Ⅰ 看大数据革命如何渗透进各行各业
大数据不仅仅影响着各行企业,它也成了今年许多考生的必选题。虽然大家对大数据还有一些陌生,但我们却不能忽视大数据的存在,大数据正蓬勃发展着。而当你在享受着大数据带来的便利时,并没有想到这就是大数据,直到自己手中的移动硬盘的容量在不断增大是,才意识到原来大数据浪潮来势如此凶猛。现实生活中有数不清的例子说明我们已经生活在被大数据笼罩的世界中,比如通过分析大数据,预判犯罪行为的发生、寻找灾难中的生还者,微软研究院正利用来自哈勃等全球太空望远镜搜集来的数据和图像建立一幅宇宙地图……我们要知道的是全球每天会有220万TB的新数据增加——90%的数据都是在过去的两年里创造出来的,这个比例还在不断上升。大数据的价值在美国的零售业早已得到运用,Tesco这家全球利润第二大的零售商从其会员卡的用户购买记录中,充分了解一个用户是什么“类别”的客人,并基于这些分类进行一系列的业务活动。比如,Target创建了一套女性购买行为在怀孕期间产生变化的模型,不仅如此,如果用户从他们的店铺中购买了婴儿用品,Target在接下来的几年中会根据婴儿的生长周期定期给这些顾客推送相关产品,使这些客户形成长期的购买习惯,从而形成对品牌的忠诚度。“大数据”绝对是时下最火热的IT行业词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等技术,正在为大数据带来大量的商业价值,逐渐成为行业人士争相追捧的利润焦点。而与之相关的职业需求也呈爆发式增长,大数据职业的相关人才匮乏,人才缺口非常大。盖特纳咨询公司预测大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。与大数据相关的职位有很多,目前主要集中在系统研发工程师、应用开发工程师和数据分析师三方面。系统研发工程师的工作主要针对研究生阶段计算机系统研究领域学得比较到位的同学,包括云计算技术、分布式系统、计算机网络,大数据系统搭建技术等。就业方向一般是提供大数据应用的云计算基础架构公司,这类工作更偏向于纯技术类,需要一些对技术有长期钻研精神的人来参与,目前市场人才的紧缺程度非常高。应用开发工程师需要精通的技术主要包括算法分析、结构化与非结构化数据库系统、流数据分析技术及应用软件开发技术等等。大数据应用开发工程师主要偏向应用层面的技术开发,比如对数据库进行数据挖掘、分析,也可以根据用户的不同制定个性化服务,IBM就会通过企业的具体需求定制适合他们的大数据应用。数据分析师涵盖的工作范围最广,除大数据相关技术外还需要各行各业领域的相关知识。比如为广告公司搜集大数据,分析目标用户的浏览习惯,就需要懂得广告公司的媒介投放知识;再比如分析下雨天,顾客在选择面包和蛋糕时为何偏向于后者的数据原因时,需要结合面包顾客的心理动因等影响消费行为的因素。由此可见,数据分析是与消费者日常行为关系最密切的一项研究。之所以称大数据为产业革命的第三次浪潮,很大一部分原因在于它正渗透到生活的方方面面。但目前国内本科毕业生没有机会系统学习大数据的技术和思想,往往不足以支持大数据的复杂工作,因此读研的时候选择这个专业自然是明智的,这样在未来就业中不会产生太多的竞争者。虽然国内的大数据相关行的专业并不多,但这并不表示这个专业就没有用,而顺着大数据的时代风潮相信定能为未来的职业发展锦上添花。
Ⅱ 大数据通过与人工智能云计算互联网边缘计算等新兴技术渗透融合在什么等领域培
大数据通过与人工智能、云计算、互联网、边缘计算等新兴技术渗透融合在智能制造、绿色低碳、共享经济等领域培育形成了新的增长点,成为创新发展的重要驱动力。
大数据定义详解:
大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据有大量(Volume)、高速(Velocity)、多样(Variety)、低价值密度(Value)、真实性(Veracity)五大特点。
它并没有统计学的抽样方法,只是观察和追踪发生的事情。大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
Ⅲ 大数据如何影响课堂教学
“大数据”(BIG DATA)这个词,是2008年在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》这本书中首次提出的。“大数据”指不用随机分析法(抽样调查)这样的捷径,而是对所有的数据(近似于全样本)进行分析处理的一种方法。
1.什么是我们身边的大数据?
“大数据”已经渗透到我们生活中的方方面面。比如我们打开手机淘宝,呈现在我们面前的界面是不一样的。它推送给我们的商品是不同的,而且这些商品往往真的能够抓住我们的需求和心理,这是为什么呢?
其实这就是大数据分析出的结论。
淘宝这个平台,对每一个浏览过商品的人,购买过商品的人,都进行了全数据分析,可以轻松获取我们的很多信息。
例如我们的性别、年龄、家庭成员、喜好、是否结婚、是否有孩子、孩子的性别,甚至可以细致到你是爱穿休闲类的服饰,还是喜欢小清新类的服饰,或者是职业装类的服饰等等。通过你的每一次操作,收集到了这些数据之后,它经过分析和处理,进一步推测出了你可能会订购的商品,从而推送给你,让你花更少的时间检索而要花更多的钱进行消费。
例如你购买了一些孕妇类产品,可能在不久之后,它就会推送相关联的一些婴儿用品给你。
而我们消费后的评价与反馈,又使得他们不断改进自己,例如不同卖家的钻石星级,或者清退一些不合格的卖家等等这些行为,就是淘宝对自身的调整。
这种互利互惠的双回路的运转模式,可以看作是卖家与买家间的一种良性的互动方式,而这种互动方式在传统的卖场里面是不可想象,也难以实现的。
2.什么是课堂教学互动方式?
课堂教学互动方式,则是指在课堂上,教师与学生之间的一种信息交流方式。
在传统的课堂中,师生之间的互动交流方式比较单一,上课就是教师在讲,学生在听,一种单方向的传导过程。
有人说,教师就是知识的搬运工,课堂上很少有师生之间的交流。
还有一种观念是,教师对学生提问,学生回答,就是师生互动。
显然,这种认识是肤浅的,这将使师生互动流于形式。师生互动的根本目的是要引导和培养学生的高阶思维。
因此,真正的师生互动应该定义为思维的碰撞、智慧火花的生发之源。
近些年来一直被提及的可汗学院的教学与学习方式,之所以受到关注的原因,恰恰就是它基于大数据分析,解决了课堂教学互动这个难题。
大数据之所以能实现课堂教学互动,是因为它具有三个主要特征:反馈、个性化和概率预测。
我们传统的课堂教学是一种单回路的学习,即教师给予,学生接受。我们对学生进行考核,然后对他们进行评价。
我们不会或者没有条件来通过学生的成绩来反思自己的教学内容或者方式是否是恰当的。
我们不能从学生身上获得真正有用的反馈信息来改变自己的教学内容和行为。
所以说,传统的课堂教学是一种单回路的方式,根本没有实现师生间的良性互动。
此外我们的教学内容在编排上,考虑的是处于平均水平的学生,而这种水平的学生其实在现实中可能根本是不存在的。
换句话说,我们的教学没有照顾到“好”学生,也忽略掉了那些“差”学生,甚至连我们认为的中等水平的学生,也是不存在的,因为他们是平均后虚构出来的群体。
所以,我们的教学根本没有针对学生做出个性化的设计,这是教育普及大众化不得不做出的取舍。
传统的教学是没有反馈或反馈较少(没有时间或实在照顾不到,分身乏术),没有个性化,从而更谈不上有概率预测的一种教学。
而大数据下的新的课堂教学互动方式,却可以改变这种状况。
1.参考案例
维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《与大数据同行——学习和教育的未来》一书,举了可汗学院的例子。
2004年,可汗是一个刚从哈佛商学院毕业一年的基金分析师,给自己的表妹辅导数学。
由于他们生活在不同的城市,因此,他在互联网上为她进行辅导,从此永远地改变了教育的世界。
他编写了若干程序来协助教学,这些程序能生成数学习题,并显示孩子们提交的答案是否正确。
同时,也收集数据,程序可以追踪每个学生的答对和答错的习题数量,以及他们每天用于作业的时间等等。
后来在此基础上创建的可汗学院,之所以可以闻名于世,就是因为它收集有关学生行为的数据,从中获取有用的信息来改变教学内容的设计,为每个学生定制个性化的学习方案。
可以说数据就是可汗学院运作的核心所在,大数据的支撑,互联网技术的飞速发展,使得相隔千里的师生之间形成了有效的课堂教学互动。
它改变了我们对面对面才能达成互动的传统认识。
此外,还有一个关于斯坦福大学吴恩达与他的机器学习课程的例子。
吴教授将课程放到了网上,他追踪学生与视频互动的行为。
在什么地方按了暂停键,什么地位按了重复键,在什么地方放弃了继续听课,他的目的不是督促学生学习,而是反思学生卡在了什么问题上,哪些教学内容难以理解,从而对课程进行调整。
例如,他发现学生本来都是正常的按顺序进行网上学习,但是很多学生在学习第7课时,都会去回看第3课的一个关于数学知识的复习课。
于是他发现,原来是因为第7课解决某个问题时,需要用到第3课复习到的一个数学公式,而很多学生并没有记住,因此他就对第7课时的教学视频做了改变,会自动弹出一个弹窗帮助学生来复习数学公式。
还有一次,他发现学生在学习第75课到第80课时,正常的学习秩序被打乱了,学生以各种各样的顺序反复观看这几节课。
他通过反复分析,发现学生的行为是在反复理解概念,于是他将这部分的教学内容制作的更加精细,更有助于帮助学生理解概念。
【 评价】
这是一个典型的大数据分析下,课堂教学互动变革实现了教学反馈的例子。
觉得我们传统的教学,只是通过每天判一判学生的作业,看一看他们的考试成绩,是无法得到这些动态的数据的,更无法得到改变我们教学内容与方式的有价值的信息。
于是我们的教学可能几年甚至几十年都在重复相同的内容和动作。因为我们不知道学生究竟是如何进行学习的。
2.参考案例
还有一个例子是关于“半岛大学”的暑期班项目,他们使用可汗学院的数学课程教授来自旧金山湾区贫困社区的中学生。
在课程一开始,一个七年级的女生的成绩在班里一直垫底,在整个暑期的大部分时间中,她一直是学得最慢的一个学生,但是在课程结束后,她的成绩是班上的第二名。
可汗对此感到好奇,于是调取了她完整的学习记录,查看她每一道习题和解题的时间,系统创建的图表对她学习进行的描绘,发现他很长时间都徘徊在班级的底部,直到在某个事件点上突然直线上升,超过了几乎所有的学生。
这充分说明,当学生以自己最适合的步调和顺序进行学习时,即使一个被看似没有能力的“差生”也是可以变为优等生的。
【 评价】
这是一个典型的大数据分析下,课堂教学互动变革实现了个性化教学的例子。
如果这个女孩放在我们传统的基于小数据的教学课堂上,几次考试的成绩都不理想,可能她就会被我们归类为“差生”,于是各种补习加各种辅导,完全打击了她的自信心,成绩的阴影甚至会影响到她的一生。
而可汗学院的课程,利用数据监控了她的所有的学习过程,时间是一个连续的变量,针对她的特点设计了适合她的习题,循序渐进,激发出了她最大的能量。
她完全根据这种个性化的定制,按照自己的学习节奏进行学习,不用去关注到其他人的学习进度与成绩。细思极恐,我在想我们的教育究竟扼杀掉了多少这样的人才?
我们真的应该好好认清大数据带给我们的课堂教学互动的变革,这种变革很多时候甚至不是技术上的,而是理念上的。
在反馈与个性化的基础上,大数据的更大的优势就体现在了概率预测这方面了。
例如我们可以对学生个体为提高其学业成绩需要实施的行为作出预测。比如选择最有效的教材、教学风格、反馈机制等等。
其实,在小数据时代,我们跟学生家长所说的某些建议,比如您的孩子应该加强数学这方面的学习,您的孩子适合去学文科等等这些建议,其实也不是肯定的事实,也只是概率性的干预。
因为可能根据老师所谓的经验,这个学生选择学习文科,将来考上一本的可能性更高。而大数据与过去最大的区别是,我们是通过对事物加以测量和量化,以更高的精确度说话。它的预测准确率更高。
比如,大学的选课方面,可以根据你以往的学习基础以及学习行为,预测出你选哪门课的通过率会更高,你未来的职业规划怎样进行会更加顺利等等。
大数据所实现的这种概率预测,似乎与课堂教学互动方式的变革没有直接的关系。
但是仔细分析不难发现,这种预测其实是师生间互动的一种延续,我们对学生的影响不只局限于课堂上,而是延续到了未来选择的层面上,使得互动交流更上了一个台阶。
1.利用数据反馈信息调整课堂教学策略
以高考备考为例:
上图是追踪某高中四年所有学生高考数学各知识点得分率的情况,我们可以看出对其中一部分知识点的得分率维持在高位。
这就说明学校一贯的培养策略与日常教学方法是正确的,只需要保持即可,无论教师还是学生不需要过于焦虑,因为大数据反馈的结果对未来教学效果有一定的预测功能。
2.关注学生的个性化发展
大数据不仅对规模庞大的数据进行全样本分析,得到一般规律,更重要的是很能体现出个性,它可以记录下每一个学生的变化,方便教师针对每一个学生调整课堂教学方式。
上图是大数据分析系统给出的某一个学生在一次考试中的情况,从图中可以看出,数学与物理是这个学生的优势学科,英语是这个学生最薄弱的学科,那么在进行改进策略制定时,要多听取英语老师的建议。
大数据可以帮助教师的课堂教学行为不像传统课堂那样,针对的是所谓的“平均水平”的学生授课,而是能照顾到每一名学生。
例如,利用信息技术监控学生的课堂测试与课堂练习情况,随时调取任意学生的过程进行点评,统计每一名学生过程中出现的问题,这样教师对课堂进程的判断不是根据经验,而是根据实际情况随时调整。
总之,课堂教学互动方式的变革,不应该只是技术层面上的变革,媒体技术,网络平台的建设已经非常的成熟了,我们需要的变革是组织变革,是思想的变革。
现在流行的微课、慕课(MOOCs)其实就是大数据渗透到教学互动领域冰山的一角,形式并不重要,重要的是隐藏在这些形式下的数据所反映出来的学生行为,以及反馈给教师的教学信息,从而引起他们的思考和改变,形成双向的回路,实现真正的“互动”,这才是大数据真正的价值。
大数据下的教师要成为“数据脱盲者”,我们需要通过读取数据来追踪学生的进步,通过概率预测解释什么是对学生最有效的学习。
我想这应该意味着我们需要建立一套完善的系统,在这个系统中,有数据处理的专家,有解读数据分析数据的分析师,有利用数据改善教学的教师。
只有在这个良性循环的系统中,才能真正实现课堂教学互动,呈现个性化的教学,让教育针对每一个孩子。
希望我们的教育和教学可以因为大数据而发生真正的变革。
Ⅳ 大数据的适用范围是什么
机械制造业,应用工业化生产大数据提升机械制造业水平,包括产品常见故障检验与预测分析分析、分析生产工艺流程、改进生产制造生产流程,提高生产过程能耗、工业化生产供应链分析与提高、生产计划表与排程表表。
金融行业,大数据在高频交易、社交网络心理状态分析和信贷风险分析三大互联网金融领域充分运用重大作用。
机械制造业,应用大数据和物联网技术的无人驾驶小汽车,在靠近的未来将迈入大伙儿的饮食起居。
it行业,凭着大数据专业性,可以分析消费者行为,进行商品推荐和针对性广告推广。
中国移动宽带行业,应用大数据专业性进行消费者离网分析,马上掌握消费者离网趋于,施行消费者挽留防范措施。
能源业,随着着智慧能源的发展趋向,电力公司可以掌握很多的顾客耗电量信息,应用大数据专业性分析顾客耗电量方法,可以改进电力运行,合理方案设计电力安装工程规定答复系统,确保 电力运行安全系数。
物流行业,应用大数据提高物流货运互联网技术,提高物流货运效率高,降低物流成本。
关于大数据的适用范围是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅳ 大数据在日常生活中有哪些应用
大数据技术渗透进入我们每个人的日常生活消费之中,它提供了光怪陆离的全媒体,难以琢磨的云计算,无法抵御的仿真环境。大数据依仗于无处不在的传感器,通过大数据技术,人们能够在医院之外得悉自己的健康情况;而通过收集普通家庭的能耗数据,大数据技术给出人们切实可用的节能提醒;通过对城市交通的数据收集处理,大数据技术能够实现城市交通的优化。
随着科学技术的发展,人类必将实现数千年的机器人梦想。事实上,今天人们已经享受到了部分家用智能机器人给生活带来的便利。比如,智能吸尘器以及广泛应用于汽车工业领域的机器手等等。目前,科学家研发出的智能微型计算机只和雪花一样大,却能够执行复杂的计算任务,将来可以把这些微型计算机安装在任何物件上用以监测环境和发号施令。
在大数据时代,人脑信息转换为电脑信息成为可能。科学家们通过各种途径模拟人脑,试图解密人脑活动,最终用电脑代替人脑发出指令。正如今天人们可以从电脑上下载所需的知识和技能一样,将来也可以实现人脑中的信息直接转换为电脑中的图片和文字,用电脑施展读心术。
大数据技术的发展有可能解开宇宙起源的奥秘。因为,计算机技术将一切信息无论是有与无、正与负,都归结为0与1,原来一切存在都在于数的排列组合,在于大数据。
关于大数据在日常生活中的应用,青藤小编就和您分享到这里了。如果您对数据分析有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅵ 大数据带来的大影响
大数据带来的大影响_数据分析师考试
如果把“数据化”视为信息社会的初级阶段,则名不见经传的英国科学家维克托·迈尔-舍恩伯格,用他别具洞见的天才新著《大数据时代》首次告诉我们:人类正在进入“数据颠覆传统”的信息社会中级阶段。
在此阶段,信息无所不在无所不包,其无限膨胀的天文海量催生了“统计+分类-推理分析=决策”的计算机处理程序(有点像刷卡消费一步到位,节省了算账找补等繁琐环节),悄然挑战“去粗取精、去伪存真、由表及里、由此及彼”的传统认识论模式,冥冥之中潜移默化,对我们的生活、工作与思维,对人类“阶级斗争、生产斗争、科学试验”三大实践活动产生着重大而深刻的影响。
大数据点燃
美国政府曾为定期公布消费物价指数CPI以监控通胀率,雇用了大量人员向全美90个城市的商店、办公室进行电话、传真拜访,耗资2.5亿美元搜集反馈8万种商品价格的延时信息。然而麻省理工学院两位经济学家采取“大数据”方案,通过一个软件在互联网上每天搜集50万种商品价格即时信息。2008年9月雷曼兄弟公司破产后,该软件马上发现了通胀转为通缩的趋势,而官方数据直到11月才发现。之后该软件被畅销到70多个国家。这一案例充分体现出“大数据”颠覆传统的力量和变革思维的智慧。
“小数据”时代追求精准,竭力避免不精准信息误导误判。然而95%被传统数据库拒绝接受的非结构化(非标准)数据,在“大数据”时代的模糊化数据库中发挥了重要的作用,因为数据越模糊越全面,才能有效避免误导误判。
从因果关系到相关关系的思维变革,是“大数据”颠覆传统认识论模式的关键。电脑毕竟不是人脑,电脑永远搞不懂气候与机票价格之间有什么因果关系。公鸡打鸣和天亮之间虽无因果关系,但古人通过公鸡打鸣来预报天亮却很少失败。“如果数百万条医疗记录显示橙汁和阿司匹林的特定组合对癌症治疗有效果,那就用不着通过一次次实验来探索其具体的药理机制了”。“苹果之父”乔布斯就主动试用过一些医疗记录有效但未经临床验证的疗法同癌症抗争。你可以嘲笑乔布斯“不讲科学”,但他却因此多活了好几年。
从根本上说,所谓“大数据挑战传统认识论”,其实是人类把复杂的认识过程“全部打包”给了电脑,而电脑懒得分析推理验证,只通过统计分类对比,交出“最终答案”就OK了。大数据的精髓在于变“少而精”为“多而全”,变“因果”为“相关”。当实地调研开始被数据采集所替代,当严密的实验开始被非线性逻辑所替代,当“唯一真理”开始被多项选择所替代,“大数据”就用事实向人类宣告:“知其然不知其所以然”,既是电脑望尘人脑的劣势,也是电脑超越人脑的优势!
大数据渗透大世界
不要以为“大数据”只是科幻故事或政府与科学家的“专利”。环顾四周,“大数据”早已渗透我们生活和工作的方方面面,衍生出形形色色的数据超市、数据易趣、数据交友、数据联谊、数据作坊、数据课堂、数据IB等传奇版本。从治安管理、交通运输、医疗卫生、商业贸易、批发零售、公益救援直到政治、军事、经济、金融、社会、环境、文艺、体育。
UPS国际快运公司从2000年开始通过“大数据”检测其遍布全美的6万辆货车车队,统计出各损耗零部件的生命周期,改“备份携带”为提前更换,有效预防了半路抛锚造成的严重麻烦和巨大损失,每年节省数百万美元。UPS还依靠“大数据”优化行车路线(例如尽量右转弯,避免左转弯),2011年全公司车辆少跑4828万公里,节省燃料300万加仑,减少碳排放3万公吨。
为纽约提供电力支持的爱迪生电力公司,针对每年多起电缆沙井盖爆炸造成严重事故,采取“大数据”手段统计出106种预警先兆,预测2009年可能出事的沙井盖并严加监控。结果位列前十分之一的高危井盖中,预测准确率达44%。
美国里士满市警察当局凭经验认定枪击事件往往导致犯罪高峰期,“大数据”证明这种高峰期往往出现在枪击事件后2周左右。孟菲斯市2006年启动“大数据”系统锁定了更容易发生犯罪的地点和更容易抓捕罪犯的时间,使重大犯罪发生率下降26%。
沃尔玛2004年依靠“大数据”发现了飓风前夕销量增加的各类商品,进而每逢预报便及时设立飓风用品专区,并将手电筒、早餐零食蛋挞等摆放于专区附近,明显增加了“顺便购买”的销量。
至于“大数据”的经济价值,仅需略举数例:2006年微软以1.1亿美元购买了埃齐奥尼的Farecast公司,2008年谷歌以7亿美元购买了为Farecast提供数据的ITA Software公司。同年在冰岛成立的DataMarket网站干脆专靠搜集提供联合国、世界银行、欧盟统计局等权威机构的免费信息来获利生存,包括倒卖各类研究机构公开发布的研究数据——只要找到买主,往往愿出高价!
大数据创造大金融
金融领域当然是“大数据”的主战场之一。程序化交易也许是现今最主要的“大数据”新式武器。美国股市每天成交量高达70亿股,但其中三分之二的交易量并非由人操作,而是由建立在数学模型和算法之上的计算机程序自动完成。日新月异的程序化交易只能运用海量数据来预测收益、降低风险。几乎所有银行、券商、保险、期货、QFII和投资公司都开发了自己的程序化交易工具。谁的武器更先进?竞争到最后恐怕还是比谁搜集处理的数据更海量。
一家投资基金通过统计大商场周边停车场及路口交通拥挤状况,来预测商场经营及当地经济状况,进而预测相关股价走势,最后居然拿数据统计资料换得了该商场的部分股权。
不少对冲基金通过搜集统计社交网站推特上的市场心情等信息来预测股市的表现。伦敦和加利福尼亚的两家对冲基金,利用“大数据”形成119份表情图和18864项独立的指数,向许多客户推销股市每分钟的“动态表情”:乐观、忧郁、镇静、惊恐、呆滞、害怕、生气、激愤等,以帮助和带动投资决策。
在金融机构竞相拉客理财的今天,如果能及时搜集处理海量的微博、微信、短信,自然也能从茫茫人海中及时发现怦然心动打算开户的,或一气之下打算“跳槽”的投资者。
当然,如果投资者都能通过“大数据”直接决策,将“刷卡消费”拓展成“刷卡投资”,那藏龙卧虎的分析师群体和争雄斗妍的研究报告未来还有市场吗?
大数据暗藏大隐患
像所有新生事物一样,大数据也是一把双刃剑。宏观上看,“大数据”在各个不同的领域将人类虚拟分割为“数据化”与“被数据化”两大阵营。持续发酵的“棱镜门”事件披露了美国政府长期监控全世界的“最高机密”,但美国总统、国会和政府都认定这种监控“天经地义”,是“维护国家核心利益”。虽然社会早已建立起庞大的法律法规体系来保障个人信息安全,但在“大数据”时代,这些体系正蜕变为固若金汤但可以随意绕过的“马其诺防线”。
“大数据”导致个人信息被交易、个人隐私被外泄还不算,更大的危险在于“个人行为被预测”。正如作者预言——“这些能预测我们可能生病、拖欠还款甚至犯罪的算法程序,会让我们无法购买保险、无法贷款,甚至在犯罪实施前就预先被逮捕”——也许你认为这对全社会来说无疑是好事。可是如果预测系统不完善、软硬件出差错、数据搜集处理不当、临时数据未经检验、黑客攻击、有人恶意或善意开玩笑制造假信息……导致你、你的家庭、你的亲朋好友、你的所在单位甚至你的祖国被冤枉被制裁,你还能无动于衷吗?
微观上看,即使是出于正当目的采集的“大数据”,仍可能在“扩展开发”过程中产生无法想象的副作用。例如谷歌的街景拍摄和GPS数据为卫星定位和自动驾驶仪提供了关键的支持,但同时因其有助于黑帮盗贼便捷挑选有利目标而引发了多国民众的强烈抗议。当谷歌对图像背景上的业主房屋、花园等目标进行模糊化处理后,反而引起盗贼更加注意。
无论你惊奇还是恐惧,欢迎还是躲避,关注还是漠视,理解还是拒绝,“大数据”都在加快步伐向我们走来。我们只有顺势而为,趋利避害,才不至于被这个充满机遇和挑战的新时代提前淘汰。
以上是小编为大家分享的关于大数据带来的大影响的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅶ 怎么理解现今时代是“大数据时代”
一切都可以以数据的形式表现出来,人们可以通过大数据手段做到许多曾经难以做到的事。
随着信息技术的不断发展,我们已经开始进入所谓的“大数据时代”。在这个时代当中,大数据库对一切行为都有了一个数据化的表达,用量化的方式来分析我们生活中所遇到的一切。
这其实就是大数据在生活当中的表现,虽然我们还没有意识到自己已经被影响,但是大数据确实无时无刻不在影响着人们的人生进程。
在生活可以被数据化的今天,大数据时代已经悄然来到。
Ⅷ 大数据主要应用于哪些行业
大数据逐渐渗透我们的日常生活与每个角落,让生活更加便利。大数据可以说是无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹,下面就为大家详细介绍一下大数据主要应用于哪些行业。
01
制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺。
02
金融行业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
03
汽车行业:利用大数据和物联网技术的无人驾驶汽车,未来会逐渐步入市场。
04
互联网行业:借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放,给客户提供方便快捷的通道。
05
餐饮行业:利用大数据打破老式的餐饮经营模式,彻底改变传统餐饮经营方式。
06
电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施,掌握客户需求。
07
能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
08
物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本,提高工作效率。
09
城市管理:可以利用大数据实现智能交通、环保监测、城市规划和智能防护。
10
个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活习惯,为我们提供更加全面的服务。
大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了社会生产和生活,未来必将产生重大而深远的影响。
最近整理了一套适合2019年学习的Java\大数据资料,从基础的Java、大数据面向对象到进阶的框架知识都有整理哦,可以来我的主页免费领取哦。
Ⅸ 为什么说当今时代是大数据时代,那什么样的东西可以称为大数据
大数据,又称海量数据,是指所涉及的海量数据,无法通过人脑甚至主流软件工具捕捉、管理、处理和整理成更积极的信息,帮助企业在合理的时间内做出商业决策。大数据已经渗透到我们生活的方方面面。就像空气和水一样。虽然我们看不见它,但我们不能没有它!数据很重要,但孤立的数据很难工作。大数据意味着将许多数据放在一起,并以科学的方式筛选和分析相关数据。然后将其应用到生产过程和生活体验中。
Ⅹ 大数据是什么意思
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
大数据意义
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。