A. 大数据和数据挖掘什么区别
传统来的数据挖掘就是在数据中寻自找有价值的规律,这和现在热炒的大数据在方向上是一致的。
只不过大数据具有“高维、海量、实时”的特点,就是说数据量大,数据源和数据的维度高,并且更新迅速的特点,传统的数据挖掘技术可能很难解决,需要从算法的改进(提升算法对大数据的处理能力)和方案的框架(分解任务,把大数据分析拆解成若干小单元加以解决,或者通过规律的提取,把重复出现的数据加以整合等等)等多方面去提升处理能力。
所以,可以理解成大数据是场景是问题,而数据挖掘是手段。
B. 大数据分析和数据挖掘也算是吃青春饭吗
你好,这是一种误解。大数据分析并不是一蹴而就的事情,而是需要内你日积月累的数容据处理经验,以及与所在的行业深度融合挖掘出有价值的数据的项目操作有关。大数据分析师是一个新兴的职业,新兴的领域,不会过时,也不会是青春饭
C. 大数据和「数据挖掘」是何关系
数据挖掘是一个动作,是研究数据内在的规律,并且通过各种机器学习专、统计学习、模属型算法进行研究。
大数据其实是一种数据的状态,数据多而大,大到超出了人类的数据处理软件的极限。因此,他俩的关系就容易看出来了。
有了大数据,数据挖掘就有了原材料,也就是有米下锅。有了数据挖掘的应用,数据就有了用武之地,有了生命力,有了生产力,而不是流散在世界各地的硬盘中。
D. 基因大数据深度挖掘面临挑战
基因大数据深度挖掘面临挑战
作为一种新型基因检测技术,基因测序能从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性、个体的行为特征及行为合理性。基因测序技术能锁定个人病变基因,予以提前预防和治疗。正因如此,今年华大基因的上市,就引发了资本市场的热烈追捧。
在日前于北京召开的第四届全国功能基因组学高峰论坛上,众多与会专家就基因技术发展方向及面临的机遇与挑战进行了深入交流。
基因测序用途广泛
当前,基因测序相关产品和技术已由实验室研究演变到临床应用。有学者甚至认为,基因测序技术可能是下一个改变世界的技术,因为在自然界乃至人类世界,基因测序都有着无可替代的作用。
今年5月,由中科院昆明植物所牵头的联合科研团队通过基因组建库与测序等一系列关键技术,攻克了茶树基因组测序难题,在国际上率先获得高质量茶树基因组序列。
中科院昆明植物所研究员高立志坦言,这对揭示决定茶叶适制性、风味和品质以及茶树全球生态适应性的遗传基础,都有重要促进作用。
再比如,华中农业大学张献龙团队对棉花栽培品种和野生品种进行了全基因组重测序,发现棉花在人工选择过程中存在明显的亚基因组不对称选择过程。“10多年的功能基因组研究发现20多个与重要性状形成有关的基因,这将在棉花分子设计育种中发挥重要作用。”张献龙团队成员王茂军告诉《中国科学报》记者。
基因测序对人类医学发展也有重要作用。中科院生物物理所研究员、中科院院士陈润生介绍,基于组学大数据的精准医疗作为划时代的产业,已被各国列入战略规划。它有着直接解决当前医疗行业面临的诸多困难的潜力,在接下来的几年将会爆发式增长,预计到2018年全球市场规模将达2238亿美元。
基因大数据时代开启
华大基因科技服务原负责人、北京百迈客生物科技有限公司董事长郑洪坤指出,随着基因测序技术的不断发展和成本的大幅下降,以及国家在基因研究领域的大力支持和投入,如今,科学家在基因领域的研究越来越深入,基因大数据的积累越来越多,“全世界累计花费数百亿,已经产出了近20Pb的海量基因数据”。
“测序技术的发展让基因数据以远超摩尔定律的速度在积累,海量数据对科研工作者提出了新的要求。”中科院北京基因组所研究员章张表示。
章张介绍,据不完全统计,我国生命组学数据产量约占全球的40%,但这些宝贵的数据资源却交给了他人管理,主要原因在于,我国长期缺乏涵盖多组学数据资源的生物大数据中心。为此,中科院北京基因组所生命与健康大数据中心围绕国家精准医学和重要战略生物资源的组学数据,建立海量生命组学大数据储存、整合与挖掘分析研究体系,并已初步建成生命与健康多组学数据汇交与共享平台。
亟待深度挖掘与科学解读
与国外相比,目前国内的基因组学、基因测序的推进速度并不慢。从学术角度看,中科院北京基因组所、农科院基因组所等机构实力雄厚,华大基因、百迈客等一批从事基因测序的相关企业也在逐渐成长。但在专家们看来,基因组学面临的挑战依然不小,因为随着信息、仪器等各个领域的快速发展,数据总量越来越多,加上各种新指标、参数的加入,数据也变得越来越复杂。
“在海量测序结果面前,数据深度挖掘和解读方面存在的严峻挑战日益明显。如何在基因大数据时代利用好这些数据资源,已经成为生物科研新时代的重要课题。”郑洪坤表示。
陈润生也指出,当前,快速积累的数据并未得到高效解读;高度异质化数据之间的整合尚处于起步阶段。样品端的挑战直接威胁到数据质量。但他同时表示,“这些挑战往往意味着机遇,大量未解读的数据同时也带来了无限创新的可能。”
E. 为何有人说数据将成为无价之宝
首先要知道数据从何而来,才能知道数据如何产生价值。现在的数据是指所能收集到的所有信息统称为数据,数据的生成包含方方面面,比如人类活动可以产生数据,大自然春夏秋冬变化也能产生数据,甚至一颗树木的生长过程也能产生数据。数据本身如果不能应用,就没有价值,如果吧数据应用起来,就能产生无限的价值。同类数据量越大,通过数据分析也就能产生更大的价值。这些价值也可以应用于各种领域,涵盖我们的衣食住行。数据能创造无限可能那就是当之无愧的无价之宝。
大家好,我是 科技 1加1!感觉这个问题很有意思!是啊,当前什么最值钱,要我说就是数据!
这个问题分两方面来回答
1.什么是数据数据是指对客观事件进行记录并可以鉴别的符号,是对客观事物的性质、状态以及相互关系等进行记载的物理符号或这些物理符号的组合。它是可识别的、抽象的符号。
它不仅指狭义上的数字,还可以是具有一定意义的文字、字母、数字符号的组合、图形、图像、视频、音频等,也是客观事物的属性、数量、位置及其相互关系的抽象表示。例如,“0、1、2...`”、“阴、雨、下降、气温”“学生的档案记录、货物的运输情况”等都是数据。数据经过加工后就成为信息。
在计算机科学中,数据是指所有能输入到计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。现在计算机存储和处理的对象十分广泛,表示这些对象的数据也随之变得越来越复杂。
信息
信息与数据既有联系,又有区别。数据是信息的表现形式和载体,可以是符号、文字、数字、语音、图像、视频等。而信息是数据的内涵,信息是加载于数据之上,对数据作具有含义的解释。数据和信息是不可分离的,信息依赖数据来表达,数据则生动具体表达出信息。数据是符号,是物理性的,信息是对数据进行加工处理之后所得到的并对决策产生影响的数据,是逻辑性和观念性的;数据是信息的表现形式,信息是数据有意义的表示。数据是信息的表达、载体,信息是数据的内涵,是形与质的关系。数据本身没有意义,数据只有对实体行为产生影响时才成为信息。
数据的语义
数据的表现形式还不能完全表达其内容,需要经过解释,数据和关于数据的解释是不可分的。例如,93是一个数据,可以是一个同学某门课的成绩,也可以使某个人的体重,还可以是计算机系2013级的学生人数。数据的解释是指对数据含义的说明,数据的含义称为数据的语义,数据与其语义是不可分的。
分类
按性质分为
①定位的,如各种坐标数据;
②定性的,如表示事物属性的数据(居民地、河流、道路等);
③定量的,反映事物数量特征的数据,如长度、面积、体积等几何量或重量、速度等物理量;
④定时的,反映事物时间特性的数据,如年、月、日、时、分、秒等。
按表现形式分为
①数字数据,如各种统计或量测数据。数字数据在某个区间内是离散的值[3] ;
②模拟数据,由连续函数组成,是指在某个区间连续变化的物理量,又可以分为图形数据(如点、线、面)、符号数据、文字数据和图像数据等,如声音的大小和温度的变化等。
如今,大数据早已经不是一个陌生的名词,很多的行业在使用大数据之后都得到了非常好的效果,大数据与互联网相辅相承,互联依赖,并且不断的在快速发展。
互联网上的数据每年增长40%,每两年便将翻一番左右,而目前世界上90%以上的数据是最近几年才产生的。据IDC预测,到明年全球将总共拥有35ZB的数据量,互联网是大数据发展的前哨阵地,随着互联网时代的发展,人们似乎都习惯了将自己的生活通过网络进行数据化,方便分享以及记录并回忆。
大数据围绕在我们生活的很多方面
大数据围绕在我们生活的方方面面,最直观的反映在我们每天都会使用的社交工具上面。例如腾讯拥有用户关系数据和基于此产生的社交数据,这些数据能够分析人们的生活和行为,从里面挖掘出政治、 社会 、文化、商业、 健康 等领域的信息,甚至预测未来。说简单一点,就是我们每天都在通过自己的QQ、微信、微博更新自己的动态、朋友圈等,这些都将构成一种数据,大数据就是可以通过你更新的这些大量的信息,推测出你的爱好,你的工作,你的住址,你的收入情况等等这些信息。
互联网时代大数据有多厉害
互联网时代大数据到底有多厉害?大数据就像蕴藏能量的煤矿,煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样,和这个相像,大数据并不在于“大”,而在于“有用”,价值含量、挖掘成本比数量更为重要。大数据应用工程师专业主要学习WEB技术、java、JSP、大型数据库Oracle、LINUX集群、非关系数据库NoSql、Hadoop等技术,通过这些课程的学习,让学生具有JAVAEE开发能力的同时能够进行大数据的分析和挖掘能,学生在就业的过程中即可以进入传统的软件公司,进行OA和ERP等传统软件项目开发,同时也能进行大数据的分析和大数据深度挖掘以及对服务器集群的组建等。
大数据时代,我们要合理利用大数据,才可以创造更高的工作效率,才可以创造更多的财富。
所以说数据就是金钱!掌握了大数据就是掌握了财富!
感谢大家的阅读!
数据自身是没有价值或者说微乎其微的,价值是被赋予的,就像黄金一样,黄金的价值是他的应用前景或场景。
数据的价值就是数据能力体现出的收益,或者说投资回报率。
今天我们就来聊聊数据能力和价值。 说到大数据就不得不提数据仓库,企业数据仓库演化至最终阶段或许会变为大脑中枢神经,如果要支撑起整个复杂的大脑和神经系统,需要一系列的复杂机制配合。
一、抽象的数据能力架构我把数据能力抽象概括为四个方向:传输能力、计算能力、算法能力和数据资产量级,后面会讲述在这四个能力之上泛化出的数据应用和价值。
1. 数据传输能力
数据大部分的使用场景必然会涉及到数据传输,数据传输性能决定了部分应用场景的实现,数据实时的调用、加工、算法推荐和预测等;而传输抽象出来的支撑体系是底层的数据存储架构(当然非同机房的传输还要考虑到网络环境等。单纯的小数据量调用等一般不会涉及到这些,但数据量级大、高并发且对SLA要求非常严格的时候,就是对数据传输能力的考验)。
从产品的角度我把数据传输能力分解为: 底层数据传输效率 和 应用层数据传输效率 。
底层的数据传输效率是指数据源进入后的预处理阶段的传输效率,即加工为产品所需的数据交付物之前阶段。
Ps:数据在可为产品所用之前需要很长的一段加工过程,应用层数据产品基本不涵盖底层数据加工环节,而数据产品会用到规定好的数据交付物(即已约定好的结构化或标准化的数据),而利用此数据交付物再经过产品对实际应用场景的匹配和加工来提供数据服务。即使涉及底层数据管理的相关产品也是对Meta元数据、使用日志或写好的shell等的调用。
底层数据加工计算所涉及到的传输效率,直接决定了支撑数据产品高性能、高可靠的自身需求;而应用层的传输影响了用户体验和场景实现。传输机制和体系就像毛细血管一样遍布全身错综复杂,但是流通速率直接决定了大脑供氧是否充足。
2. 数据计算能力
数据计算能力就像造血系统一样,根据多种来源的养分原料进行生产加工最终产出血液。而源数据通过高性能的底层多存储的分布式技术架构进行ETL(抽取、转换、装载)清洗后产出的是数据中间层通用化的结构化数据交付物。计算速度就像造血速度一样,决定了供应量。而计算速度直接决定了数据应用的时效性和应用场景。
目前最多最普遍的就是离线数仓,离线数仓大部分担任着事后诸葛亮的角色,即没办法保证数据的及时性而延后了数据分析及应用的产出,导致更多的是沉淀经验而难以做到实时决策。而实时数仓,甚至说对Data Lake(数据湖)的实时处理已经逐步开放应用多种场景。我们先不考虑越来越强烈的实时性要求带来的巨大成本是否真的可以创造等值的收益。
强实时可以更接近一个“未来”的状态,即此时此刻。这远比算法对未来的预测更有价值,因为把握眼前比构造多变的未来对一个企业更有价值。甚至说当数据过程快过神经元的传递,那么从获取到你脑电波的那一刻起,数据处理的驱动结果远比神经元传递至驱动四肢要快。
是不是与兵马未动,粮草先行的场景相似?当然这是以数据计算能力的角度来看待这个问题。跳出来以我个人的观点来说,整体数据能力强大到一定阶段后,会从主观改变个人的意愿,即通过引导你的大脑从而来控制或决定个人行为且不会让你感知,所以可以理解为从主观改变个人意愿。从人的角度来说,你并不知道或者直观意愿去凭空决定下一步要做什么,因为大脑是逻辑处理器,当然这又涉及到心理学,这些观点就不在此赘述了,等往后另起一个篇幅来说数据应用未来前景和假想。
3. 数据资产能力
都在说“大”数据,那么数据量级越大越好吗?并不是,从某种角度来说大量无价值或者未 探索 出价值的数据是个负担,巨大的资源损耗还不敢轻易抹灭。
随着数据量级的急剧放大,带来的是数据孤岛:数据的不可知、不可联、不可控、不可取;那么散乱的数据只有转换成资产才可以更好的发挥价值。
什么是数据资产,我觉得可以广泛的定义为可直接使用的交付数据即可划为资产,当然可直接使用的数据有很多种形式,比如meta元数据、特征、指标、标签和ETL的结构化或非结构化数据等。
目前也在拓展Data Lake的使用场景,直接实时的使用和处理Data Lake数据的趋势是一种扩大企业自身数据资产范围和资产使用率的方式。这有利于突破数仓模型对数据的框架限定,改变数据使用方式会有更大的想象空间。
数据资产的价值可以分两部分来考虑:一部分是数据资产直接变现的价值;另一部分是通过数据资产作为资源加工后提供数据服务的业务价值。
第一部分比较好理解,就是数据集的输出变现值,如标签、样本和训练集等的直接输出按数据量来评估价值;第二部分价值比如通过自身数据训练优化后的算法应用而提升业务收益的价值或依于数据的广告投放的营销变现等,甚至说沉淀出的数据资产管理能力作为知识的无形资产对外服务的价值。这些间接的数据应用和服务的变现方式也是数据资产价值的体现并可以精细的量化。
4. 数据算法能力
其实无论是传输能力还是计算能力,都是相对偏数据底层的实现,而离业务场景最近的就是算法能力所提供的算法服务,这是最直接应用于业务场景且更容易被用户感知的数据能力,因为对于传输和计算来说用户感知的是速度快慢,从用户视角快是应该的,因此用户并不知道何时何地计算或传输。
而算法对业务应用场景是一个从0到1,从无到有的过程。并且算法是基于数据传输、计算和资产能力之上泛化出的应用能力,或者换句话说是三个基础能力的封装进化。
而算法能力是把多元的数据集或者说获取到尽可能多的数据转化为一个决策判断结果来应用于业务场景。算法能力的强弱反映了三个数据能力是否高效配合,是否存在木桶效应,更甚者木桶也没有。当然单纯的算法也可以单独作为无形资产的知识沉淀来提供服务。
对于数据能力架构中的四大能力,传输、计算和资产是基础能力,而算法是高级的泛化能力。而能力的输出和应用才能体现数据价值,数据能力的最大化输出考验着整个数据产品架构体系的通用性和灵活性。因为需要面对的是各种业务演化出的多种多样场景,对数据能力的需求参差不齐:可能是片面化的,也可能是多种能力匹配协调的。这对产品的通用性就是一个巨大的挑战,想更好的应对这个问题,可能就需要整个数据平台的产品矩阵来支撑和赋能。
二、数据能力对应数据价值的呈现从数据应用的角度,每个能力都可以独立开放也可以组合叠加。如果把能力具象出来就会衍生到产品形态的问题,产品形态是对能力适配后发挥作用的交付物。说到产品形态我们可以想象一下应用场景。
首先最基础的应用场景就是数据直接调用,数据资产的使用基本会基于特征、指标、标签或者知识等交付形态。而对于使用方来说这些数据会作为半成品原料或依据来进行二次加工应用于业务场景中,如数据分析、数据挖掘、算法的训练与验证、知识图谱、个性推荐、精准投放(触达)和风控等。数据资产可以统归为在数据市场中通过构建的一些OpenAPI进行赋能。
而对于一个工厂来说,仅仅进行原材料的加工(ETL)输出即除了自身原材料(数据资产)的壁垒外核心竞争力很小,需要包装一些上层的基础服务来提升竞争力,那么数据计算的能力融合进来对原材料进行二次加工(聚合统计)。
计算的聚合统计能力加入进来后可以满足大部分的数据分析场景的支持,就不单单是原材料毫无技术含量的输出,并可以以半成品的形态规避数据敏感。因为对于统计值来说,这是一个分析结果或结论,并不会涉及到自身敏感数据的输出,因此你的核心资产不会泄露,而输出的仅仅是资产的附加值。换句话说知识产权专利依然在你手中,通过控制专利泛化出的能力进行投资回报。
融入计算能力后的一些分析场景如:人群的画像分析、多维度的交叉分析、业务的策略分析和监控分析等多种场景。
随着时代的发展和业务场景的增多,这时工厂继续需要产业变革,要深耕服务业逐步抛弃制造业形态,全面提升更高级的数据服务。这时算法能力的加入来更好的完善服务矩阵。
算法通过封装了传输、计算和资产能力而进行统一的更好理解的业务场景目标预测和识别等。这样对于企业来说可以更容易接受和低成本使用数据服务而不需要再涉及到数据加工链路中,而仅仅需要一个目标结果,通过算法的决策作为参考来指导业务方向。像算法对一些业务场景的预测分析,甚至说一些人工智能场景的识别或学习思考,都可以通过算法赋能来实现。对于企业来说就是从无到有的突破,企业发展进程甚至可能提升好几年。
而贯穿以上能力应用场景都是对数据传输能力的考验。
“数据”的重要性可以有以下几点。
1、数据能够为企业高层提供决策支持。将企业海量数据进行统计分析挖掘后,能够让高层制定合理的措施。
2、数据能整合企业庞杂业务。每个企事业都有很复杂的业务系统,借助数据及对应平台可以将其庞杂的业务进行整合。
3、数据能反应事件本质与趋势。真实数据能够更好地去了解事件的本质问题,预判事态发展。
4、数据能够让人们更加了解自己。未来你可能真的不是最了解你自己的人?但是可以使用个人的数据进行画像,充分了解个人。
5、数据能反应 历史 ,展望未来。通过 历史 数据查询过往,也能够使用以往的数据进行感知未来。
总之,在大数据和5G技术逐渐成为趋势的时代背景下,“ 数据 ”是越来越常见,如社交网络、消费信息、 旅游 记录……企业层面的销售数据、运营数据、产品数据、活动数据……
F. 北大青鸟java培训:互联网时代大数据到底有多牛
大数据早已不再是一个陌生的名词,越多越多的行业在使用大数据之后达到了事半功倍的效果,大数据和互联网相辅相承,互联依赖,不断发展!互联网上的数据每年增长50%,每两年便将翻一番,而目前世界上90%以上的数据是最近几年才产生的。
据IDC预测,到2020年全球将总共拥有35ZB的数据量。
互联网是大数据发展的前哨阵地,随着互联网时代的发展,人们似乎都习惯了将自己的生活通过网络进行数据化,方便分享以及记录并回忆。
大数据围绕在我们的生活当中,最直观的反映在我们每天都会使用的社交工具上面,例如腾讯拥有用户关系数据和基于此产生的社交数据。
这些数据可以分析人们的生活和行为,从里面挖掘出政治、社会、文化、商业、健康等领域的信息,甚至预测未来!简单得讲,就是我们每天都在通过自己的QQ、微信、微博更新自己的动态、朋友圈等,这些都将构成一种数据,大数据就是可以通过你更新的这些大量的数据,推测出你的爱好,你的工作,你的住址,你的收入情况等等.......互联网时代大数据有多牛?大数据就像蕴藏能量的煤矿。
煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。
与此类似,大数据并不在“大”,而在于“有用”。
价值含量、挖掘成本比数量更为重要。
主要学习WEB技术、JAVA、JSP、大型数据库Oracle、LINUX集群、非关系数据库NoSql、Hadoop等技术,通过这些课程的学习,让学生具有JAVAEE开发能力的同时能够进行大数据的分析和挖掘能。
北京北大青鸟http://www.kmbdqn.cn/发现本专业的学生在就业的过程中即可以进入传统的软件公司,进行OA和ERP等传统软件项目开发,同时也能进行大数据的分析和大数据深度挖掘以及对服务器集群的组建等。
G. 大数据技术与什么技术的紧密结合有助于从数据中获取更准确更深层次的知识挖掘
云计算。
云计算和大数据之间就像硬币的正反面形影不离。从应用角度上讲,云计算给大数据提供信息化的基础设施,更有效利用资源;从产业发展的角度上讲,运用云平台,每天可以处理大批量的数据,并对这些数据进行科学,快速,智能检索。未来,云计算和大数据还会不断的发展。
大数据与云计算都是对大量的数据进行处理和计算的技术,都需要使用大量的应用资源。大数据需要从大量数据中发掘出有价值的信息资源,云计算的特性完美地契合了这种需求,是大数据数据发掘的有力工具。
云计算为大量数据的处理提供了很好的计算资源平台,是大数据得以进行运算和分析的前提条件,也是技术上目前唯一可行的大数据处理方式,云计算推动了大数据更好的发展。
(7)大数据与深度挖掘扩展阅读:
大数据与云计算发展趋势:
随着数据处理技术的迅速发展,大数据与云计算已经在人们的日常生活中得到了广泛应用。但随着应用领域的扩大,一些问题也慢慢显露出来,比如在高效数据处理技术的开发上仍有很大的提升空间,同时数据安全等问题也都有待解决,大数据与云计算发展到成熟阶段尚有一段距离。
但相信在不久的将来,随着技术水平的发展,这些问题终将会被解决,两者的结合也将会更加紧密。大数据与云计算将进一步改善人们生活,也会为社会发展提供更强劲的动力。
H. 大数据挖掘主要涉及哪些技术
1、数据科学与大数据技术
本科专业,简称数据科学或大数据。
2、大数据技术与应用回
高职院校专业。
相关专业名答称:大数据管理与应用、大数据采集与应用等。
大数据专业强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。
I. 大数据的价值在于开放和跨界深度挖掘
大数据的价值在于开放和跨界深度挖掘
在专家们看来,数据的开放和跨界融合,是大数据产业得以发展壮大的关键。发展大数据产业,也是推动互联网+的必然需求。
大数据并不遥远
收集美国气象局、中国气象局、欧洲天气预报中心的公开数据,加上对各大河流的地貌数据,东方科技董事长李胜利用自己的独特算法,就可以提前预测全球任何一个水电站是否会遭遇大洪水……这就是“东方祥云”项目的魅力所在,也让大众真实感受到大数据的魔力。
在大数据商业模式大赛的决赛中,“东方祥云”项目最终获得一等奖,从惠及民生的角度来说,这一奖项实至名归。
中国是一个水资源匮乏但水害多发的国家,仅2013年全国因洪涝灾害死亡的人数就达1148人。2007年7月,贵州平塘发生特大洪水,造成5.7亿元直接经济损失。2012年7月,该县再次遭遇特大洪水,不但无一人伤亡,直接经济损失也降到6000万元。
“原因在于,2010年受灾后,平塘县安装了我们的山洪灾害预警监测平台,得到洪水预报,及时采取措施。”李胜告诉记者,全国约有15万座水电站、水库,如果使用东方祥云的大数据技术进行来水预报服务,并合理调度用水,可为水库、水电站节省90%的运维成本。
在这次比赛中,这样的项目并不少见。比如,大赛获奖项目“蜂能”,通过智能用电终端和强大的数据运算系统,采集设备用电数据,对其分析并进行节电和需求优化管理,可实现节约用电10%~20%。
“在一些具体的产业,大数据已经应用得非常广。实际上,大数据挖掘是推动互联网 的有效方式。”清华大学教授韩亦舜对记者表示,本次大赛的众多获奖项目,就体现出“大数据时代已经到来”。
开放才有价值
在专家们看来,大数据只有开放才有价值,封闭、不流通的数据无法形成产业。
“如果没有美国气象局等机构在网络公开的气象数据,我们即便有最精确的算法,也无法做到水库水位的提前预报。气象数据和地貌、水文数据的跨界与沟通,才能让我们的计算更加准确。”李胜坦言。
韩亦舜指出,包含丰富的数据源是大数据产业发展的前提。但是,我国政府、企业和行业信息化系统建设往往缺少统一规划和科学论证,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,这给数据利用造成极大障碍,亟须改变。“云上贵州”提出逐步开放数据,无疑具有重大的意义。
贵州省经济和信息化委员会主任李保芳也向记者表示,政府数据资源应当在安全前提下逐步有序适当开放。“事实上,政府通过数据开放,改进公众服务和社会管理,营造创新环境和释放商业机会,市民、企业和政府都将是开放数据的受益者。”
仍待深度挖掘
贵州省经信委提供的相关报告显示,2014年贵州大数据信息产业实现规模总量1460亿元,电子信息产业单月规模达到130亿元。
韩亦舜认为,未来,人类一切生产、生活包括民生、环保、公共安全、城市服务、工商业活动都将囊括在智慧体系的理想服务之下,而智慧的来源便是大数据。
“大数据作为一种资源,其独特性在于可重复利用,而且可以在不断的挖掘中继续产生新的价值。”阿里巴巴集团副总裁、大数据专家涂子沛指出,从目前来看,亟须对数据进行深度挖掘。
“目前,在大数据产业领域,我国与各工业强国基本上处于同一起跑线。只要充分利用大数据产生的力量,未来可以帮助中国产业实现弯道超车。
以上是小编为大家分享的关于大数据的价值在于开放和跨界深度挖掘的相关内容,更多信息可以关注环球青藤分享更多干货
J. 什么是大数据
大数据技术具有“5V”特征:Volume(体量大)、Variety(多样性)、Velocity(变化快)、Veracity(准确性)、Value(价值大)。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
实用意义:
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。
以上内容参考:网络-大数据