进行预警。数据接入、计算报警、案件调查的整体处理时间从数小时降低至秒级,监测时效提升近3000倍,上线3个月已帮助卡中心挽回数百万元的风险损失。
网络的搜索技术正在全面注入网络金融。网络金融使用的梯度增强决策树算法可以分析大数据高维特点, 在知识分析、汇总、聚合、提炼等多个方面有其独到之处,其深度学习能力利用数据挖掘算法能够较好地解决大数据价值密度低等问题。网络“磐石”系统基于每日100亿次搜索行为,通过200多个维度为8.6亿账号精确画像,高效划分人群,能够为银行、互联网金融机构提供身份识别、反欺诈、信息检验、信用分级等服务。该系统累计为网络内部信贷业务拦截数十万欺诈用户,拦截数十亿不良资产、减少数百万人力成本,累计合作近500 家社会金融机构,帮助其提升了整体风险防控水平。
金融大数据应用面临的挑战及对策
大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。
一是数据资产管理水平仍待提高。主要体现在数据质量不高、获取方式单一、数据系统分散等方面。
二是应用技术和业务探索仍需突破。主要体现在金融机构原有的数据系统架构相对复杂,涉及的系统平台和供应商较多,实现大数据应用的技术改造难度很大。同时,金融行业的大数据分析应用模型仍处于起步阶段,成熟案例和解决方案仍相对较少,需要投入大量的时间和成本进行调研和试错。系统误判率相对较高。
三是行业标准和安全规范仍待完善。金融大数据缺乏统一的存储管理标准和互通共享平台,对个人隐私的保护上还未形成可信的安全机制。
四是顶层设计和扶持政策还需强化。体现在金融机构间的数据壁垒较为明显,各自为战问题突出,缺乏有效的整合协同。同时,行业应用缺乏整体性规划,分散、临时、应激等特点突出,信息价值开发仍有较大潜力。
以上问题,一方面需要国家出台促进金融大数据发展的产业规划和扶持政策,同时,也需要行业分阶段推动金融数据开放、共享和统一平台建设,强化行业标准和安全规范。只有这样,大数据技术才能在金融行业中稳步应用发展,不断推动金融行业的发展提升。

⑥ 朋友圈分享的金融科技和金融大数据你了解多少

微信不仅是一个支付工具,它还是一个聊天工具,人们可以在微信上分享自己的生活。很多人就喜欢发朋友圈,向朋友展示自己的生活,以此来获得他人艳羡的目光。有一位网友提出了这样的问题,朋友圈分享的金融科技和金融大数据,你了解多少?

总结

所以说朋友圈分享的金融科技和金融大数据有可能是假的,最好不要信。就算这些金融知识是真的,你也可以去询问一下这位朋友,如果这位朋友和你的关系并不是很亲密,那么就不要随意的去进行投资。毕竟我们都隔着网络,并不知道背后到底是谁,是不是骗子。

⑦ 什么是大数据金融不要文字游戏,通俗的说明

所谓大数据金融,就是用超级电脑收集海量的信息,通过各种算法来对金融产品进行精确营销的一种方法。
通俗来讲就是银行强势收集用户的信息,从身份证,到生物信息列如指纹,虹膜纹,人脸识别,资金使用情况,购物习惯,工作情况,家庭收入,个人收入,健康状态,家庭情况,人际关系。性格趋向等等等等。都被统一上传到电脑云端。经过计算和鉴别,来对客户进行推介和评估。

阅读全文

与大数据金融段子相关的资料

热点内容
maya粒子表达式教程 浏览:84
抖音小视频如何挂app 浏览:283
cad怎么设置替补文件 浏览:790
win10启动文件是空的 浏览:397
jk网站有哪些 浏览:134
学编程和3d哪个更好 浏览:932
win10移动硬盘文件无法打开 浏览:385
文件名是乱码还删不掉 浏览:643
苹果键盘怎么打开任务管理器 浏览:437
手机桌面文件名字大全 浏览:334
tplink默认无线密码是多少 浏览:33
ipaddgm文件 浏览:99
lua语言编程用哪个平台 浏览:272
政采云如何导出pdf投标文件 浏览:529
php获取postjson数据 浏览:551
javatimetask 浏览:16
编程的话要什么证件 浏览:94
钱脉通微信多开 浏览:878
中学生学编程哪个培训机构好 浏览:852
荣耀路由TV设置文件共享错误 浏览:525

友情链接