导航:首页 > 网络数据 > 大数据人才培养模式研究

大数据人才培养模式研究

发布时间:2023-02-04 19:21:06

大数据人才培养

01

大数据的重点

大数据是为了解决具体的问题,例如,科学研究问题,商业决策问题,政府管理问题等,基于数据驱动的智能化解决问题。

02

大数据人才培养的重点

大数据的人才培养时一定以问题和目标为导向,研究和选择合适的技术加以应用,怎么快速组合、快速搭积木、快速产出的问题。

不同的业务领域需要不同方向理论、技术和工具的支持,是业务决定技术和工具,而不是根据技术、工具来考虑业务。

03

大数据人才的思维方式

大数据人才的“数据驱动”与“数据闭环”思维方式。

数据闭环是指构造起包括数据采集、建模分析、效果评估到反馈修正各个环节在内的完整“数据闭环”,从而能够不断地自我升级,螺旋上升;

数据驱动是指经营管理决策可以自下而上地由数据来驱动。

大数据人才需要涉及交叉学科和交叉领域,通过完整的培训体系培养大数据人才的全局观、大局观,既可以自顶向下的通过业务探索数据背后蕴含的商业价值,又可以自底向上的去实现数据获取、数据挖掘、以及数据决策的全流程,以适应大数据时代的发展。

㈡ 为什么有那么多人进行大数据培训

国家鼓励发展大数据,现在大数据应用的也广泛,总结来说就是前景好,薪资高呗

㈢ 学历的高低能否决定大数据工程师的发展前景

不能
大数据近年来越来越火,因为有了它,好像什么行业都能精准分析。但是,大数据本身的发展却很少有人分析。近日,国家信息中心、南海大数据应用研究院联合发布了《2017中国大数据发展报告》,首次把中国大数据本身的发展特点和存在的问题,全面呈现了出来。
用大数据来了解大数据
这份报告全面汇聚了国家发改委互联网大数据分析中心、国家信息中心、“一带一路”大数据中心所掌握的30多个种类,总计40多亿条相关数据,综合运用多种大数据分析方法,对我国大数据产业发展进行了全面分析。所以,称得上是用大数据来了解大数据。
北京、广东、上海大数据发展位居前三
报告显示,我国大数据发展总体处于起步阶段。但是从地域上看,就有意思了。
国家信息中心信息化研究部副主任、南海大数据应用研究院院长于施洋指出:“从地域分布,从各个省来说,北京排第一,这个不足为怪,东部沿海地区这些省份排在前面,大家也都能够想象。但是在西南地区,四川、重庆、贵州这三个地方异军突起,是我们大数据发展的第二个增长极。”
产业落后是地方大数据发展的突出短板
具体来看,各省份大数据发展指数的排名中,贵州、重庆、四川,紧随东部沿海省份,全部排进了前十名,领先任何一个中部省份。分析认为,这主要是地方政策引领的结果。这三个西部省市,早早都把大数据产业的发展作为重点工程来打造。对于这种“弯道超车”现象,国家行政学院教授汪玉凯建议,这些地方下一步可以重点考虑产业落地问题:“它们是首先抓住了一个概念,然后占了一个先机。但是相对能够落地的产业应用还是比较少的,这是它们的软肋。所以我认为,你们一定要注意应用,要打造你的优势。”
人才短缺问题日益突出
报告指出,数据管理环节漏洞较多,是大数据发展面临的首要问题,包括由此引发的运营成本过高、资源利用率低、应用部署过于复杂等难点。而我们更关注的是另一大问题。
我们会发现,大数据领域里数据是有了,但是能驾驭这些数据的人是极其匮乏的。比如说大数据的专业人才方面,现在分析类的人才,市场是供不应求,缺口非常大,而项目管理类的人才,供给又远远大于需求,所以结构上还不平衡。高端的人才奇缺,这是最突出的问题。”
发展大数据要谨防人才“眼高手低”
大数据的核心就是数据的抓取与分析,而分析环节,目前离不开人工设置变量,建立模型。所谓“差之毫厘,谬之千里”,大数据分析对人才的要求很高。但首份大数据发展报告却揭示,我国大数据人才能搞管理的不少,真正能做分析的却远远不够,这是典型的“眼高手低”,势必伤害大数据产业的长远发展。人才短板可以从教育方面着手弥补,探索新的人才培养模式。比如,将高校大数据系列课程分为理论教学和技术教学两方面;比如社会上优质的专注大数据人才培养机构等多方面进行。

㈣ 关于数据科学与大数据技术

数据科学与大数据技术专业都学些什么?
属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
数据科学与大数据技术专业人才需求情况怎样?
根据领英发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是中国护理万网行业需求最旺盛的职位。
目前国内有30万数据人才,预计2018年,大数据人才需求将有大幅增长,高端人才如大数据科学家的缺口在14万至19万之间;懂得利用大数据做决策的分析师和经理缺口达到150万,数据分析师现在需求就很旺盛了,2年工作经验的月薪可达到8K,硕士学历的数据分析师月薪可达到12K,5年工作经验的可达到40万至60万元。
数据科学与大数据技术专业可以从事的工作有哪些?
重视数据的机构已经越来越多,上到国防部,下到互联网创业公司、金融机构需要通过大数据项目来做创新驱动,需要数据分析或处理岗位也很多;常见的食品制造、零售电商、医疗制造、交通检测等也需要数据分析与处理,如优化库存,降低成本,预测需求等。人才主要分成三大类:大数据系统研发类、大数据应用开发类、大数据分析类。
数据科学与大数据技术专业报考建议:
1、当下企业用人现象:一个专业集群对应一个行业热点。大数据是交叉学科,走的是“复合型”培养路线,行业内从事相关职能的人专业背景各异。大数据作为人才培养方向在探索中,如果直接从各专业人才中遴选学苗开展硕士研究生阶段的教育会更适合一些,直接开设本科阶段的教育还相对不够成熟。
2、人才培养与行业发展存在差距。由于教学大纲更新不会太及时,大数据人才7年毕业(本科四年、硕士研究生三年)后,所学恐怕落后于行业发展。
3、大数据人才的典型胜任特征:善于做需求分析、写代码;善于与人沟通,喜欢探索未知;需要根据数据推演、分析、提出解决方案,有数据思维;需要持续保持学习状态;内性格上能动能静。
4、不同办学层次的院校开设此专业,培养模式会有差异。例如,高职类院校学生由于数学基础相对薄弱,会跟多偏向于工具的使用,如数据清洗、数据存储以及数据可视化等相关工具的使用;本科院校会倾向于大数据相关基础知识全面覆盖性教学,在研究生段则会专攻某一技术领域,比如数据挖掘、数据分析、商业智能、人工智能等。

㈤ 大数据究竟多大才算是,该如何学习大数据

大数据本身是基于数据价值化而构建出来的新概念,虽然概念比较新,但是数据却一直都在,所以大数据的核心并不在“大”上,而是基于大数据所构建出的一个新的价值空间。

在理解大数据概念的时候,通常都有几个较为明显的误区,其一是只有足够大的数据才能算是大数据范畴;其二是大数据和互联网是隔离的;其三是大数据就是统计学;其四是大数据会“杀熟”,应该尽量远离大数据等等。

在大数据时代,任何体量的数据都可以采用大数据技术进行处理,传统的结构化数据处理方式也已经并入到了大数据的技术体系,所以大数据技术本身对于数据量的大小并没有绝对的要求,并不是说数据量小就不能采用大数据技术。

大数据本身是互联网、物联网和传统信息系统共同发展所导致的结果,所以大数据与互联网存在紧密的联系,事实上目前互联网领域是推动大数据发展的重要力量,所以大数据与互联网本身就密不可分。从互联网发展的前景来看,大数据是互联网价值的重要体现,所以未来大数据的价值必然会不断得到提升。

由于目前大数据分析技术往往会采用统计学的方式,这导致不少人认为大数据就是统计学,实际上大数据在进行数据分析的过程中,不仅需要统计学技术,也需要机器学习相关技术。当然,统计学作为大数据的三大基础学科,在大数据技术体系中占有重要的地位。

目前大数据人才的培养既包括研究生教育(培养创新型人才),也包括专科教育和本科教育,随着大数据技术体系的逐渐成熟,学习大数据的过程也会更为顺利。

如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

大数据并非是大的数据,而是将数据价值化的新概念,可以说任何体量的数据都可以使用大数据技术来处理。在大数据时代,企业中有很多商业数据需要大数据开发工程师来采集、储存、处理,所以逐渐的大数据岗位越来越多。

目前是大数据开发落地应用的初级阶段,市场需要更多的大数据开发人才,面对偌大的市场需求,有越来越多的小伙伴想学习大数据开发技术,但是并不是每个人都可以学习的,学习大数据对编程基础和逻辑思维能力有一定的需求,因为大数据是比较复杂且综合性比较强的编程语言。

由于大数据的复杂性,对于小伙伴学习大数据的难易程度来讲,不同基础的小伙伴,难易程度不同,那小伙伴该如何去学习大数据开发技术呢?

1.注重编程基础知识的积累

上面我也说过了,大数据是比较复杂的编程语言,想要学习大数据开发技术是需要有一定的编程基础的,但是有些零基础学习大数据的小伙伴,还是需要学习java、Python、web等编程基础。

2.确定发展方向,以用为学

小伙伴可以事先了解一下企业对大数据开发技术的需求是什么,确定自己的发展方向,根据企业所需要的大数据开发技术需求,制定适合自己的学习路线,针对性学习,才能提高学习效率。

3.多练习项目案例

在平时,小伙伴在积累基础知识的过程中,不要忘了多加练习项目案例,多敲代码,培养自己的编程思维。

最后,小伙伴想要学习大数据开发技术,还需要不断的 探索 适合自己的学习方法。尚硅谷大数据培训班是一家比较靠谱的IT教育培训机构,以理论实践相结合的教学方式传授更多的大数据开发技术知识,让小伙伴在学习大数据开发技术知识的同时,积累更多的项目实战经验。

http://www.atguigu.com/bigdata_video.shtml

大数据,什么是大数据呢?多大的数据叫大数据?红火一时的数据分析走向了我们,纷纷称不分析数据企业将长久不了,可是究竟什么样的数据才是大数据呢,什么样的数据才是最大的呢?

如果你没有接触过大数据,那么你就不知道大数据究竟有多大,大到什么样的数据才能称之为大数据。那么,根据数据收集的端口,企业端与个人端之间,大数据的数量级别是不同的。

大数据开发学习有一定难度,零基础入门首先要学习Java语言打基础,一般而言,Java学习SE、EE,需要约3个月的时间;然后进入大数据技术体系的学习,主要学习Hadoop、Spark、Storm等。

什么是大数据 究竟多大才算是大数据

大数据是什么?

多大的数据叫大数据?

很多没有接触过大数据的人,都很难清楚地知道,究竟多大的数据量才可以称之为大数据。那么,根据数据收集的端口,企业端与个人端之间,大数据的数量级别是不同的。

企业端(B端)数据近十万的级别,就可以称为大数据;个人端(C端)的大数据要达到千万级别。收集渠道没有特定要求,PC端、移动端或传统渠道都可以,重点要达到这样数量级的有效数据,形成数据服务即可。很有趣,大家可以看到2B和2C,两类大数据差了两个数量级。

有些小公司,数据只有千到万级的规模,但经过收集分析,也能从中有针对性的总结出这一群体的原则,同样能指导企业进行一定程度的用户分析、获取或者是服务工作,但这并不是大数据,而是一般性的数据挖掘。

大数据的产业链是怎样的?

我在接受采访的时候,依照大数据公司在产业链的上下游关系,提出把它们分成三种不同类别:

大数据采集公司

所谓“找数据”,内部可以再分两种:

在自身正常运营的过程中就能产生大量数据源;

通过跟电信运营商、金融企业合作,获取数据源。

大数据分析公司

这一类公司,基本上都有自己的套模型,但大部分数据库模型源于相同的几个机理,包括统计学模型、深度学习算法等等。也基于美国IBM、cloudera公司开发的应用型分析模块等等。

大数据销售公司

虽然说是卖数据,但出售的并不是单一数据,而是基于数据的全套解决方案,比如精准营销等等。

这三类公司是如何协作,并把大数据作用于我们的生活呢?最容易理解的就是现在在微信朋友圈上投放的广告。

腾讯在把广告推广给每个用户的时候,都已经对用户做过精准的分析。通过收集人们在微信上使用习惯,进而分析用户的消费能力、消费习惯,形成一套精准营销方案后,给广告商生成一些定向的广告。

比如说,兰蔻的广告就从来不会推广给男性用户、豪车广告也不会推给应届毕业生。整个的微信广告体系都用到了大数据的分析模式,大家普遍反馈,在腾讯上投放的广告比网易、新浪等平台上投放的广告转化率高,正是得益于腾讯的大数据基础。

大数据本身是基于数据价值化而构建出来的新概念,虽然概念比较新,但是数据却一直都在,所以大数据的核心并不在“大”上,而是基于大数据所构建出的一个新的价值空间。

大数据开发学习有一定难度,零基础入门首先要学习Java语言打基础,一般而言,Java学习SE、EE,需要约3个月的时间;然后进入大数据技术体系的学习,主要学习Hadoop、Spark、Storm等。

企业端(B端)数据近十万的级别,就可以称为大数据;个人端(C端)的大数据要达到千万级别。收集渠道没有特定要求,PC端、移动端或传统渠道都可以,重点要达到这样数量级的有效数据,形成数据服务即可。很有趣,大家可以看到2B和2C,两类大数据差了两个数量级。

有些小公司,数据只有千到万级的规模,但经过收集分析,也能从中有针对性的总结出这一群体的原则,同样能指导企业进行一定程度的用户分析、获取或者是服务工作,但这并不是大数据,而是一般性的数据挖掘。

大数据面向的是更海量的一个数据,借助了更广义的知识数据库的分析方法。大部分的数据公司的数据来源是海量的,它的收集和分析,并不是局限于个体,而是以一个非常非常广泛的群体为对象展开的。

要兑现大数据的商业价值,第一个要求,就是达到大数据的数据量级。那么目前,在数据量上最有优势是BAT三家。在PC时代,网络在数据上的优势非常强,但到移动时代,腾讯和阿里实现了反超。

腾讯有微信、QQ,拿到了移动端数据生成量的九成;阿里利用它的消费数据资源,更有垂直性。那么对于中小企业、创业企业而言,兑现商业价值的重点就变成了,如何在自身规模较小的时候,利用别人的大数据资源为自己的创业更好的服务。这是需要深层次判断和挖掘的。

所以,对于数据相关的公司,在投资判断的时候,不单是看现有业务的发展,更重要的是在他不断的发展的过程中,能不能积累有效数据、积累高准确性的数据,实现数据的实时更新性。这样的企业才能够更好地建立起竞争壁垒。

什么是大数据

大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

为什么大数据很重要?

大数据的重要性不在于您拥有多少数据,而在于您使用它做了多少。您可以从任何来源获取数据并进行分析,以找到能够降低成本,减少时间,新产品开发和优化产品,以及智能决策的答案。将大数据与高性能分析结合使用时,您可以完成与业务相关的任务,例如:

1.近乎实时地确定故障,问题和缺陷的根本原因;

2.根据客户的购买习惯在销售点生成优惠券;

3.在几分钟内重新计算整个风险组合;

4.在欺诈行为影响您的组织之前检测它。

从大数据中提取大价值的挖掘技术。专业的说,就是根据特定目标,从数据收集与存储,数据筛选,算法分析与预测,数据分析结果展示,以辅助作出最正确的抉择,其数据级别通常在PB以上,复杂程度前所未有。

众所周知,IT 行业是个高薪行业,也是很多人的梦想职业,在全球最缺人的十大行业中IT行业居首位。而事实证明,IT行业不失为一个好的职业方向。

中公优就业可以为您规划学习过程以及后期就业方向,为您的未来保驾护航

在大数据时代,任何体量的数据都可以采用大数据技术进行处理,传统的结构化数据处理方式也已经并入到了大数据的技术体系,所以大数据技术本身对于数据量的大小并没有绝对的要求,并不是说数据量小就不能采用大数据技术。

数据收集不分大小,用到大数据这个词汇!

是统计学中一个概念,数据信息越大越全!误差越小,也就越准确!

建议先从统计学入手,理论性知识先了解!再针对行业情况实战做有效数据收集,达到基数后去证实数据的有效性和真实性!

这些都是基础!

㈥ 从“T”型人才到“π”型人才,大数据人才培养之路该如何走

具体来说,大数据人才首先应具备获取大数据的能力,例如能根据任务要求,综合利用各种计算机技术和知识,收集、整理海量数据并加以存储,为支撑相关决策和行为做好数据准备。其次,应具备分析大数据的能力,能根据具体需求,采用有效方法和模型分析数据,并形成报告,为实际问题提供决策依据。最后,还应具备良好的团队合作精神。大数据时代的数据分析任务,多数需要与他人合作实现既定目标。
从数据科学与大数据技术专业毕业的学生,授予的是理学与工学学位。由此可见,此专业具有非常明显的理工交叉特点。”南开大学统计研究院副院长王兆军告诉记者,大数据催生了数据科学,而数据科学是处理和分析大数据的理论支撑与保证。“因此,高校在制定培养计划和方案时,应注意数学、统计学、计算机科学的有机融合及与应用领域的深入结合。

㈦ 如何实现大数据时代的政府治理创新

1、在政府系统进一步确立大数据的理念,研究制定大数据施政发展规划

2、夯实大数据产业基础,提供大数据施政平台技术支撑。

3、打通各部门各层级之间信息孤岛,实现大数据信息资源互联共享。

4、发挥第三方力量的作用,政府积极购买大数据相关技术服务

㈧ 大数据发展方向发展前景怎么样是就业是否有保障

大数据广为所知的未来方向有三个,由高级到普通分别为数据科学家、数据工程师和数据分析师。

一 、职业定位
数据科学家
数据科学家是指能采用科学方法、运用数据挖掘工具对复杂多量的数字、符号、文字、网址、音频或视频等信息进行数字化重现与认识,并能寻找新的数据洞察的工程师或专家(不同于统计学家或分析师)。
数据工程师
数据工程师一般被定义成“深刻理解统计学科的明星软件工程师”。数据工程师的核心价值在于他们借由清晰数据创建数据管道的能力。充分了解文件系统,分布式计算与数据库是成为一位优秀数据工程师的必要技能。数据工程师对演算法有相当好的理解。因此,数据工程师理应能运行基本数据模型。
数据分析师
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。他们知道如何提出正确的问题,非常善于数据分析,数据可视化和数据呈现。
二、 职业职责
数据科学家
数据科学家倾向于用探索数据的方式来看待周围的世界。把大量散乱的数据变成结构化的可供分析的数据,还要找出丰富的数据源,整合其他可能不完整的数据源,并整理成结果数据集。新的竞争环境中,挑战不断地加剧,新数据不断地流入,数据科学家需要帮助决策者穿梭于各种数据的交互分析中。最终把蕴含在数据中的规律建议给决策者,从而影响生产、决策等各个环节。
数据工程师
数据工程师有三个最主要的任务,它们分别是分析历史、预测未来和优化选择。通过这三个工作方向,他们能够帮助企业做出更好的商业决策。
大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征,它最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。而通过引入关键因素,大数据工程师也可以预测未来的消费趋势。
根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。以腾讯来说,能反映大数据工程师工作的最简单直接的例子就是选项测试(AB Test),即帮助产品经理在A、B两个备选方案中做出选择。在过去,决策者只能依据经验进行判断,但如今大数据工程师可以通过大范围地实时测试—比如,在社交网络产品的例子中,让一半用户看到A界面,另一半使用B界面,观察统计一段时间内的点击率和转化率,以此帮助市场部做出最终选择。
数据分析师
数据分析师主要有以下五方面的职责:
1、负责项目的需求调研、数据分析、商业分析和数据挖掘模型等,通过对用户的行为进行分析了解用户的需求;
2、参与业务部门临时数据分析需求的调研、分析及实现;
3、参与数据挖掘模型的构建、维护、部署和评估;
4、整理编写商业数据分析报告,及时发现和分析其中隐含的变化和问题,为业务发展提供决策支持;
5、对产品部门下的运营,产品,研发,市场销售等各方面的数据分析,处理和研究的工作需求。
职业要求
数据科学家需要满足的要求
1,计算机科学
一般来说,数据科学家大多要求具备编程、计算机科学相关的专业背景。简单来说,就是对处理大数据所必需的hadoop、Mahout等大规模并行处理技术与机器学习相关的技能。
2,数学、统计、数据挖掘等
除了数学、统计方面的素养之外,还需要具备使用SPSS、SAS等主流统计分析软件的技能。其中,面向统计分析的开源编程语言及其运行环境“R”最近备受瞩目。R的强项不仅在于其包含了丰富的统计分析库,而且具备将结果进行可视化的高品质图表生成功能,并可以通过简单的命令来运行。
3,数据可视化(Visualization)
信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,开发Web原型,使用外部API将图表、地图、Dashboard等其他服务统一起来,从而使分析结果可视化,这是对于数据科学家来说十分重要的技能之一。
数据工程师需要满足的要求
1,数学及统计学相关的背景
对于大数据工程师的要求都是希望是统计学和数学背景的硕士或博士学历。缺乏理论背景的数据工作者,容易进入一个技能上的危险区域(Danger Zone)—只知道结果,却并不明白数据所代表的真正意义。只有具备一定的理论知识,才能用普通模型、复用模型甚至创新模型,来解决实际问题。
2,计算机编码能力
实际开发能力和大规模的数据处理能力是作为大数据工程师的必备素养。因为许多数据的价值来自于挖掘的过程,你必须亲自动手才能发现金子的价值。举例来说,现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的文字、语音、图像甚至视频中攫取有意义的信息就需要大数据工程师亲自挖掘。即使在某些团队中,大数据工程师的职责以商业分析为主,但也要熟悉计算机处理大数据的方式。
3,对特定应用领域或行业的知识
大数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。所以,在某个或多个垂直行业的经历能为应聘者积累对行业的认知程度,对于之后能否成为大数据工程师有很大帮助,因此这也是应聘这个岗位时较有说服力的加分项。
C. 数据分析师需要满足的要求
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实际工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表等可视化方法,有效地表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
至于说大数据的前景,这几年国家也确实重视了起来,更是把大数据战略放到了十三五规划中,未来资源势必会倾斜,而且查看BAT之类的巨头招聘信息也能知道,大数据目前的前景还是非常可观的……

㈨ 大数据时代的人才培养机制是什么样

世界上最动人的承诺

阅读全文

与大数据人才培养模式研究相关的资料

热点内容
static在java 浏览:184
加工中心铣斜边32度怎么编程 浏览:947
网络技术选择 浏览:529
怎么视频去水印APP 浏览:479
win10不自动更新 浏览:234
苹果手机微信视频怎么有杂音 浏览:317
滁州数控编程培训怎么样 浏览:656
微信红包下面有个盾牌 浏览:767
win10智能家居 浏览:620
qq飞车鸡字怎么获得 浏览:618
评论区给一星保护的app是什么 浏览:356
设置怎么没有网络模式 浏览:711
什么app可以借5000 浏览:304
iqoo如何关闭一张卡的数据流量 浏览:212
人物建模教程 浏览:271
有什么ppt免费的网站 浏览:74
声音文件扩展名分别有哪些 浏览:476
复兴号叫外卖用什么App 浏览:478
网上医生app 浏览:307
java创建一个list 浏览:866

友情链接