❶ 数据分析:大数据处理的基本流程(三)
01
什么是数据分析
随着数字化进程的高速发展,越来越多的企业面对愈加激烈的竞争,差异化的市场,多变的环境,常常会面临各种难题,也变得更依赖于数据。
分析的本质是让业务更加清晰,让决策更加高效。 数据分析 作为大数据价值产生的必要步骤、整个 大数据处理流程的核心 ,其在企业中的地位也越来越重要。
数据分析的目的 说白了就是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,对其加以汇总、理解并消化,以求最大化地开发数据的功能,从而找出所研究对象的内在规律,发挥数据的作用。
简而言之, 数据分析就是一个有组织、有目的收集数据、为了使其成为信息而对数据加以详细研究和概括总结的过程。
在企业实际应用中,数据分析的一系列过程也是产品质量管理体系的支持过程。在企业产品的整个寿命周期,包括从市场调研到售后服务的各个过程都需要适当运用数据分析,以提升数据分析的有效性,能够适时解决企业难题、识别机会、规避风险。
数据分析的作用及价值,可简单归纳总结为下面四个方面:
1.追溯过去,了解真相(识别机会、规避风险)
2.洞察本质,寻本溯源(诊断问题、亡羊补牢)
3.掌握规律,预测未来(评估效果、改进策略)
4.采取措施,驱动行动(提高效率、加强管理)
02
数据分析的三个常用方法
数据分析本身是一个非常大的领域,这里将主要讨论一下在企业产品整个寿命周期期间,3个常用的数据分析方法 (想看数据分析常用算法的小伙伴可以点这里跳转) :
数据趋势分析
数据对比分析
数据细分分析
趋势 , 对比 , 细分 ,基本包含了数据分析最基础的部分。无论是数据核实,还是数据分析,都需要不断地找趋势,做对比,做细分,才能得到最终有效的结论。
数据趋势分析
趋势分析一般而言,适用于产品核心指标的长期跟踪,比如产品点击率、活跃用户数等。简单的数据趋势图并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。
趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念: 环比,同比,定基比 。
环比 指本期统计数据与上期比较,利用环比可以知道最近的变化趋势,但是有些数据可能会受季节、时间、地域等因素影响而产生差异。
为了消除差异,于是有了 同比 的概念,例如2019年2月份和2018年2月份进行比较。
定基比 就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。
趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释。
数据对比分析
很多时候单独看数据的趋势变化并不能说明问题,此时就需要给孤立的数据一个合理的参考系,否则孤立的数据毫无意义,这也是对比分析的意义所在。
一般而言,对比的数据是数据的基本面,比如行业情况,全站的情况等。
有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准,也就是A/B test,比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致,只有这样才能得到比较有说服力的数据。可以简单理解为样本数量为2的控制变量法。
数据细分分析
在得到一些初步结论后,就需要进一步对数据进行细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节。
细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。
进行数据细分分析时,一定要进行多维度的细拆,可以包括但不限于:
分时 :不同时间短数据是否有变化
分渠道 :不同来源的流量或者产品是否有变化
分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异
分地区 :不同地区的数据是否有变化
组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺
03
大数据时代数据分析面临的挑战
大数据时代,数据分析技术的发展也并非一直顺风顺水,眼下可能会面临一些新的挑战,主要有以下几点:
1
数据量大并不一定意味着数据价值的增加,也有可能是意味着数据噪音的增多。
因此,在数据分析之前必须进行数据清洗等预处理工作,但是预处理如此大量的数据,对于计算资源和处理算法来讲都是非常严峻的考验。
2
大数据时代的算法需要进行调整。
大数据的应用常常具有实时性的特点,算法准确率不再是大数据应用的最主要指标。很多时候,算法需要在处理实时性和准确率之间博得一个平衡点。
其次,分布式并发计算系统是进行大数据处理的有力工具,这就要求很多算法必须做出调整以适应分布式并发的计算框架,算法需要变得具有可扩展性。许多传统的数据挖掘算法都是线性执行的,面对海量的数据很难在合理的时间内获取所需的结果。因此需要重新把这些算法实现成可以并发执行的算法,以便完成对大数据的处理。
最后,在选择处理大数据的算法时必须谨慎,当数据量增长到一定规模以后,可以从少量数据中挖掘出有效信息的算法并非一定适用大数据。
3
数据结果的衡量标准。
对大数据进行分析并非易事,同样的,对大数据分析结果好坏如何衡量也是大数据时代数据分析面临的更大挑战之一。
大数据时代的数据体量大、类型混杂、产生速度快,进行分析时如果没有对整个数据的分布特点了如指掌,无疑会导致在设计衡量的方法、指标时遇到困难。
企通查-企业大数据平台基于 数据采集、特征提取、信息关联、机器学习和深度学习算法模型、NLP文本分析 等先进技术,清晰构建企业全维度动态画像,通过 企业风控指数、企业信用指数、企业活力指数 三大指数模型体系和基于 企业基本能力、创新能力、经营能力、核心能力、财务能力和风险能力 六大方面的大数据风控体系,实现对企业和客户的 全流程主动感知、重点监控、变动提醒和风险预警 。此外,企通查还可以根据客户的不同需求定制所需的一系列企业数据。
❷ 大数据量快速处理的架构设计
大数据量快速处理的架构设计
在业务数据的处理过程中,经常会遇到夜间批次处理大量的数据,而且会有时效的要求。特别是当应用系统跑了2年以上时,就会有大表或者特大表的操作了,数据量达到百万甚至上亿。 这时回顾前期的设计,就会发现好多问题。 可能是数据模型设计的时候没有考虑表的分区和及时归档、sql的设计没有考虑索引或全表扫描、数据的处理没有考虑及时的分批切分、并发处理的多线程可配置化等等, 为了以后的设计不要走相同的错路。这里暂时简要总结一下。
1 最初要考虑归档和分区。所有可能的大表设计,都要在最初的时候考虑归档和分区。
数据冲上高水位(HighWaterMark)后,即使有归档也不会降低高水位,性能可能也存在消耗,所以要及时归档转移数据。 最好是设置分区表,这样分区表可以进行及时的truncate或者drop再重新add分区。 可以灵活的控制存储。
2 sql条件精准定位。大的关联sql查询,一定要尽量的精准抽取数据范围,不要模糊抽取过多数据,含好多无用的后面再过滤,这很可能影响数据库的执行计划判断导致性能下降。
3 快速定位数据,分批支持流水并发。大批量数据处理,首先要用最简单的方式找到目标最小集群的数据,从大范围中抽出来,并进行切分。切分的目的是可以使用多线程并发处理数据,并且隔离各分区的数据不会重复,也不能有遗漏,这样并发时不会造成数据干扰。
4 流水线并发处理提升时效。
采用3的切分多批+多线程并发的方式,就可以针对有多个步骤的业务逻辑处理时,不用瀑布模式等待执行,而是可以流水线样的多条执行,实现了多并发,无时间和空间的浪费。 对于有高时效的任务处理,具有可观的价值。
❸ 大数据处理的基本流程有什么
大数据处理流程主要包括数据收集、数据预处理、数据存储、数据处理与分析、数据展示/数据可视化、数据应用等环节,其中数据质量贯穿于整个大数据流程,每一个数据处理环节都会对大数据质量产生影响作用。
通常,一个好的大数据产品要有大量的数据规模、快速的数据处理、精确的数据分析与预测、优秀的可视化图表以及简练易懂的结果解释,本文将基于以上环节分别分析不同阶段对大数据质量的影响及其关键影响因素。
❹ 大数据处理一般有哪些流程
第一,数据收集
定义:利用多种轻型数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简略的查询和处理工作。
特色和应战:并发系数高。
运用的产品:MySQL,Oracle,HBase,Redis和 MongoDB等,并且这些产品的特色各不相同。
第二,统计剖析
定义:将海量的来自前端的数据快速导入到一个集中的大型分布式数据库 或者分布式存储集群,利用分布式技术来对存储于其内的集中的海量数据 进行普通的查询和分类汇总等,以此满足大多数常见的剖析需求。
特色和应战:导入数据量大,查询涉及的数据量大,查询恳求多。
运用的产品:InfoBright,Hadoop(Pig和Hive),YunTable, SAP Hana和Oracle Exadata,除Hadoop以做离线剖析为主之外,其他产品可做实时剖析。
第三,发掘数据
定义:基于前面的查询数据进行数据发掘,来满足高档其他数据剖析需求。
特色和应战:算法复杂,并且计算涉及的数据量和计算量都大。
运用的产品:R,Hadoop Mahout。
关于大数据处理一般有哪些流程,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❺ excel大数据处理技巧
方法/步骤
1、数据整理。工欲善其事,必先利其器。数据质量是数据分析的生命,此步骤不可忽视、不可走过场。
①数字型的数字才可以参与画图和做分析模型,所以数据不能带单位(如:元、万元),也不能用区间数据(如:23-25,不要将电脑当作神脑)。
②数据的单位要一致,统一按列排序或者按行排序,此案例用列排序。
③注意:对于用文本格式存储的数字,单元格左上角有个绿色三角表示,要注意修改为数字格式。
2、对于本例,需要用到随机函数rand()。一个色子有6个面,取数为1-6。模拟色子数据=int(rand()*6)+1。
其他用到的函数有:求和sum();最大值max();最小值min()。
3、绘制图形。
①目前我们只做2维的数据分析,只有1个自变量和1个因变量。选择2列数据,合计列和最大值列。技巧:当需要选择不相邻两列,可以先选1列,按ctrl键,再选另1列,放开ctrl键。
②菜单插入→图形→散点图,确认。当然,折线图等也可以数据分析,但为了图面干净,推荐还是用散点图。
4、相关性分析。
首先,在散点图上某个散点上右键→添加趋势线。
5、然后,紧接着自动弹出设置趋势线模式(若没弹出这个对话框,也可在图上某个散点上右键,选择设置趋势线模式)→显示公式、显示R平方值。至于回归分析类型,采用线性类型比较通用些。
6、关闭后,观察图上的r2值(实际是指R平方值,下同),r2值0.8到1,说明正相关,自变量和因变量有(线性)关系。r2值0.6到0.8,弱相关。-0.6到0.6,不相关,自变量对因变量没有影响。-0.8到-0.6,弱负相关。-1到-0.8,负相关,自变量和因变量有(线性)关系,但方向相反。
7、最后,点击图上任意散点,表格会出现红色框和蓝色框,红色是因变量,不能移动,蓝色框可以移动。通过鼠标拖动蓝色框,可以看到最大值、最小值、中间值与合计数的线性相关性r2值。
8、本案例数据统计:合计数与最大值、最小值的相关性大多在0-0.7以内,合计数与中间值的相关性大多在0.7以上。自变量x为中间值,因变量y为合计数,他们的关系模型为:y = 0.4196x - 0.8817。(当然,公式中的参数只是针对这25次试验)
本案例结论:三数合计与中间值呈弱线性相关。
推论:评分比赛中,将最高分和最低分同时去掉,不影响最终得分。
以上就是Excel数据处理并绘制成分析图形方法介绍,操作很简单的,你学会了吗?希望这篇文章能对大家有所帮助!
❻ 大数据处理的关键技术都有哪些
大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。
1、大数据采集技术
大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。
因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。
2、大数据预处理技术
大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。
因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。
3、大数据存储及管理技术
大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。
4、大数据处理
大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。
❼ 如何进行大数据分析及处理
聚云化雨的处理方式
聚云:探码科技全面覆盖各类数据的处理应用。以数据为原料,通过网络数据采集、生产设备数据采集的方式将各种原始数据凝结成云,为客户打造强大的数据存储库;
化雨:利用模型算法和人工智能等技术对存储的数据进行计算整合让数据与算法产生质变反应化云为雨,让真正有价值的数据流动起来;
开渠引流,润物无声:将落下“雨水”汇合成数据湖泊,对数据进行标注与处理根据行业需求开渠引流,将一条一条的数据支流汇合集成数据应用中,为行业用户带来价值,做到春风化雨,润物无声。
❽ “大数据”时代下如何处理数据
现在科技发达有许多能把复杂的东西用一个小工具就能做好,科技的进步我们也要进步,要适应社会的发展,跟着时代走,学会先进的工具,就会简化我们的生活,为了更方便的处理方法,你还在等什么呢?
在工作当中经常遇到数据统计,在以前计算和整理数据需要很长的时间,浪费时间就算了,还可能把数据整理错了,错误的数据交上去的话,会给你所在公司造成损失的,这种错误是经常出现的,不但费时费力,好吃力不讨好的工作。
当然了,现在科技这么发达,就有了许许多多的电子产品出现,它们可以帮助你解决难题。比如大数据如何处理吧,大数据就是因为数据太多,太复杂,所以计算和整理起来有些困难。
不要担心他的麻烦,因为我们有Excel表格。这个表格包含很多东西,大数据通过一定的方法,几分钟就可以求出你几天来的成果,而且它是比较可靠准确的。
节省了宝贵的时间,这样公司也不会担心数据有误了。学好Excel很重要,现在大学生都会学计算机应用基础,在这本书中你会学会表格怎么做,word怎么做等。让你从零基础学起,你也可以选择在家自学,在网上找一些制作表格的方法及其理论。
处理数据应用适当的方法,你就可以轻轻松松的整理资料。不要认为这很简单,他也有难处的,没有老师教的情况下,光看书是不行的,因为有些理论你是看不懂的。