⑴ IEEE会议论文并进入IEEE Xplore,也不一定被EI检索,是吗
肯定回答是的,进入IEEE Xplore是一定会被EI检索的。所以,既然会议方承诺了,应该还是很有保障的。
电气与电子工程师协会(Institute of Electrical and Electronics Engineers),简称IEEE,总部位于美国纽约,是一个国际性的电子技术与信息科学工程师的协会,也是目前全球最大的非营利性专业技术学会。
历史沿革:
电气与电子工程师协会由美国电气工程师协会和无线电工程师协会于1963年合并而成,目前在全球拥有43万多名会员。作为全球最大的专业技术组织,IEEE在电气及电子工程、计算机、通信等领域发表的技术文献数量占全球同类文献的30% 。
会员类别:
语音
会员类别分为会士(Fellow)、高级会员(Senior Member)、会员(Member)、准会员(Associate Member)和学生会员(Student Member)。
⑵ 关于EI会议检索的问题。
看往届被
EI检索
的情况,应该还是可以的,保证你文章的质量然后被录取。
⑶ ei美团月付里面的刷脸支付和其他刷脸支付一样吗
ei美团月付里面的刷脸支付和其他刷脸支付一样。刷脸支付是基于人工智能、机器视觉、3D传感、大数据等技术实现的新型支付方式,所有的刷脸支付都是一样的,美团月付是美团官方推出的一款信用支付产品,开通美团月付之后,用户在美团系app消费时都可以使用美团月付授予的信用额度来完成支付。
⑷ 请问大数据分析和机器学习之间的区别与联系
现如今是一个信息的时代,社会上任何行为都是以信息为前提去执行的。而信息又是对数据的处理加工得来的,所以“数据”是时代的主宰。大数据、数据挖掘和机器学习这三者是面对数据通常采用的手段。而这三者之间又是怎样的区别呢?
大数据是一个相对抽象的概念,目前国内外学术界还没有对大数据的定义形成统一的意见。美国国家科学基金会(National Science Foundation,United States)基于数据特征及数据来源角度对大数据进行了定义,认为大数据是一种复杂的、大规模的、长期的、多元化的分布式数据集,由一系列的数据源生成,包括网络点击流、音视频软件、E-mail、科学仪器、互联网交易、传感设备等。
所谓数据挖掘,又叫做数据库中的知识发现,简称为KDD。关于数据挖掘技术的定义,国际上目前比较广泛认可的是U.M.Fayyad 等人说明的,即数据挖掘技术就是在模糊的、有噪声的、不完全的、大量的、随机的数据中,提取潜在的、人们事先不知道的、隐含在其中的有价值的知识与信息的过程。
机器学习是基于对海量信息处理的需求产生的一门涉及多个学科领域交叉的学科,“机器学习是对能通过经验自动改进的计算机算法研究”。其主要目的是研究计算机如何通过学习人类的思维和行为,来自动获取新知识,自动适应环境的变化的。机器学习是人工智能的核心思想。
现代各企业都十分注重数据,面对各种各样的数据,因而也衍生了各大数据服务平台,例如,华为云机器学习平台(MLS)是EI的一项基础服务,帮助用户通过机器学习技术迅速发现数据规律,构建预测模型,并将其部署为预测分析解决方案。不管现在和将来,数据都会成为时代的标志。
⑸ ICCBDAI大数据会议是EI检索的吗
是的,确保EI检索的
⑹ “极课同学”是什么意思
极课同学是一套服务于基础教育阶段学校日常作业和考试数据采集、分析的教育智能系统,帮助一线老师提高工作效率,建立面向家庭的个性化学习平台。
是极客大数据下的产品,清华大学、北京师范大学等名校都有与之合作。
极客大数据介绍
极课大数据是江苏曲速教育科技有限公司旗下教育类品牌,品牌注册号17444737,国际分为第42类.极课大数据基于图像识别和自然语言处理等技术研发EI教育智能系统,在不改变传统大班教学模式的基础上,实现因材施教、促进教育公平。
目前,已部署在3200多所知名K12学校中,覆盖57多万老师、学生及家长,拥有校本题库总量1000多万,考试作业数据2000多万条,教师激活率接近90%。
品牌服务
计算机软件维护; 把有形的数据或文件转换成电子媒体;计算机软件安装; 云计算; 外包商提供的信息技术服务; 技术研究; 计算机软件设计; 计算机软件更新; 计算机硬件设计和开发咨询; 恢复计算机数据。
⑺ 「SAECCE议程剧透」新能源汽车大数据应用——机遇与融合
导读
新能源 汽车 大数据的利用不仅在 汽车 产业内部释放了巨大的数据红利,未来也必将成为 汽车 产业与其他产业融合的重要纽带。随着我国“新基建”的不断推进,高速低延迟的5G网络覆盖与新能源 汽车 充电桩的建设,势必会加速新能源 汽车 的发展与数据井喷。由此可见,大数据技术在新能源 汽车 上的应用会加快 汽车 产业向信息化与智能化迈进的脚步,而新能源 汽车 大数据与电力等行业的融合还将产生出巨大的蓝海市场。
2020中国 汽车 工程学会年会暨展览会(SAECCE 2020) 将于 2020年10月27-29日 在 上海 汽车 会展中心 举办。迄今为止,SAECCE年会已成功举办26届,成为在国内举办的 汽车 行业标杆活动之一。
本专题分会以 “新能源 汽车 大数据应用——融合与机遇” 为主题,邀请国内外权威专家主旨演讲和互动讨论。通过聚焦“大数据背景下新能源车辆全局优化式能量管理方法研究”等若干议题,共同交流新能源 汽车 大数据应用的主流技术与最新发展趋势,加速新能源 汽车 大数据技术成熟,并加大 汽车 产业的辐射带动能力。
N01:新能源 汽车 大数据应用——机遇与融合
会议时间&地点
2020年10月27日 13:30-18:00
上海 汽车 会展中心
协办单位
吉林大学 汽车 工程学院
会议主席
王震坡
博士/教授/博士生导师,北京理工大学电动车辆国家工程实验室主任、新能源 汽车 国家大数据联盟秘书长
王震坡,教授、博士生导师,北京理工大学电动车辆国家工程实验室主任、新能源 汽车 国家大数据联盟秘书长。入选了教育部“新世纪优秀人才”、北京市“ 科技 北京百名领军人才”、 科技 部“中青年 科技 创新领军人才”、 国家“万人计划”和机械行业“‘十二五’先进 科技 工作者”。主持了国家自然基金重点项目(动力电池系统热失控与安全管理)、国家重点研发计划项目(分布式驱动电动 汽车 集成与控制)、国家863计划项目(电动 汽车 充换电设施设计集成与管理)等纵向项目12项,发表第一作者或通讯作者SCI论文29篇(ESI高被引3篇),第一作者EI论文60余篇。第一作者出版专(译)著4部(“电动车辆动力电池系统及应用技术”入选“十二五”高等教育本科国家级规划教材),授权第一发明人发明专利24项。获国家 科技 进步二等奖1项,省部级科研一等奖3项,二等奖2项(1项排名第一),中国 汽车 工业科学技术一等奖1项(排名第一),北京市教学成果一等奖1项。
联合会议主席
许楠
博士/副教授/博士生导师,吉林大学 汽车 工程学院
许楠,吉林大学 汽车 工程学院车辆工程专业 副教授兼博士生导师,工学博士,博士后,新能源 汽车 国家大数据联盟理事,美国电气电子工程师学会(IEEE)会员,目前担任Applied Energy、IEEE Transaction on Vehicular Technology、IEEE Transaction on Power Electronics、International Journal of Electronics和SAE Journal等国际期刊审稿专家。发表新能源 汽车 领域论文二十余篇,授权发明专利10项,软件著作权13项。作为项目负责人承担国家自然科学基金青年基金项目、国家博士后科学基金面上项目、吉林省 科技 发展计划项目以及企业的合作研究等项目。荣获国家教育部博士生新人奖,入选国家留学基金委国际清洁能源拔尖创新人才培养项目(iCET2019),吉林大学优秀青年教师重点培养计划等。
主要研究城市智能交通系统规划与评价、车辆全局优化式能量管理、人-车-路系统数据挖掘与分析、新能源车辆动力系统控制与评价、开放式绕组电机控制、智能辅助驾驶。
01
演讲嘉宾简介及演讲摘要提前看
大数据+区块链在新能源 汽车 动力电池溯源管理方面的应用研究
刘鹏
北京理工大学副教授,硕士生导师,新能源 汽车 大数据联盟副秘书长
演讲要点
1、新能源 汽车 动力电池发展现状。
2、新能源 汽车 动力电池溯源管理平台建设及应用现状介绍。
3、大数据及区块链技术在新能源 汽车 动力电池溯源管理方面的应用现状及最新研究。
4、动力电池数据管理所面临的问题和挑战。
演讲摘要
概述近年来新能源 汽车 和动力电池发展数据研究现状,以及大数据平台建设及应用状况,并对大数据及区块链技术在新能源 汽车 动力电池溯源管理方面的应用及研究进行介绍,对动力电池数据管理方面所面临的挑战进行分析和展望。
一种基于数据的电动 汽车 全工况行驶能耗评价方法
袁新枚
吉林大学 汽车 工程学院教授
演讲要点
1、电动 汽车 能耗评价的需求。
2、一种新型的电动 汽车 能耗模型及基于数据的能耗评价方法。
3、仿真实验结果及讨论。
4、该方法在高速路充电站规划上的一个应用。
演讲摘要
智能网联新能源 汽车 的能量管理策略
宋珂
同济大学 汽车 学院燃料电池创新研究所所长
演讲要点
1、智能网联 汽车 概述。
2、智能网联 汽车 的通信技术。
3、智能网联新能源 汽车 能量管理技术发展历程。
4、智能网联新能源 汽车 能量管理技术发展趋势。
演讲摘要
智能网联 汽车 与新能源 汽车 将是未来 汽车 技术发展的两个重要方向。当今 社会 和人们对这两项技术的协调发展提出了更高的要求。通过使用智能网联技术(ICT),新能源 汽车 可以与外部世界(例如其他行驶车辆、道路基础设施,互联网等)进行信息实时交互,这就是所谓的车联网系统(V2X)。在对各种交通信息进行深入分析的基础上,车辆可以识别当前行驶状况并对未来驾驶状况进行有效预测,从而实现车辆动力系统能量管理的实时优化,以满足不同驾驶条件下的车辆驾驶需求。这不仅能大大改善新能源 汽车 的燃油经济性,也能够有效缓解了交通拥堵问题。介绍近年来智能网联技术在新能源 汽车 上的应用情况,基于智能网联技术的新能源 汽车 能量管理策略研究现状以及智能网联技术与新能源 汽车 技术协调发展的趋势。
大数据在新能源 汽车 安全风险防控的应用研究
张照生
北京理工大学机械与车辆学院副教授
演讲要点
1、新能源 汽车 安全情况统计分析。
2、新能源 汽车 安全预警与防控方法研究。
3、典型事故案例数据分析。
演讲摘要
基于新能源 汽车 国家监管平台数据,统计分析车辆报警、事故车辆相关情况,从大数据角度分析影响新能源 汽车 安全相关因素,提出新能源 汽车 安全预警和防控方法,并以具体事故案例分析新能源 汽车 预警情况,为新能源 汽车 安全管控及产业 健康 发展提供技术支撑。
大数据背景下新能源车辆全局优化式能量管理方
法研究
许楠
吉林大学 汽车 工程学院 副教授,博士生导师,新能源 汽车 大数据联盟理事
演讲要点
1、新能源车辆能量管理方法研究现状。
2、大数据背景下全局优化式能量管理方法所面临的机遇和挑战。
3、"信息-物质-能量"三层式全局优化架构的建立及应用。
4、全局优化式能量管理平台的应用前景。
演讲摘要
概述近年来新能源车辆能量管理方法研究现状,介绍大数据为全局优化式能量管理带来的机遇,明确全局优化式能量管理方法所面临的问题和挑战,提出“信息-物质-能量”三层式全局优化架构以解决全局优化式能量管理方法实际应用问题。最后,针对全局优化式能量管理平台未来在区域交通能耗优化等方面的应用,提出了相关建议与展望。
数据驱动的锂离子动力电池管理算法 探索 研究
韩雪冰
清华大学车辆与运载学院助理研究员
演讲要点
1、基于云端大数据的电池管理是未来的发展方向。
2、基于数据可以有效的实现电池的安全预警。
3、基于数据可以有效的实现电池的寿命估计。
演讲摘要
在新能源 汽车 使用过程中,伴随着电池的使用,电池性能不断衰减,电池组内单体间的不一致性持续增加,一致性问题还可能导致电池组的失效,引发安全问题。随着云端数据的广泛应用,电动 汽车 的数据能被监测、记录。基于这些数据可以有效的评估电池组一致性、估计电池寿命,进行电池安全预警,实现更加安全可靠的电池管理。
大数据背景下基于储能应用的电动 汽车 电池的
二次利用
班伯源
中国科学院合肥物质科学研究院副研究员
演讲要点
1、退役电动 汽车 电池二次利用的必要性。
2、电动 汽车 锂电池的衰减现象的本质。
3、退役电动 汽车 电池二次利用的关键技术 SOH估算。
4、退役电动 汽车 电池二次利用国内应用实例。
演讲摘要
近年来电动 汽车 (EV)产业飞速发展,为了保证 汽车 的动态性能和行驶安全,电动 汽车 电池在一定服役时间或性能下降后就需要更换。退役 汽车 电池二次利用是将保留了足够的性能的退役电动 汽车 电池组,用于特定的储能系统中。在本报告中整理了锂离子 汽车 蓄电池二次利用的相关法律法规,收集了SOH估算的相关方法,特别是针对目前大数据背景下的提出了整合电动车能源管理系统的SOH估算方法,列举了退役 汽车 电池可能的二次利用的利用场景。最后,根据目前国内退役电动 汽车 电池二次利用的现状,提出了相关建议与展望。
新能源车与外部环境的数据融合带来的机遇和
挑战
王川久
北京泓达九通 科技 发展有限公司董事长
演讲要点
1、大数据让新能源车看的更远,了解的更多,同时我们对车辆也有了更深的了解。
2、车辆与道路交通系统的关系。
3、大数据能给我们带来什么。
4、几个大数据的应用场景。
演讲摘要
新能源 汽车 与外部环境的大数据交换,将使车辆更好的融入道路交通系统,提高整个交通系统的效率,同时车辆的设计、生产、销售、质量控制等各个环节均发挥出与以往不同的作用。
关于SAECCE 2020
2020中国 汽车 工程学会年会暨展览会(SAECCE 2020) 将于 2020年10月27-29日 在 上海 汽车 会展中心 举办,诚邀 汽车 及相关行业的企业高层、技术领军人物、资深专家学者、广大 科技 工作者参与会议。SAECCE以“ 汽车 +,协同创新”为主题,围绕新能源 汽车 技术、智能网联 汽车 技术、 汽车 关键共性技术,深度探讨如何快速推动技术创新,重塑新型产业格局。
中国 汽车 工程学会年会暨展览会(SAECCE)已成功举办26届,成为在国内举办的 汽车 行业标杆活动之一。此外,原定于今年5月在北京召开的第七届国际智能网联 汽车 技术年会(CICV 2020)将和2020中国 汽车 工程学会年会暨展览会(SAECCE 2020)合并举办。
SAECCE2020将组织1天(2场)全体大会、50多场专题分会、20多场(论文交流)技术分会,展览面积约10000平米,预计将吸引3000多位来自政府机构及行业组织、整车企业、零部件企业、高校及科研院所的代表参会及参观。
欢迎广大企业、高校、科研院所等机构、以及广大 科技 工作者通过组团或个人报名的方式积极参与!
02
SAECCE 2020 日程架构
⑻ spark驾驶行为分析实验中用到了哪些华为云服务
华为车联网EI服务,MRS服务。MRS是一个在华为云上部署和管理Hadoop系统的服务,一键即可部署Hadoop集群。MRS提供租户完全可控的一站式企业级大数据集群云服务,完全兼容开源接口,结合华为云计算、存储优势及大数据行业经验,为客户提供高性能、低成本、灵活易用的全栈大数据平台。华为车联网EI服务是基于华为云软件开发服务、华为云企业智能、华为云应用服务在构建海外服务众包平台、车联网平台、在线数据标定平台、高校业务中台等场景中进行了卓越的实践,兼具创新性与市场价值。
⑼ 基于大数据的配电设备状态可视化平台技术领域
1.一种基于大数据的配电设备状态可视化平台,其特征在于,所述配电设备状态可视化平台采用松耦合方式与众多的信息系统连接,以进行交互,所述耦合方式为采用面向服务的体系结构SOA,所述SOA是一个组件模型,所述SOA用于通过定义的接口和契约将应用程序的不同功能单元联系起来,所述接口采用中立的方式进行定义,并应该独立于实现服务的硬件平台、操作系统和编程语言,以使得构建在各种这样的系统中的服务通过统一和通用的方式进行交互,其中,所述配电设备状态可视化平台包括:
数据处理模块,用于获取多平台数据,并对所述多平台数据进行处理,并展示处理后的数据,数据获取包括信息内网数据获取和信息外网数据获取,其中数据获取/转换装置部署在信息内网,通过安全隔离装置、并基于安全的传输通道获取处于信息外网的业务系统数据;所述数据获取基于跨平台编程接口企业服务总线,采用数据接口、数据中心共享、网络隔离下的安全文件传输方式;具体地,接口的实现方式包括:Web Service服务调用接口、页面嵌入集成接口、结构化数据获取接口、非结构化数据获取接口和电网空间数据获取接口,其中,所述Web Service服务调用接口,对于配电设备状态可视化平台需要在线监测未提供服务接口的数据,通过服务调用获取状态监测中的数据,且随取随用、对于配电设备状态可视化平台,需要进一步处理的状态监测信息,并且状态检测已经提供服务接口的,数据不在配电设备状态可视化平台数据库中存贮;所述页面嵌入集成接口,对于配电设备状态可视化平台,不需要进一步处理的状态监测信息,且状态检测已经提供了相应的模块页面,则通过url调用相应的功能页面;所述结构化数据获取接口:针对常规关系型数据库数据,采用JDBC/ODBC编程接口直接获取数据库数据,对于安全极别高、私密的数据,由业务系统提供接口由数据获取/转换装置调用获取或由业务系统主动推送,将相关数据发送到企业消息总线上,数据获取/转换装置会对消息总线进行监听以获取数据;所述非结构化数据获取接口:对于文档、音频、监控视频、巡检获得的图片非结构化数据,数据获取/转换装置通过通用的文件传输协议直接读取调用相关文件,并进行后续的相关清理、转换处理工作;所述电网空间数据获取接口:电网空间数据包含坐标轴、经纬度结构化数据,以及图像、文本非结构化数据,数据获取/转换装置根据不同的数据类型分别利用结构化数据接口和非结构化数据接口从系统中获取数据,对于由数据获取/转换装置调用编程接口或系统接口从业务系统中拉取的数据,在装置中配置相关策略,定义好相关的接口、周期、调用频率、调用对象相关参数,数据获取/转换装置会自动执行相关任务,从业务系统中拉取数据;
数据分析模块,用于进行大数据集成、存储、检索以及数据挖掘分析;
评估模块,用于生成基于大数据的配电设备评估模型,并根据所述配电设备评估模型对配电设备进行评价,并根据评价结果生成相应的处理策略。
2.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述多平台数据至少包括:生产管理系统数据、在线监测系统数据、空间地理信息系统数据、气象系统数据和视频监控平台数据。
3.根据权利要求2所述的基于大数据的配电设备状态可视化平台,其特征在于,所述数据处理模块用于对获取到的多平台数据进行预处理和清洗,包括:
根据所述多平台数据所述的业务系统、类型、结构、大小,打上统一规范的标记,用于标识该数据的来源和种类,同时,结合预设的数据规则库,根据数据的标记,将相应的规则与数据进行封装,封装完成的数据可识别、可控制并带有相应清洗规则,可以送到数据清洗阶段进行清洗工作。
4.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述数据分析模块包括感知层、网络层和应用层,其中,
所述感知层用于进行数据采集;
所述网络层用于进行数据传输;
所述应用层进一步包括服务层、业务层、展现层、及一个工具集,所述服务层用于提供数据的挖掘分析能力,所述业务层用于实现具体产品的业务需求,所述展现层用于提供交互界面,所述工具集用于提供安装部署工具、数据挖掘工具、业务建模工具、代码生成工具。
5.根据权利要求4所述的基于大数据的配电设备状态可视化平台,其特征在于,所述感知层、网络层和应用层之间进行交互,所述交互包括消息流和数据流,通过所述消息流来控制数据流的处理。
6.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述配电设备评估模型至少包括:变压器类设备故障预测模型、开关和组合电器类设备状态的发展趋势和故障概率动态预测模型、基于复杂关联关系的输电线路故障预测模型。
7.根据权利要求6所述的基于大数据的配电设备状态可视化平台,其特征在于,所述评估模块用于采用融合多因素的状态评价分析算法,包括:
1)分析决策问题,构造出系统的命题集,即系统的识别框架Ω {A1,A2,……,Ak};
2)针对目标信息系统,构造基于识别框架的证据体Ei(i 1,2,……,m);
3)根据所收集到的各证据体的资料—全局全量数据,结合识别框架中各命题集合的特点,确定出各证据体的基本可信度分配mi(Aj),j 1,2,……,K,表示不同状态信息对设备状态的反应能力;
4)根据基本可信度分配mi(Aj),分别计算单证据体作用下识别框架中各命题的信度区间[Beli,Pli];
5)利用D-S合成规则计算所有证据体联合作用下的基本可信度分配m(Aj)和信度区间[Bel,Pl];
6)根据具体问题构造相应的决策规则;
7)根据该决策规则得出决策结论。
8.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述评估模块对配电设备进行评价,包括:
A)按照配电设备状态评价导则中的相关要求,对应导则中的各个状态量阈值逐一扫描数据,当任意一个数据超过导则中限定的阈值时,将该数据标记为异常值,与原始数据分离;
B)将数据变换为多元时间序列,计算出各一维时间序列的互协方差函数和互相关函数,从而得到传递函数分子、分母多项式的阶数及延迟参数,然后拟合传递函数模型,最后根据模型残差序列的ACF检验来判定干扰时刻及产生的异常数据;
C)基于增量递推的最小二乘回归参数估计和广义似然比变化点检测,采用增量机制确定数据序列回归模型参数和分割点,实时提取数据趋势特征,将趋势改变的数据标记为异常数据。
9.根据权利要求8所述的基于大数据的配电设备状态可视化平台,其特征在于,其中,配电线路在不同天气条件下的故障率为将时间折合成单位为年时故障发生的次数,以1个日历年为单位时故障率的平均值可以表示为:
其中,N为正常天气的期望持续时间,S为恶劣天气的期望持续时间; λ表示正常天气时元件故障率的期望值,λ′为恶劣天气时元件故障率的期望值;
使用两状态天气模型来描述变压器的偶然失效模式故障率,其表达式为:
其中,为变压器偶然失效的统计平均值,N为正常天气的持续时间,S为恶劣天气的持续时间,F为发生在恶劣天气的故障的比例,w为变压器当前所处的天气状况,正常天气w 0,恶劣天气w 1。
10.根据权利要求1所述的基于大数据的配电设备状态可视化平台,其特征在于,所述评估模块还用于根据设备状态和系统风险进行设备重要度评估,包括:
a)根据大数据状态评价结果、运行信息、微气象数据,利用PHM模型计算系统元件考虑大数据的实时故障概率;
b)使用枚举法选择系统状态,枚举至3阶故障,形成预想故障事件,并计算故障事件发生的概率;
c)对选取的系统状态进行静态安全分析,利用最优潮流计算系统状态是否满足充裕性,如需切负荷那么该系统状态为紧急状态,进入步骤d),如不需切负荷则该系统状态为警戒状态或 健康 状态,对系统进行N-1校验,如果满足安全准则,则为 健康 状态,返回步骤b),否则为警戒状态,进入步骤d);
d)计算该系统状态下的紧急指数或警戒指数,利用风险追踪模型计算该状态下各个故障元件的贡献值;
e)返回步骤b)直到遍历预想故障集的所有故障事件;
f)计算系统总紧急指数和总警戒指数,并计算元件紧急重要度指标和警戒重要度指标,根据重要度指标排序,确定系统薄弱设备。
⑽ 云痕大数据分屏会发现吗
可以。
云痕大数据是苏州云痕教育科技有限公司旗下教育类品牌,品牌注册号27819006,国际分为第41、42类 .云痕大数据基于图像识别和自然语言处理等技术研发EI教育智能系统 ,在不改变传统教学模式的基础上,实现因材施教、促进教育公平。