导航:首页 > 网络数据 > 医疗大数据应用案例

医疗大数据应用案例

发布时间:2023-02-04 10:56:11

『壹』 大数据可以应用在哪些方面

可以应用在云计算方面。

大数据具体的应用:

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4、麻省理工学院利用手机定位数据和交通数据建立城市规划。

5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。

9、分析所有SKU,以利润最大化为目标来定价和清理库存。

10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(1)医疗大数据应用案例扩展阅读:

大数据的用处:

1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。

自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

参考资料:

网络--大数据

『贰』 关于大数据应用有什么例子

『叁』 大数据是什么

作者:李丽
链接:https://www.hu.com/question/23896161/answer/28624675
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。
研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。当你的技术达到极限时,也就是数据的极限"。 大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二、大数据分析
从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
1、可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了
2、数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
三、大数据技术
1、数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
2、数据存取:关系数据库、NOSQL、SQL等。
3、基础架构:云存储、分布式文件存储等。
4、数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or
association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text,
Web ,图形图像,视频,音频等)
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。
四、大数据特点
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
1、
数据体量巨大。从TB级别,跃升到PB级别。
2、
数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
3、
价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
4、
处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。
五、大数据处理
大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理
六、大数据应用与案例分析
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
[1] Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
[2] 在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
[3] 它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
[1] 智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

[2] 维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
[1] XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
[2] 电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
[3] 中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
[4] NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。

『肆』 结合实际大数据的应用体现在哪些方面

社交网络,为大数据提供了信息汇集、分析的第一手资料。大数据的价值主要就是,从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户口味或需求的产品和服务,并结合用户需求有针对性地调整和优化自身。
简单的说,如果我拥有了客户大量的信息,我就能从收集到的信息中知道客户的消费习惯和消费方向,通过这些数据分析出自身产品有哪些缺失,可以及时改变策略,而不是盲目的生产一些客户并不喜欢的产品增加自身成本。大数据的核心价值就是,提升决策准确性,降低风险,提升运营精准度,降低成本。现在就让我们通过一些案例来了解大数据在实际生活中的应用。
在医疗行业。通过一些技术企业能找到大量病人相关的临床医疗信息,通过大数据处理,能更好地分析病人的信息。在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
在能源行业。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网每隔五分钟或十分钟收集一次数据,这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
在汽车制造业。福特公司在产品的研发设计阶段,大数据就已经对汽车的部件和功能产生了重要影响。比如,福特产品开发团队曾经对SUV是否应该采取掀背式(即手动打开车后行李箱车门)或电动式进行分析。如果选择后者,门会自动打开、便捷智能,但这种方式会影响到车门开启有限的困恼。此前采用定期调查的方式并没有发现这个问题,但后来根据对社交媒体的关注和分析,发现很多人都在谈论这些问题。
在音乐方面。在车内听的歌曲很可能反映你的真实喜好,Grace note就拥有此种技术。它采用智能手机和平板电脑内置的麦克风识别用户电视或音响中播放的歌曲,并可检测掌声或嘘声等反应,甚至还能检测用户是否调高了音量。这样,Grace note可以研究用户真正喜欢的歌曲,听歌的时间和地点。Grace note拥有数百万首歌曲的音频和元数据,因而可以快速识别歌曲信息,并按音乐风格、歌手、地理位置等分类。
像这样的案例还有很多很多,涉及到了生活的方方面面,而且正在逐步渗透,由此可以看到大数据对我们生活产生的影响有多么深刻。但是现在国内大数据技术正在发展阶段,大数据人才非常紧缺,因此从大数据广阔的未来前景和明朗自身的行业形势都告诉我们,学习大数据,不光是自身这份技能对未来工作有很大的帮助,对企业来说也非常希望大数据能给企业带来巨大的利益,对大数据人才的渴求度自然是持续高涨的。

『伍』 有哪些大数据分析案例

三个领域大数据应用案例分析
1、无人驾驶汽车。汽车非常昂贵,然而在欧洲,人们只有4%的时间在使用汽车,96%的时间把车停在停车场,这是非常不高效的系统。如果未来普及了无人驾驶的汽车,我们就可以过上另一种生活。
我们将只需要在手机上点一个按键,车就会自己开过来,把我们带去目的地。这种车就像没有驾驶员的出租车,可以被反复使用,效率和可持续性都得到了提升,也避免了资源浪费。
有研究发现,如果自动机动车得到普及,可以减少25%的交通拥堵,减少30%的城市停车场面积。如果北京减少30%的停车场需求,城市生活将大不一样。
2、医疗行业。我们的寿命现在都比较长了,但仍然希望能够更长。现在,我们的医疗水平并不是很好,由于我们忽视了每一个人的个体差异,医生会用通常的方法治疗每一个人。然而,基于大数据,我们可以做精确医疗,通过大数据分析每个人的差异,进行精确的治疗、剂量、用量,让患者更快恢复健康。
3、教育行业。我们要让下一代有能力了解这个世界。然而,因为没有数据,我们难以做到因材施教,所有孩子获得同样的教学,学习同样的书本。低效率的教学就是在浪费脑力、知识和我们解决问题的能力。
如果我们用大数据去分析孩子在发展学习能力时遇到的问题,就可以进行个性化的学习,就可以释放知识和理解力的力量,让每一个孩子充分开发潜能。
-

『陆』 大数据的应用案例以及未来发展趋势

赶超发达国家的重要机遇
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度,不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。信息爆炸的学科如天文学和基因学,创造出来大数据这个概念,如今,这个概念几乎应用到了所有人类智力与发展的领域中。21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器、智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据,大数据时代已经到来。
当前全球和我国大数据都呈现了井喷式爆发性增长,大数据已经渗透到各个行业和业务职能领域,成为重要的生产因素,大数据的演进与生产力的提高有着直接的关系。其发展特点,一是数据量呈现指数级增长。二是不同行业的大数据内容和开发应用特点各有不同,如证券、投资服务以及银行等金融服务领域拥有最高的平均数字化数据存储量,通信和媒体公司、公共事业公司以及政府等组织也有规模显著的数字化数据存储,这些行业更加具有通过大数据来创造价值的潜力。三是可以预见到大数据高速增长的现有趋势将继续推动数据增长,例如在各部门和地区之间,企业正在加快收集数据的步伐,推动了传统的事务数据库的增长;医疗卫生等面向消费者的行业中,多媒体的广泛使用刺激了大数据的增长;社交媒体的广泛普及以及物联网中应用的不断创新都进一步推动了大数据不断增长……这些相互交叉的动力刺激了数据的增长,并将继续推动数据池的迅速扩张。
发展大数据及其相关服务业将成为新兴经济体特别是我国在战略性新兴产业领域发挥后发优势赶超发达国家的重要机遇。只要条件具备,发展中经济体能够利用大数据发挥巨大的潜力。例如,亚洲地区移动手机用户最多,终端设备最多,其中中国设备数量最多,个人位置数据在亚洲已经领先。此外,在IT资产方面,尽管一些新兴市场组织落后于发达市场,但发展中经济体可以用最新技术跳跃式前进。大数据的应用不仅仅是商务,通过用户行为分析实现精准管理、科学决策和人性化服务是大数据的典型应用,大数据在各行各业特别是公共服务领域具有广阔的应用前景,包括消费行业、金融服务、食品安全、医疗卫生、军事、交通环保、电子商务、气象等。发展大数据产业机遇可贵潜力巨大。从经济和产业发展维度看大数据及相关产业发展的潜力,我国独特的位势和经济社会高速稳定发展,给大数据及其应用带来了巨大的发展空间。大数据在我国各领域和不同行业的应用潜力巨大、机遇重大。大数据的核心技术进展和大数据应用有可能带来我国新兴战略性产业发展的新机遇。
信息服务业发展的重要推力
研究表明,大数据是继传统IT之后下一个提高生产率的技术前沿和信息服务业发展的重要推动力。大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
例如医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量;公共管理领域,能够利用大数据有效推动税收工作开展,提高教育部门和就业部门的服务效率;零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率;市场和营销领域,能够利用大数据帮助消费者在更合理的价格范围内找到更合适的产品以满足自身的需求,提高附加值。数据已经成为可以与物质资产和人力资产相提并论的重要的生产要素,伴随着信息化发展,企业将收集更多的信息,从而带来数据呈现指数级的增长。大数据在同时为商业和消费者创造价值方面有巨大的发展潜力。
大数据应用能够发挥重要的经济作用,不但有利于私人商业活动,更有利于国民经济和公民。数据可以为世界经济创造重要价值,提高企业和公共部门的生产率与竞争力,并为消费者创造大量的经济剩余。例如,能够富有创造性而有效地利用大数据来提高效率和质量。麦卡锡公司研究报告指出,预计美国医疗行业每年通过数据获得的潜在价值可超过3000亿美元,能够使得美国医疗卫生支出降低超过8%,充分利用大数据的零售商有可能将其经营利润提高60%以上。通过利用大数据实现政府行政管理方面的运作效率提高。估计欧洲发达经济体可以节省开支超过1000亿欧元,其中尚不包括可以用来减少欺诈、错误以及税差的影响作用。可以预见的是,随着人们存储、汇聚和组合数据然后利用其结果进行深入分析的能力超过以往,随着越来越尖端技术的软件与不断提高的计算能力相结合,从数据中提取洞见的能力也在显著提高。
大数据及其开发利用能够催生新的产业形态,拓展成为战略性新兴产业的重要组成部分。大数据的生产、整合、开发利用具有广泛的高附加值,可以形成和应用于各行业的关键发现,大数据的有效利用可以创造巨大的潜在价值,许多行业和承担业务职能的组织可以利用大数据提高人力、物力资源的分配和协调能力,减少浪费,增加透明度,并促进新想法和新见解的产生。其价值一是提高透明度,让利益相关方能够更加容易地及时获取信息,例如在公安部门,让原本相互分离的部门之间更加容易地获取相关数据,就可大大降低搜索和处理时间;在制造业,整合来自研发、工程和制造部门的数据以便实现并行工程,可以显著缩短产品上市时间并提高质量。二是可以通过实验来发现需求、暴露可变因素并提高业绩。随着组织创造并存储更多数字形式的交易数据,并以实时或接近实时的方式收集更多准确而详细的绩效数据,组织能够通过安排对比实验,运用数据分析获取更好的决策,例如在线零售商,通过将流量和销售结合的试验论证决定价格调整和促销活动的制定。三是更加精准地组织市场,根据客户需求细分人群。利用大数据使组织能够对人群进行非常具体的细分,以便精确地定制产品和服务以满足用户需求。例如在公共部门如公共劳动力机构,利用大数据为不同的求职者提供工作培训服务,确保采用最有效和最高效的干预措施使不同的人重返工作岗位。四是可以协助决策者更加科学地进行决策。大数据的自动处理能够更好地为决策者提供更加精准恰当的决策支持,通过对大数据的自动处理来替换或支持人为决策。有些组织已经在通过分析来自客户、雇员甚至嵌入产品中的传感器的整个数据集而做出更有效的决策。五是能够创新商业模式、产品和服务。例如在医疗保健领域,通过分析病人的临床和行为数据已经创造了瞄准最适当群体的预防保健项目。例如互联网公司收集大量的在线行为数据,创新速度非常快。
应组织实施大数据产业专项
发展大数据及其相关服务业具有重要意义,有望使各个行业产生更多收益。随着我国经济和社会信息化的高速发展,不仅信息产业自身获取了巨大的数据池,各个行业都存在利用大数据获取价值的潜力。大数据促使信息化建设模式大转变,结构化数据向非结构化数据演进,使得未来IT投资重点不再是建系统为核心,而是围绕大数据为核心。政府和企业决策者应对大数据发展研究制定发展战略和策略给予高度重视。
大数据真正的问题是大数据应用,让大数据更有意义。目前大数据管理多从架构和并行等方面考虑,解决高并发数据存取的性能要求及数据存储的横向扩展,但对非结构化数据的内容理解仍缺乏实质性的突破和进展,这是实现大数据资源化、知识化、普适化的核心。非结构化海量信息的智能化处理包括自然语言理解、多媒体内容理解、机器学习等。例如2012年3月29日白宫发布美国政府的大数据计划:通过提高从大型复杂的数据集中提取知识和观点的能力,承诺帮助加快在科学与工程中的步伐,加强国家安全,并改变教学研究。
由此,我们提出组织实施大数据产业专项的初步设想。一是围绕拓展新兴信息服务业态,组织实施以大数据示范、加工、处理、整合和深加工的信息资源与内容服务业示范工程,面向重点行业和重点民生领域包括金融证券、医疗卫生、税务海关、交通运输、社会保障、电子商务等领域,开展大数据重大应用示范,提升基于大数据的公共服务能力;二是加快推动北斗导航核心技术研发和产业化,推动北斗导航与移动通信、地理信息、卫星遥感、移动互联网等融合发展,支持位置信息服务市场拓展,完善北斗导航基础设施,推进服务模式和产品创新,在重点区域和领域开展示范应用;三是大力发展地理信息产业,拓宽地理信息服务市场,推进大数据技术和服务模式融合创新,支持大数据服务创新和商业模式创新;四是组织实施基于大数据的信息内容加工服务业典型示范工程,包括关键技术产品产业化和大数据生产、转换、加工、投送平台及专用工具的产业化项目,为丰富信息消费内容产品供给提供支撑;五是组织实施自主可控的大数据关键技术产品产业化项目,主要包括商业智能、数据仓库、数据集市、元数据、可视化技术等。

『柒』 大数据在哪些领域有应用前景

1、电商行业
电商行业是最早将大数据用于精准营销的行业,它可以根据消费者的习惯提前生产物料和物流管理,这样有利于美好社会的精细化生产。随着电子商务的越来越集中,大数据在行业中的数据量变得越大,并且种类非常多。在未来的发展中,大数据在电子商务中有大多的想象,其中主要包括预测趋势,消费趋势,区域消费特征,顾客消费习惯,消费者行为,消费热点和影响消费的重要因素。
2、金融行业
大数据在金融行业的使用是非常广泛的,主要使用在交易过程中。现在许多股权交易都是使用大数据算法进行的。这些算法能够越来越多地考虑社交媒体和网站新闻,并且决定接下来的几秒内是选择购买还是出售。
3、生物技术
基因技术是人类未来挑战疾病的重要武器。科学家可以利用大数据技术的应用,这样能够加速他们自己的基因和其他动物基因的研究过程,并且还能成为人类未来克服疾病的重要武器之一。技术不仅可以改良作物,还可以利用遗传技术培育人体器官,消灭细菌等。

『捌』 有哪些大数据分析案例

如下:

1. 大数据应用案例之:医疗行业

1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。

在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。

它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。

2)大数据配合乔布斯癌症治疗

乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。

2. 大数据应用案例之:能源行业

1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。

通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。

因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。

为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。

3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户

法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。

他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。

这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。

4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略

北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。

结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。

定价团队的分析围绕着三个关键维度:

1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。

2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。

3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。

透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。

5、大数据应用案例之:网络营销行业(SEM)

很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。

在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。

企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。

通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。

6、大数据应用案例之:电商行业

意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。

虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。

从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。

7、大数据应用案例之:娱乐行业

微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。

今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。

总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。

『玖』 大数据和智慧交通有哪些应用的案例

智能交通成为改善城市交通的关键所在。为此,及时、准确获取交通数据并构建交通数据处理模型是建设智能交通的前提,而这一难题可以通过大数据技术得到解决。

智能交通整体框架主要包括物理感知层、软件应用平台及分析预测及优化管理的应用。其中物理感知层主要是对交通状况和交通数据的感知采集;软件应用平台是将各感知终端的信息进行整合、转换处理,以支撑分析预警与优化管理的应用系统建设;分析预测及优化管理应用主要包括交通规划、交通监控、智能诱导、智能停车等应用系统。

系统利用先进的视频监控、智能识别和信息技术手段,增加可管理空间、时间和范围,不断提升管理广度、深度和精细度。整个系统由信息综合应用平台、信号控制系统、视频监控系统、智能卡口系统、电子警察系统、信息采集系统、信息发布系统等组成。以达到四方面的目标:提高通行能力、减少交通事故、打击违章事件、出行信息服务。
在各城市建设智慧交通的过程中,将产生越来越多的视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等数据,每天产生的数据量可以达到PB级别,并且呈现指数级增长。

阅读全文

与医疗大数据应用案例相关的资料

热点内容
系统网络有什么 浏览:320
有什么可以帮忙p图的app 浏览:121
美食教程视频软件 浏览:549
2017win7与win10 浏览:43
iphone电脑定位追踪 浏览:620
如何判断文件是否存在 浏览:291
怎么搞移动数据密码 浏览:97
编程中如何开始学习 浏览:494
信息论编码与密码学电驴 浏览:200
ps打开文件的方式是什么 浏览:604
西软x5教程 浏览:693
国企虚报财务数据给什么处分 浏览:300
prt源文件下载 浏览:64
java指定字段排序规则 浏览:325
win7文件图标显示 浏览:833
class文件有多少个 浏览:820
qq对话框无法输入中文 浏览:528
港版iphone5s设置呼叫转移 浏览:534
d盘文件全部跑到桌面 浏览:173
4g网络无服务器 浏览:801

友情链接